JPS58197409A - Control device for output of combined cycle plant - Google Patents

Control device for output of combined cycle plant

Info

Publication number
JPS58197409A
JPS58197409A JP8114682A JP8114682A JPS58197409A JP S58197409 A JPS58197409 A JP S58197409A JP 8114682 A JP8114682 A JP 8114682A JP 8114682 A JP8114682 A JP 8114682A JP S58197409 A JPS58197409 A JP S58197409A
Authority
JP
Japan
Prior art keywords
signal
control device
load
steam
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8114682A
Other languages
Japanese (ja)
Other versions
JPS6214688B2 (en
Inventor
Hiroshi Fukuda
浩 福田
Hitoshi Karasawa
唐澤 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8114682A priority Critical patent/JPS58197409A/en
Publication of JPS58197409A publication Critical patent/JPS58197409A/en
Publication of JPS6214688B2 publication Critical patent/JPS6214688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent the exessively high thermal stress of a steam turbine side, by changing the flow of fuel within a control value of a load variation rate limiting signal from a steam cycle control device. CONSTITUTION:Combustion gas obtained by air from an air compressor 1 and fuel which are burnt in a burner 2, drives a gas turbine 3 producing exhaust gas which is led into a waste heat recovering boiler 4 generating steam for driving a steam turbine 5. Pulses (a) from a load setting device 11 are applied to a digital setting unit 18, and a D/A converter 19 converts the number of pulses from a pulse generator 17 into a digital signal and applies a load setting signal (1) to a load variation rate limiter 21 in which the deviation between the load setting signal (1) and a regulator valve open degree demand signal (p) is controlled by means of an integrator 24 so that the deviation has zero value, thereby the regulator open degree demand signal (p) moderately rises even if the load setting signal (1) abruptly rises.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンサイクルおよび蒸気タービンナイ
クルが排熱回収メイラを介して結合され、且つ、ガスタ
ービンおよび蒸気タービンが一軸で連結されてなるコン
バインドサイクルプラントの出力制御装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a combined system in which a gas turbine cycle and a steam turbine cycle are connected via an exhaust heat recovery mailer, and the gas turbine and the steam turbine are connected by a single shaft. This invention relates to an output control device for a cycle plant.

し発明の技術的背景〕 この種のコンバインドサイクルプラントは一軸形コンバ
インドすイクルプラントとも呼ばれ、−般的には第1図
の如く構成されている。すなわち、空気圧縮機lによっ
て圧縮された圧縮空気が燃焼器−によって燃料と混合さ
れ、ここで高温の燃焼ガスとなり、この燃焼ガスがガス
タービンJを駆動する。ガスタービン3の排気は排熱回
収ボイラダに導かれ、ここで図示しないドラム内の水を
加熱して蒸気を発生させる。次いで、この蒸気は蒸気加
減弁/Qを介して蒸気タービンjに導かれてこれを駆動
し、その排気は海水等により冷却されて復水となる。ま
た、燃焼器コに供給される燃料は燃料流量調整弁7によ
って流量制御される。
TECHNICAL BACKGROUND OF THE INVENTION This type of combined cycle plant is also called a uniaxial combined cycle plant, and is generally constructed as shown in FIG. That is, compressed air compressed by the air compressor I is mixed with fuel in the combustor to become high-temperature combustion gas, which drives the gas turbine J. The exhaust gas from the gas turbine 3 is led to an exhaust heat recovery boiler, where water in a drum (not shown) is heated to generate steam. Next, this steam is guided through a steam control valve /Q to a steam turbine j to drive it, and its exhaust gas is cooled by seawater or the like and becomes condensate. Further, the flow rate of the fuel supplied to the combustor is controlled by a fuel flow rate regulating valve 7.

