JPS5819743B2 - heat resistant steel - Google Patents

heat resistant steel

Info

Publication number
JPS5819743B2
JPS5819743B2 JP12084379A JP12084379A JPS5819743B2 JP S5819743 B2 JPS5819743 B2 JP S5819743B2 JP 12084379 A JP12084379 A JP 12084379A JP 12084379 A JP12084379 A JP 12084379A JP S5819743 B2 JPS5819743 B2 JP S5819743B2
Authority
JP
Japan
Prior art keywords
resistant steel
heat
steel
added
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12084379A
Other languages
Japanese (ja)
Other versions
JPS5644758A (en
Inventor
山田誠吉
大沢秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12084379A priority Critical patent/JPS5819743B2/en
Publication of JPS5644758A publication Critical patent/JPS5644758A/en
Publication of JPS5819743B2 publication Critical patent/JPS5819743B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 5US403はタービン用鋼として開発された基本鋼で
Cu単味のため安価であり、常温および高温での強度、
延性がすぐれ、製造も容易であり、疲労特性も良く、広
く賞月されている。
Detailed Description of the Invention 5US403 is a basic steel developed as a steel for turbines.It is inexpensive because it contains only Cu, and has excellent strength at room and high temperatures.
It has excellent ductility, is easy to manufacture, has good fatigue properties, and is widely praised.

しかし本鋼の最大の欠点は常温附近での衝撃値が不安定
(常温近傍に衝撃遷移温度がある)なことである。
However, the biggest drawback of this steel is that its impact value is unstable near room temperature (there is an impact transition temperature near room temperature).

従って5US403を基本組成としたものに改良を加え
、強度を低下させずに衝撃値の改善をはかったものが本
発明鋼である。
Therefore, the steel of the present invention is a steel having the basic composition of 5US403, which has been improved to improve the impact value without reducing the strength.

本発明者らはSUS 403を基本鋼としたものに若干
の元素を微量添加してδフェライトの全く出ない、熱間
加工も容易で且つ熱処理も単純な焼入れ、焼もどしのみ
でよく、耐衝撃性にすぐれた耐熱鋼を発明した。
The present inventors added small amounts of some elements to SUS 403 as the basic steel to create a material that does not produce any δ ferrite, is easy to hot work, requires only simple quenching and tempering, and has high impact resistance. He invented a heat-resistant steel with excellent properties.

本発明の要旨は、 C0,08〜0.25%、Si≦1.5%、Mn≦1.
5%、Ni≦1,0%、Cr10.0〜14.0%、N
b +Z ro、02〜0.5%、但しNb2O,01
%、Zr2O,01%残部Feおよび不可避的不純物か
らなる常温靭性のすぐれた耐熱鋼であり、高温のスチー
ム、タービン、プレートの動翼、静翼ディスク等の他5
US403.431系に関われるポンプシャフトなど機
械構造用ステンレス鋼としての用途もある広範囲に適用
出来る耐銹、耐熱鋼である。
The gist of the present invention is as follows: C0.08-0.25%, Si≦1.5%, Mn≦1.
5%, Ni≦1.0%, Cr10.0-14.0%, N
b +Z ro, 02-0.5%, however, Nb2O, 01
%, Zr2O, 0.1% balance Fe and unavoidable impurities.It is a heat-resistant steel with excellent room temperature toughness, and is used in high-temperature steam, turbines, rotor blades of plates, stationary vane disks, etc.
It is a rust-resistant and heat-resistant steel that can be used in a wide range of applications, including stainless steel for mechanical structures such as pump shafts related to the US403.431 series.

次に本発明鋼の成分範囲の限定理由を述べる。Next, the reason for limiting the composition range of the steel of the present invention will be described.

c:o、os〜0.25% Cは常温、高温における強度、硬さを附与するに必要な
最も基本的に重要な元素である。
c: o, os ~ 0.25% C is the most fundamentally important element necessary to impart strength and hardness at room temperature and high temperature.