しかして、空気圧縮機l、燃燃焼ココガスタービン3お
よび燃料流量調整弁7がここで言うガスタービンサイク
ルの一部を、蒸気タービン!および蒸気加減弁りがここ
で言う蒸気タービンサイクルの一部をそれぞれ形成する
とともK、ガスタービン3および蒸気タービン倉が一軸
で連結された状態で発電機6を駆動している。
Therefore, the air compressor 1, the combustion coco gas turbine 3, and the fuel flow rate regulating valve 7 form part of the gas turbine cycle referred to here as a steam turbine! The gas turbine 3 and the steam turbine bay drive the generator 6 in a state in which the gas turbine 3 and the steam turbine bay are connected to one shaft.

一方、燃焼器−の温度は燃焼器温度監視装置9によって
監視され、温度制限信号jが低値優先回路gの一方入力
として加えられる。また、後述する負荷設定装置および
蒸気サイクル制御装置等を具えてなる出力制御装置10
の調整弁開度要求信号kが低値優先回路tの他方入力と
して加えられ、これらの信号の中レベルの低い備の信号
が燃料流l1vI4整弁7に加えられ、これによって燃
焼器コへの燃料供給緻が制御される。
On the other hand, the temperature of the combustor is monitored by a combustor temperature monitoring device 9, and a temperature limit signal j is applied as one input of the low value priority circuit g. Further, an output control device 10 comprising a load setting device, a steam cycle control device, etc., which will be described later.
The regulating valve opening request signal k is applied as the other input of the low value priority circuit t, and the medium level low reserve signal of these signals is applied to the fuel flow regulator l1vI4 regulating valve 7, thereby reducing the flow to the combustor. Fuel supply is controlled.

ここで、出力制御装置ioの構成および作用を第一図お
よび第3図を参照して説明する。
Here, the configuration and operation of the output control device io will be explained with reference to FIGS. 1 and 3.

先ず、出力制御装置10は、コンバインドサイクルプラ
ントの軸出力を設定することにより、その設層値に応じ
た時間幅のパルス信号aまたはbを出力する負荷設定装
置//と、プラント起動時に蒸気タービンの負荷上昇の
変化率に制限をかけるためのアナログ信号Cを出力する
蒸気サイクル制御Mlii/−と、このアナログ信号・
をそのレベルに応じた時間幅のパルス信号−に変換する
信号変換装置/3と、どのパルス信号dのレベルを反転
させたパルス信号拳を得るインバータ陣と、パルス信号
社および・の論理積をとりパルス信号fを出力するムN
D回路lSと、同様にパルス信号すおよび・の論理積を
とりパルス信号gを出力するムND回路/Aと、パルス
信号a、b若しくはdK比較してはるかに高い周波数の
パルス信号を発生するパルス発生器/7と、パルス信号
fがrHJレベルにあるときパルス発生器lりのパルス
を計数してカウントアツプし、パルス信号gが「■」レ
ベルにあるときパルス発生器17のパルスを軒数してカ
ウントダウンする例えば可逆カウンタ等のディジタル設
定器7にと、このディジタル設定器/lのディジタル信
号を上記燃料流量調整弁7を制御するアナログ信号すな
わち調整弁開度要求信号kに変換するD−A変換器/?
とで構成されている。なお、負荷設定装置l/のパルス
信号aは負荷設定上げ指令で、パルス信号すは負荷設定
下げ指令である。
First, the output control device 10 includes a load setting device // that outputs a pulse signal a or b with a time width according to the installed layer value by setting the shaft output of the combined cycle plant, and a steam cycle control Mlii/- which outputs an analog signal C for limiting the rate of change of load increase;
A signal conversion device/3 that converts d into a pulse signal with a time width corresponding to its level, an inverter group that obtains a pulse signal with the level of which pulse signal d is inverted, and a logical product of the pulse signal company and... A module N that outputs a pulse signal f
The D circuit 1S and the ND circuit/A, which similarly performs the AND of the pulse signals S and , and output the pulse signal g, generate a pulse signal with a much higher frequency than the pulse signals a, b, or dK. Pulse generator/7 counts and counts up the pulses of the pulse generator 1 when the pulse signal f is at the rHJ level, and counts up the pulses of the pulse generator 17 when the pulse signal g is at the "■" level. and a digital setting device 7 such as a reversible counter that counts down, and converts the digital signal of this digital setting device /l into an analog signal for controlling the fuel flow rate regulating valve 7, that is, a regulating valve opening request signal k. A converter/?
It is made up of. Note that the pulse signal a of the load setting device l/ is a command to increase the load setting, and the pulse signal S is a command to lower the load setting.

しかして、負荷設定装置〆/より113図(a)K示し
たパルス信号1が出力され、蒸気サイクル制御値置lコ
より同図(a)6C示したアナログ信号eが出力された
ものとすると、信号変換装置i、iはこの信号が低レベ
ルのときパルス幅が狭く、反対に%^レベルのときパル
ス幅が広くなる同図(d)K示したパルス信号dを、イ
ンバータ陣はこのパルス信号dを反転させた同図(・)
に示したパルス信号・をそれぞれ出力する。AND回路
13はパルス信号aおよびeの論理積をとり、ディジタ
ル設定器/It/C対して同図(f) K示したパルス
信号fが加えられる。ディジタル設定器/lはパルス信
号fが[HJレベルにあるとき同図(k)K示したパル
ス信号のパルス数を11数するため、結局、D−ム変換
装置itからは同図(k) K示した如<、パルス信号
fの「H」レベルに対応する時間TIにおいて一定の変
化率で上昇し1、これ以外では一定のレベルを維持し、
総体的には蒸気サイクル制御懺置lコの出力信号eK依
存して上昇する信号を発生する。すなわち、蒸気サイク
ル制御懺置lコの出力信号Cのレベルが小さいとさ、D
−ム変換装置/1の出力信号には急激に増大し、逆に蒸
気サイクル制御装置l−の出力信号Cのレベルが大きい
とき、D−ム変換器/’Iの出力信号には緩やかに増大
する。
Assume that the load setting device outputs the pulse signal 1 shown in Figure 113 (a) K, and the steam cycle control value position l outputs the analog signal e shown in Figure 113 (a) 6C. , the signal converter i, i has a narrow pulse width when this signal is at a low level, and on the contrary, a wide pulse width when it is at a %^ level. The same figure with signal d inverted (・)
The pulse signals shown in are output respectively. The AND circuit 13 takes the logical product of the pulse signals a and e, and applies the pulse signal f shown in FIG. When the pulse signal f is at [HJ level, the digital setter/l increases the number of pulses of the pulse signal shown in (k) in the same figure to 11. As shown in FIG. 1, it rises at a constant rate of change at time TI corresponding to the "H" level of the pulse signal f, and otherwise maintains a constant level.
Overall, a signal is generated which increases depending on the output signal eK of the steam cycle control station 1. That is, if the level of the output signal C of the steam cycle control station I is small, D
-The output signal of the D-M converter/'I increases rapidly, and conversely, when the level of the output signal C of the steam cycle control device l- is high, the output signal of the D-M converter/'I increases gradually. do.

し、たがって、蒸気サイクル制御懺置lコの出力信号C
は、負荷設定装置//の負荷設定上げ指令aに対して、
電荷上昇抑制信号として作用し、同様に負荷設定装置/
/の負荷設定下げ指令bK対しても負荷降下抑制信号と
して作用することKなる。
Therefore, the output signal C of the steam cycle control station l
In response to the load setting increase command a of the load setting device //,
It acts as a charge rise suppression signal, and also acts as a load setting device/
It also acts as a load drop suppression signal for the load setting lowering command bK of /.