耐熱鋼の強度を高めるにはまず第1に炭素と炭化物生成
元素(Cr、Nbなど)よりなる炭化物を適当な焼もど
しにより生成させることであり、第2にそれらの炭化物
が均一でしかも微細に分布させることが必要であり、そ
のためには適量のCの存在が必須となる。
In order to increase the strength of heat-resistant steel, the first step is to generate carbides made of carbon and carbide-forming elements (Cr, Nb, etc.) through appropriate tempering, and the second step is to make these carbides uniform and fine. It is necessary to distribute C, and for this purpose, the presence of an appropriate amount of C is essential.

しかしCが0.08%未満であれば強度に不足を生ずる
ばかりでなく、本鋼ではタービン用鋼構造用材料として
の疲労特性靭性を劣化させるδフェライトの生成、残存
がまぬがれず、Cが0.25%を越えると炭化物が増加
し、いきおい高温長時間側で炭化物の凝集にともなう高
温強度の劣化をまねくと共に脆化を促進する。
However, if the C content is less than 0.08%, not only will the strength be insufficient, but this steel will inevitably generate and remain δ ferrite, which deteriorates the fatigue properties and toughness of the steel as a structural material for turbines. If it exceeds .25%, carbides increase, leading to deterioration of high-temperature strength due to agglomeration of carbides at high temperatures for long periods of time, and promoting embrittlement.

Cr : 10.0〜14.0% CrはCと同様木調には不可欠の元素で耐食性、耐熱性
、焼もどし温度の上昇(2次硬化による軟化の高温側へ
の移行)をもたらす、重要な炭化物生成元素であるが1
0.0%未満であると、耐熱性、耐食性の点で耐熱鋼と
しての保証が出来ない。
Cr: 10.0-14.0% Cr, like C, is an essential element for wood texture, and is important because it brings about corrosion resistance, heat resistance, and an increase in tempering temperature (shifting of softening to high temperature side due to secondary hardening). Although it is a carbide-forming element, 1
If it is less than 0.0%, it cannot be guaranteed as a heat-resistant steel in terms of heat resistance and corrosion resistance.

また、14,0%を越えるとC,N、Niなどのオース
テナイト生成元素とNbなどのフェライト生成元素トの
バランスからδフェライトを完全に消滅させることが困
難となる。
Moreover, if it exceeds 14.0%, it becomes difficult to completely eliminate δ ferrite due to the balance between austenite-forming elements such as C, N, and Ni and ferrite-forming elements such as Nb.

Nb士Zr : 0.02〜0.5%但しNb量0.0
1%、Zr2O,01%同時添加 Nbは強力な炭化物生成元素であり、高温強度、焼もど
し抵抗性、結晶粒の粗大化を防止すると共にNbCの微
細分散析出によって結果として靭性を著るしく改善する
役割を果たす。
Nb Zr: 0.02 to 0.5%, but Nb amount 0.0
1%, Zr2O, 01% co-added Nb is a strong carbide-forming element, which improves high-temperature strength, tempering resistance, and prevents coarsening of crystal grains, and significantly improves toughness due to finely dispersed precipitation of NbC. play a role.

更にZrは結晶粒の微細化に寄与し、従ってNbとZr
を複合添加した場合は結晶粒の微細化効果が特に著しい
Furthermore, Zr contributes to grain refinement, and therefore Nb and Zr
The effect of refining crystal grains is particularly remarkable when the compound is added in combination.

結果として粒界強化による靭性の改善に効果がある。As a result, it is effective in improving toughness by strengthening grain boundaries.

しかし、Nb、Zrいずれも強力なフェライト生成元素
であり多量に添加するとδフェライトや大型の炭窒化物
を生成し清浄度を害するばかりでなく、他の諸性質特に
疲労特性にも好ましい結果を与えないのでNb+Z r
0.02〜0.5%とするが好ましくはNb+Z r
0.02〜0.2%である。
However, both Nb and Zr are strong ferrite-forming elements, and when added in large amounts, they not only produce δ ferrite and large carbonitrides, impairing cleanliness, but also have favorable effects on other properties, especially fatigue properties. Since there is no Nb + Z r
0.02 to 0.5%, preferably Nb+Z r
It is 0.02-0.2%.

なお両元素とも高価なため多量の添加は不経済である。Note that since both elements are expensive, it is uneconomical to add large amounts.