〔背景技術の問題点〕[Problems with background technology]

このようにして、コンバインドサイクルプラントの起動
時における、蒸気タービン側の急激な負荷上昇を防ぐこ
とが可能になるが、第3図(k)に示したD−ム変換器
/9の出力信号にの13時間中の変化率は恰も、蒸気サ
イクル制御装置l−の抑制信号が出ていな〜・状態の変
化率に等しく、蒸気タービンの負荷が上昇してゆく過程
において信号変換装置/Jのパルス幅が長いと、短時間
で負荷が急上昇し、その後比較的長い時間負荷を一定に
抑えるという制御がなされる。このように負荷が急激に
−F昇すると、蒸気タービンに対して過大な熱応力が作
用し、これが蒸気夕・−ビン自身の寿命を縮めるという
欠点があった。
In this way, it is possible to prevent a sudden load increase on the steam turbine side at the time of starting up a combined cycle plant. The rate of change during 13 hours is exactly equal to the rate of change in the state where the inhibition signal of the steam cycle control device L- is not output, and in the process of increasing the load of the steam turbine, the pulse of the signal converter/J If the width is long, control is performed such that the load increases rapidly in a short period of time, and then the load is held constant for a relatively long period of time. When the load suddenly increases in -F in this way, excessive thermal stress acts on the steam turbine, which has the drawback of shortening the life of the steam turbine itself.

また、負荷設定装置l/の出力はパルス信号であり、蒸
気サイクル制御装置lコのアナログ信号も信号変換装置
/Jによってパルス信号に変換され、AND回路/kま
たは16にてこれら両パルス信号の論理積なとる構成で
あるため、コつのパルス信号の協調がとり離く、必要以
上に負荷の変化率が小さく制限されて了うという欠点が
あった。
In addition, the output of the load setting device l/ is a pulse signal, and the analog signal of the steam cycle control device l is also converted into a pulse signal by the signal converter/J, and the AND circuit /k or 16 converts both of these pulse signals. Since the configuration is a logical product, there are disadvantages in that the coordination of the two pulse signals becomes uncoordinated and the rate of change in the load is restricted to a smaller value than necessary.

し発明の目的] 従って、本発明の目的は蒸気タービンに過大な熱応力が
作用することを防止するとともに、蒸気シイクル制御装
置の制限範囲内で負荷変化率を自由にとることのできる
コンバインドサイクルプラントの出力制御装置を提供す
ることにある。
OBJECT OF THE INVENTION] Therefore, an object of the present invention is to provide a combined cycle plant that can prevent excessive thermal stress from acting on a steam turbine and can freely control the rate of load change within the limits of a steam cycle control device. The purpose of the present invention is to provide an output control device.

(発明の概要] 上記目的を達成するために、本発明のコンバインドサイ
クルプラントの出力制御装置は、コンバインドサイクル
プ:)/トの軸出力を設定することにより、その設定値
に応じた時間幅のパルス信号な出力する負荷設定装置と
、蒸気タービンの負荷変化率に制限なかけるためのアナ
ログ信号を出力′する蒸気サイクル制御装置と、前−紀
負荷設定装置のパルス信号を入力とし、そのパルス幅に
応じた速度でレベルが変化するようなアナログ信号を出
力する信号変換装置と、前記蒸気サイクル制御装置の出
力信号レベルに応じて最大レベルを制限した信号を通過
させるレベル制限器およびこのレベル制限器の出力信号
を積分する積分器を有し、紡配信号変換装置の出力信号
と前記積分器の出力信 −号との偏差分が前記レベル制
限器を介して前記積分器に加えられようにした負荷変化
率制限器とを具備し、この負荷変化率制限器の出力信号
によりガスタービンサイクルの燃料流量調整弁を制御す
るように構成している。
(Summary of the invention) In order to achieve the above object, the output control device for a combined cycle plant of the present invention sets the shaft output of the combined cycle plant, thereby controlling the time width according to the set value. A load setting device that outputs a pulse signal, a steam cycle control device that outputs an analog signal to limit the rate of load change of the steam turbine, and a steam cycle control device that receives the pulse signal of the load setting device as input and determines its pulse width. a signal conversion device that outputs an analog signal whose level changes at a speed corresponding to the output signal level of the steam cycle control device; a level limiter that passes a signal whose maximum level is limited according to the output signal level of the steam cycle control device; and the level limiter. an integrator for integrating an output signal of the spinning signal converter, and a deviation between the output signal of the spinning signal converter and the output signal of the integrator is added to the integrator via the level limiter. The fuel flow rate regulating valve of the gas turbine cycle is controlled by the output signal of the load change rate limiter.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第参図は本発明に係るコンバインドサイクルプラントの
出力制御装置の構成を示すブロック図で、tsコ図と同
一符号を付した部分はそれぞれ同一の要素を示している
。そして、第一図中の信号変換装[/、7、インバータ
lダおよびムND回路/j、 /4が除去されて負#設
定装Wit、//がディジタル設定器itに直接接続さ
れるとともに、D−ム変換装置lデの出力側には、減算
器−1蒸気サイクル制御装置l−の出力信号レベルに応
じて最大レベルを制限した信号を通過させるレベル制限
器23およびこのレベル制限器−の出力信号を積分する
積分コミな有し、ぼっ、[)−A変換装置/デの出力信
号および積分コミの出力信号が減算S−に加えるように
してなる負荷変化率制限器コlが新たに設けられている
Figure 1 is a block diagram showing the configuration of an output control device for a combined cycle plant according to the present invention, in which parts given the same reference numerals as in the TS diagram indicate the same elements. Then, the signal converter [/, 7, inverter lda and mu ND circuit /j, /4 in Figure 1 are removed, and the negative # setting device Wit, // is directly connected to the digital setting device it. , a level limiter 23 for passing a signal whose maximum level is limited according to the output signal level of the subtractor 1 steam cycle control device 1, and this level limiter 23 are provided on the output side of the D-me converter 1. A new load change rate limiter is provided in which the output signal of the A converter/de and the output signal of the integrator are added to the subtraction S-. It is set in.

を記の如く構成された本発明のコンバインドサイクルプ
ラントの出力制御装置の作用を以下に説明する。
The operation of the output control device for a combined cycle plant of the present invention constructed as described above will be explained below.

先ず、負荷設定装置l/から負荷設定上げ指令とL (
のパルス信号aがディジタに設定@/fに加工られると
、ディジタル設定器/Iはパルス信号aが「H」レベル
である期間、パルス発生器lりのパルス数を計数する。
First, a load setting increase command is issued from the load setting device L/L (
When the pulse signal a is digitally processed into @/f, the digital setter /I counts the number of pulses from the pulse generator 1 during the period when the pulse signal a is at the "H" level.

D−ム変換装置/デはこの計数値なディジタル信号に変
換して恰も第3図(k) K示した如き誠形を持った負
荷設定信号lを負荷変化率制限器J/に加える。
The D-mu converter/D converts this count value into a digital signal and applies the load setting signal l having a true shape as shown in FIG. 3(k) K to the load change rate limiter J/.

次に、負荷変化率制限器コlでは、減算器−を用いて負
荷設定信号jとフィートノ(ツク信号臘との偏差分nを
レベル制限器nに加える。このレベル制限器nは、蒸気
サイクル制御装置lコの出力信号Cのレベルに応じ【、
偏差分nf)I太しベルに制限をかけて、積分器コ41
に加え、また、積分l!コ参はこれを積分して調整弁開
度要求信号pt低値優先回路lの他方入力としている。
Next, the load change rate limiter 1 uses a subtracter to add the deviation n between the load setting signal j and the foot signal to the level limiter n. Depending on the level of the output signal C of the control device [,
Deviation nf) By limiting the I thick bell, the integrator 41
In addition to the integral l! This signal is integrated and used as the other input of the regulating valve opening request signal pt low value priority circuit l.