Si:1.5%以下 Siは脱酸剤として加えるが、多量に加えるとδフェラ
イトの生成を助長し、結晶粒を粗大化する傾向があり1
.5%以下とした。
Si: 1.5% or less Si is added as a deoxidizing agent, but if added in large amounts, it tends to promote the formation of δ ferrite and coarsen the crystal grains.
.. It was set to 5% or less.

Mn : 1.5%以下 MnもSiと同様脱酸剤として加えるが、1.5%をこ
えると残留オーステナイトの成長をうながすので1.5
%以下とした。
Mn: 1.5% or less Mn is also added as a deoxidizing agent like Si, but if it exceeds 1.5%, it promotes the growth of retained austenite, so it should be set at 1.5%.
% or less.

Ni : 1.0以下 Niは耐衝撃性の向上には寄与するが、加熱変態点を著
るしく下げ、従って焼戻し温度も上げられず、いきおい
焼もどし温度も低くなる。
Ni: 1.0 or less Although Ni contributes to improving the impact resistance, it significantly lowers the heating transformation point, so the tempering temperature cannot be raised, and the tempering temperature becomes low.

多量の添加では残留オーステナイトを生成するので、1
.0%を上限とする。
Adding a large amount will generate retained austenite, so 1
.. The upper limit is 0%.

次に本発明耐熱鋼の特徴を実施例により詳細に説明する
Next, the characteristics of the heat-resistant steel of the present invention will be explained in detail using examples.

第1表は本発明鋼および比較鋼を示したものである。Table 1 shows the steels of the present invention and comparative steels.

81〜S6ばC0,1%の12%Cr耐熱鋼でZr0.
03%をベースにNbを0.01〜0.15%迄添加し
たものであり、S7〜S9はCが0.2%C−12%C
r耐熱鋼でNbおよびZrを複合添加したものである。
81~S6 is a 12% Cr heat-resistant steel with C0.1% and Zr0.
Nb is added to 0.01 to 0.15% based on 0.03%, and S7 to S9 have a C content of 0.2%C to 12%C.
This is a heat-resistant steel with a composite addition of Nb and Zr.

なおり1.B2ばCr単味の12%Cr耐熱鋼で、S3
.S4.B5ばNb O,02、0,05%単独添加材
の比較鋼である。
Naori 1. B2 is a 12% Cr heat-resistant steel with a single Cr content, and S3
.. S4. B5 is a comparison steel containing only 0.05% NbO2 and 0.05%.

第1図は焼もどし抵抗性におよぼすNb、Zrの影響で
あり、同一の焼もどし硬さを得ようとする場合Nbの0
.05%添加により600℃以上の常用焼もどし温度で
焼もどし温度を約70℃上げることができる。
Figure 1 shows the influence of Nb and Zr on tempering resistance.
.. By adding 0.05%, the tempering temperature can be increased by about 70°C from the conventional tempering temperature of 600°C or higher.

また更にZr0.04%の複合添加で100℃上げるこ
とができる。
Further, by adding 0.04% Zr in combination, the temperature can be increased by 100°C.

これは微量添加にも拘らず極めて有効であることを示す
This shows that it is extremely effective despite being added in a small amount.

第2図はZ r 0.02〜0.04%添加したものに
Nb量を順次増加して添加したもの\常温の機械的性質
を示す。
FIG. 2 shows the mechanical properties at room temperature of materials to which 0.02 to 0.04% of Zr was added and to which the amount of Nb was added in increasing amounts.

Nbの増量添加に従い靭性は低下せずに強度硬度が上昇
する。
As the amount of Nb is increased, the strength and hardness increase without decreasing the toughness.

但し0.02%以上の添加ではそれ以上の向上は認めら
れない。
However, if it is added in an amount of 0.02% or more, no further improvement is observed.

第3図はZr0.02〜0104%添加した0、1%C
−12%Cr耐熱鋼の2Ttr/L■衝撃値の遷移温度
におよぼすNbの影響を示す。
Figure 3 shows 0.1%C with Zr0.02~0104% added.
The influence of Nb on the transition temperature of 2Ttr/L* impact value of -12%Cr heat-resistant steel is shown.

Nbの添加は常温附近の衝撃遷移温度を0.02%で約
−25℃、0.05%で一30℃迄下げ、Zrの添加で
更に低下させる。
The addition of Nb lowers the shock transition temperature near room temperature to about -25° C. at 0.02%, to -30° C. at 0.05%, and further lowers it by adding Zr.