なお、この14m弁開度要求信号pがフィードバック信
号mとし″C#算器−に入力される。
Note that this 14m valve opening request signal p is input to the "C# calculator" as a feedback signal m.

このことから明らかなようK、負荷変化率制限機コ/は
、積分器λダの積分動作を介して、負荷設定信号lと調
整弁開度要求信号pとの偏差が零になるような制御を行
うとともに、その偏差の蟻大値を蒸気サイクル制御績置
Iコの出力信号eによって制限しているため、たとえ、
負荷設定信号lが急激に上昇したとしても調整弁開度要
求信号pは緩やかに上昇する。    ・・ 第S図は負荷設定装置//の負荷設定上げ指令aの変化
に対応する従来の出力制御装置10の調整弁開度要求信
号にの変化と本発明の出力制御装置Iの、J!!1弁開
度要求償号pの変化とを相互に比較したタイムチャート
で、従来の調整弁開度要求信号には短時間で急上昇した
後、比較的長い時間一定に保持されるという変化を繰返
して次第に上昇するが、本発明による14整弁開度要求
信号pは負荷設定上げ指令畠に略比例して直線的に上昇
することになる。
As is clear from this, the load change rate limiter K/ is controlled so that the deviation between the load setting signal l and the adjustment valve opening request signal p becomes zero through the integral operation of the integrator λ. At the same time, the maximum value of the deviation is limited by the output signal e of the steam cycle control station I, so even if
Even if the load setting signal l rises rapidly, the regulating valve opening request signal p rises gradually. ... Figure S shows the change in the regulating valve opening request signal of the conventional output control device 10 corresponding to the change in the load setting increase command a of the load setting device // and the J! of the output control device I of the present invention. ! This is a time chart that compares the changes in the valve opening request signal p with the conventional adjustment valve opening request signal, which repeatedly changes by rapidly rising in a short period of time and then remaining constant for a relatively long period of time. However, the 14 valve opening request signal p according to the present invention increases linearly in approximately proportion to the load setting increase command.

一方、負荷設定上げ指令−に対しても、上述したと同様
な作用が行なわれ、−整弁闘度要求償号には直線的に緩
やかに降下することは明らかである。
On the other hand, it is clear that the same effect as described above is carried out in response to the load setting increase command, and that there is a gradual drop in a straight line with respect to the valve adjustment degree requirement.