この図からもNbの好ましい範囲は0.02〜0.05
%といえよう。
From this figure, the preferable range of Nb is 0.02 to 0.05
%.

一般に脆性破面率が50%であるのは吸収エネルギーで
6〜8kg、mであるので7に9.mの吸収エネルギー
をとった。
Generally, the brittle fracture rate is 50% when the absorbed energy is 6 to 8 kg, m, so it is 7 to 9. The absorbed energy of m was taken.

第4図は衝撃曲線におよぼすNb、Zrの効果を示す。FIG. 4 shows the effects of Nb and Zr on the impact curve.

0.02%Nb添加ですでに衝撃遷移曲線は0℃以下に
まで低下し、更にZrの添加により低下することからN
b十Zrの相乗効果が著るしいことが判ろう。
With the addition of 0.02% Nb, the shock transition curve has already decreased to below 0°C, and with the addition of Zr, it has further decreased.
It can be seen that the synergistic effect of b and Zr is remarkable.

第5図は0.2%C−■2%Cr耐熱鋼の耐衝撃値と強
度の関係におよぼすNb、Zrの影響を示す。
FIG. 5 shows the influence of Nb and Zr on the relationship between impact resistance and strength of 0.2%C-2%Cr heat-resistant steel.

0.1%Cクラスと同様にNbおよびZr添加は同一強
度レベルでも靭性の向上が認められることが判ろう。
As with the 0.1% C class, it can be seen that addition of Nb and Zr improves toughness even at the same strength level.

第2表は0.1%C−12%Cr耐熱鋼のクリープラブ
チャー破断時間に及ぼすNb、Zrの影響を示す。
Table 2 shows the influence of Nb and Zr on the creep-loveture rupture time of 0.1%C-12%Cr heat-resistant steel.

低温短時間例での1ポイント試験だが同−硬さレベルに
した場合Nb、Zrの添加により6〜8倍破断寿命が延
びる。
In a 1-point test conducted at a low temperature for a short period of time, when the hardness level is the same, the addition of Nb and Zr extends the rupture life by 6 to 8 times.

以上の結果から5US403系に微量のNb 。From the above results, there is a trace amount of Nb in the 5US403 series.

Zrを添加した場合衝撃遷移特性およびクリープラブチ
ャー性質を著るしく改善し、優れたしかも安価な耐熱鋼
が得られる。
When Zr is added, the impact transition properties and creep rupture properties are significantly improved, and an excellent and inexpensive heat-resistant steel can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.1%C−12%Cr耐熱鋼の焼もどし硬さ
におよぼすNb、Zrの影響を示す図で、焼入れは95
0℃油冷で行なったものである。 第2図は0.1%C−■2%Cr耐熱鋼の常温の機械的
性質におよぼすNbの影響を示す図で、実線は9950
℃で30分油冷後680℃で1時間空冷したものであり
、点線は同じ<’、950℃で30分油冷後、720℃
で1時間空冷したものである。 なお衝撃値では21℃で5mmUnotchを使い、紋
りでは直径12mmφの試、験片を団い、伸びでは標点
距離40mmのものを使った。 第3図はo、 i % C−12%Cr耐熱鋼の衝撃遷
移温度におよぼすNbの影響を示す図で、条件は2mm
Vノツチシャルピーを使い、試験片の硬度はHRC20
〜22、熱処理条件は950℃油冷で650〜720℃
空冷である。 第4図は0.1%C−12%Cr耐熱鋼の衝撃遷移曲線
におよぼすNb、Zrの影響を示す図で、ノツチシャル
ピーおよび試験片の熱処理等の条件は第3図の場合と同
じである。 第5図は0.24C−12%Cr耐熱鋼の硬さと衝撃値
におよぼすNbおよびZrの影響を示す図である。
Figure 1 shows the influence of Nb and Zr on the tempering hardness of 0.1%C-12%Cr heat-resistant steel.
This was done under oil cooling at 0°C. Figure 2 shows the influence of Nb on the mechanical properties of 0.1%C-■2%Cr heat-resistant steel at room temperature, and the solid line is 9950.
℃ for 30 minutes and then air-cooled at 680℃ for 1 hour.The dotted line is the same <', after 30 minutes of oil cooling at 950℃, 720℃.
It was air cooled for 1 hour. For the impact value, a 5mm Unotch was used at 21°C, for the curvature test, a test piece with a diameter of 12mmφ was used, and for the elongation, a test piece with a gauge length of 40mm was used. Figure 3 shows the influence of Nb on the shock transition temperature of o,i%C-12%Cr heat-resistant steel, and the condition is 2mm.
Using V-notch Charpy, the hardness of the test piece is HRC20.
~22, Heat treatment conditions are 650-720℃ with oil cooling at 950℃
It is air cooled. Figure 4 is a diagram showing the influence of Nb and Zr on the impact transition curve of 0.1%C-12%Cr heat-resistant steel, and the conditions such as notch pyrolysis and heat treatment of the test piece were the same as in Figure 3. be. FIG. 5 is a diagram showing the influence of Nb and Zr on the hardness and impact value of 0.24C-12%Cr heat-resistant steel.

Claims (1)

【特許請求の範囲】[Claims] I C0,08〜0.25%、Si≦1.5%、Mn
≦1.5%、Ni≦1.0%、Cr1O,0〜14.0
%、Nb+Zr0.02〜0.5%但しNb2O,01
%、Zr2O,01%残部Feおよび不可避的不純物か
らなる常温、靭性のすぐれた耐熱鋼。
I C0.08~0.25%, Si≦1.5%, Mn
≦1.5%, Ni≦1.0%, Cr1O, 0-14.0
%, Nb+Zr0.02-0.5% However, Nb2O,01
%, Zr2O, 0.1% balance Fe and unavoidable impurities.Heat-resistant steel with excellent toughness at room temperature.
JP12084379A 1979-09-21 1979-09-21 heat resistant steel Expired JPS5819743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12084379A JPS5819743B2 (en) 1979-09-21 1979-09-21 heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12084379A JPS5819743B2 (en) 1979-09-21 1979-09-21 heat resistant steel

Publications (2)

Publication Number Publication Date
JPS5644758A JPS5644758A (en) 1981-04-24
JPS5819743B2 true JPS5819743B2 (en) 1983-04-19

Family

ID=14796326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12084379A Expired JPS5819743B2 (en) 1979-09-21 1979-09-21 heat resistant steel

Country Status (1)

Country Link
JP (1) JPS5819743B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217661A (en) * 1982-06-09 1983-12-17 Mitsubishi Heavy Ind Ltd Heat resistant steel
US5351395A (en) * 1992-12-30 1994-10-04 General Electric Company Process for producing turbine bucket with water droplet erosion protection

Also Published As

Publication number Publication date
JPS5644758A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US4564392A (en) Heat resistant martensitic stainless steel containing 12 percent chromium
US5061440A (en) Ferritic heat resisting steel having superior high-temperature strength
JP7428822B2 (en) Heat-resistant steel for steel pipes and castings
CN111139409A (en) Heat-resistant cast steel and preparation method and application thereof
US4036640A (en) Alloy steel
JP2008518103A (en) Martensitic hardenable tempered steel with creep resistance
US3767390A (en) Martensitic stainless steel for high temperature applications
US2516125A (en) Alloy steel
JPS5935427B2 (en) Roll materials used in continuous casting equipment
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JPH11209851A (en) Gas turbine disk material
US3316084A (en) Forging steel for elevated temperature service
JPS5819743B2 (en) heat resistant steel
JPS6013056A (en) Heat resistant martensitic steel
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
WO2012117546A1 (en) LOW-C, HIGH-Cr STEEL PIPE OF 862 MPa GRADE WITH HIGH CORROSION RESISTANCE, AND PROCESS FOR PRODUCING SAME
JPS597347B2 (en) High strength austenitic ferrite duplex stainless steel
JPS6366386B2 (en)
JPS5824497B2 (en) heat resistant steel
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPS60128250A (en) Heat-resistant high-chromium cast steel
JP3381011B2 (en) Precipitation hardening stainless steel
CA1130618A (en) Steel with improved low temperature toughness
JPS6365055A (en) High hardness stainless steel for cold forging
JPH05311346A (en) Ferritic heat resistant steel having high creep strength