なお上記実施例では、負荷設定装置/lと負荷変化率制
限器−ノとの間K、パルス発生器/りのパルス数な針数
するディジタル設定器/Iおよびこのディジタル設定器
/lの出力をアナログ信号に変換するD−A変換器/l
を設けているが、要は負荷設定装置//のパルス信号を
・入力とし、そのパルス幅に応じた速度でレベルが上昇
するような信号を出力するものであれば、これ以外の信
号変換装置を用いることも勿論可能であり、これによっ
ても上述したと略同様な作用を行わせることができる。
In the above embodiment, there is a distance K between the load setting device/l and the load change rate limiter, a digital setting device/I that determines the number of pulses of the pulse generator/i, and the output of this digital setting device/l. DA converter/l that converts into analog signal
However, the point is that any other signal conversion device can be used as long as it inputs the pulse signal of the load setting device // and outputs a signal whose level increases at a speed corresponding to the pulse width. Of course, it is also possible to use the above, and substantially the same effect as described above can be achieved by this as well.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかな如く、本発明のコンバイン
ドサイクルプラントの出力制御装置によれば、蒸気サイ
クル制御装置からの負荷変化率制限信号の制限値以内で
、燃料流iIk調整弁の一度を連続的に変化させ得るた
め、燃料を最も効率よく供給することができる1゜ また、これによって蒸気タービン側の熱応力が過大にな
るということを未然に防止し得るとともに、D−ム変換
装置からの負荷変化率要求となる信号lと、蒸気ナイク
ル制御装置からの負荷変化率に制限を与える信号Cとが
共にアナログ信号であるため、蒸気サイクルの制限範囲
で負荷変化率を自由にとることが可能になるという優れ
た効果が得られる。
As is clear from the above explanation, according to the output control device for a combined cycle plant of the present invention, the fuel flow iIk regulating valve can be controlled once continuously within the limit value of the load change rate limit signal from the steam cycle control device. This allows fuel to be supplied most efficiently.This also prevents the thermal stress on the steam turbine side from becoming excessive, and also prevents load changes from the D-me converter. Since both the signal l, which is the rate request, and the signal C, which limits the load change rate from the steam cycle control device, are analog signals, it is possible to freely set the load change rate within the steam cycle limit range. This excellent effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なコンバインドサイクルプラントの構成
を示す系統図、第1図はこのコンバインドサイクルプラ
ントを制御する従来の出力制御装置の構成を示すブロッ
ク図、第3図は同出力制御装置の作用を説明するための
タイムチャート、第y図は本発明に係るコンバインドサ
イクルプラントの出力制御装置の一実施例の構成を示す
ブロック図、譲S図は同実施例の作用を説明するための
タイムチャートである。 /・・・空気圧縮機、コ・・・燃焼器、3・・・ガスタ
ービン、ダ・・・排熱回収ボイラ、j・・・蒸気タービ
ン、6・・発電機、7・・・燃料流量調整弁、g・・・
低値優先回路、V・・・燃燐器温度監視装置、10. 
X)・・出力制御装置、/か・・負荷設定装置、/コ・
・・蒸気サイクル制御装置、13・・・信号変換装置、
lダ・・・インバータ、/r。 /6・AND回路、/7・・・パルス発生器、/l・・
・ディジタル設定器、/9・−・D−A変換器、−/・
・・負荷変化率制限器、−一・・・減算器、コ3・・・
レベル制限器、−ダ・・・積分di。 出願人代理人  猪 股    清
Figure 1 is a system diagram showing the configuration of a typical combined cycle plant, Figure 1 is a block diagram showing the configuration of a conventional output control device that controls this combined cycle plant, and Figure 3 is the operation of the output control device. Figure Y is a block diagram showing the configuration of an embodiment of the output control device for a combined cycle plant according to the present invention, and Figure S is a time chart for explaining the operation of the embodiment. It is. /... Air compressor, K... Combustor, 3... Gas turbine, D... Exhaust heat recovery boiler, j... Steam turbine, 6... Generator, 7... Fuel flow rate Adjustment valve, g...
Low value priority circuit, V... phosphor temperature monitoring device, 10.
X)... Output control device, /... Load setting device, /...
...Steam cycle control device, 13...Signal conversion device,
lda...inverter, /r. /6・AND circuit, /7...pulse generator, /l...
・Digital setting device, /9・-・D-A converter, −/・
...Load change rate limiter, -1...Subtractor, Ko3...
Level limiter, -da...integral di. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 ガスタービンサイクルおよび蒸気タービンすイクルが排
熱回収ボイラを介して結合され、且つ、ガスタービンお
よび蒸気タービンが一軸で連結さ、ノ れてなるコンバインドサイクルプラントの出力制御装置
において、前記コンバインドサイクルプラントの輸出力
を設定することにより゛、その設定値に応じた時間幅の
パルス信号を出力する負荷設定装置と、両射蒸気タービ
ンの負荷変化率に制限をかけるためのアナログ信号を出
力する蒸気サイクル制御装置と、前記負荷設定装置のパ
ルス信号を入力とし、そのパルス幅に応じた速度でレベ
ルが変化するようなアナログ信号を出力する信号変換装
置と、@記蒸気サイクル制御装置の出力信号レベルに応
じて最大レベルを制限した信号を通過させるレベル制限
器およびこのレベル制限器の出力信号を積分する積分器
を有し、前記信号変換装置の出力信号と前記積分器の出
力信号との偏差分が^11ffiレベル制限器を介し【
前記積分器に加えられるようにした負荷変化率側@器と
を具備し、この負荷変化率制限器の出力信号により前記
ガスタービンサイクルの燃料流量−整弁を制御するよう
に構成したことを%黴とするコンバインドサイクルプラ
ントの出力制御装置。
[Claims] In an output control device for a combined cycle plant in which a gas turbine cycle and a steam turbine cycle are connected via an exhaust heat recovery boiler, and the gas turbine and the steam turbine are connected by a single shaft. , by setting the export power of the combined cycle plant, a load setting device outputs a pulse signal with a time width corresponding to the set value, and an analog signal for limiting the load change rate of the bi-injected steam turbine. a steam cycle control device that outputs a signal, a signal conversion device that receives a pulse signal from the load setting device and outputs an analog signal whose level changes at a speed corresponding to the pulse width, and a steam cycle control device that outputs a level limiter that passes a signal whose maximum level is limited according to the output signal level of the signal converter, and an integrator that integrates the output signal of the level limiter, the output signal of the signal converter and the output signal of the integrator. The deviation from ^11ffi level limiter is [
a load change rate limiter applied to the integrator, and configured to control the fuel flow rate-valve regulation of the gas turbine cycle by the output signal of the load change rate limiter. Output control device for a combined cycle plant that produces mold.
JP8114682A 1982-05-14 1982-05-14 Control device for output of combined cycle plant Granted JPS58197409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114682A JPS58197409A (en) 1982-05-14 1982-05-14 Control device for output of combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114682A JPS58197409A (en) 1982-05-14 1982-05-14 Control device for output of combined cycle plant

Publications (2)

Publication Number Publication Date
JPS58197409A true JPS58197409A (en) 1983-11-17
JPS6214688B2 JPS6214688B2 (en) 1987-04-03

Family

ID=13738277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114682A Granted JPS58197409A (en) 1982-05-14 1982-05-14 Control device for output of combined cycle plant

Country Status (1)

Country Link
JP (1) JPS58197409A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319288A (en) * 1988-06-20 1989-12-25 Sansha Electric Mfg Co Ltd Container for electromagnetic cooking

Also Published As

Publication number Publication date
JPS6214688B2 (en) 1987-04-03

Similar Documents

Publication Publication Date Title
JP2680033B2 (en) Method and apparatus for operating combined plant
JP3672312B2 (en) A method for operating a combined cycle steam and gas turbine power generation system with a constant configurable droop.
GB760173A (en) Improvements in or relating to jet turbine engines
EP0933505B1 (en) Steam cooled system in combined cycle power plant
JPS58197409A (en) Control device for output of combined cycle plant
JP3234055B2 (en) Series load control system for combined cycle power plant
JPS59134331A (en) Method of and device for controlling slide pressure operation of pressurized coal gasification type power plant
SU705130A1 (en) Control system for a boiler and back-pressure turbine unit
JPS5896131A (en) Gas turbine speed control method
JPS63100237A (en) Load control method of coal gasification power plant
JPS6149491B2 (en)
JP2507426B2 (en) Coal gasification combined cycle controller
JP2528640Y2 (en) Turbine forced cooling control device
JPS5783616A (en) Output controller for combined cycle
JPH1047013A (en) Control device for exhaust heat utilization generating plant
JPS58217708A (en) Load control device in composite cycle plant
JPS6115244B2 (en)
JPH06185307A (en) Heat utilizing power generating facility
SU575433A1 (en) Device for automatic setting of permissible conditions of turbine starting
JPS58222924A (en) Controller of gas turbine engine
JPS6390606A (en) Governor free control device for combined plant
SU759733A1 (en) Apparatus for automatic controlling of starting steam turbine
JPS58160516A (en) Control device for gas turbine exhaust temperature
JPS63294402A (en) Method of controlling temperature of main steam of boiler
JPH0674723B2 (en) Power plant control equipment