JPS6149491B2 - - Google Patents
Info
- Publication number
- JPS6149491B2 JPS6149491B2 JP2153379A JP2153379A JPS6149491B2 JP S6149491 B2 JPS6149491 B2 JP S6149491B2 JP 2153379 A JP2153379 A JP 2153379A JP 2153379 A JP2153379 A JP 2153379A JP S6149491 B2 JPS6149491 B2 JP S6149491B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- plant
- request signal
- converter
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 18
- 239000000446 fuel Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000010248 power generation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000010795 Steam Flooding Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】
本発明は、ガスタービンプラントで発電すると
ともに、その排ガスを排熱回収ボイラに導き、高
圧蒸気を発生させ、この蒸気で蒸気タービンを駆
動し発電する、コンバインドサイクル発電プラン
トの制御方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a combined cycle power generation plant in which a gas turbine plant generates electricity, and its exhaust gas is guided to an exhaust heat recovery boiler to generate high-pressure steam, and this steam drives a steam turbine to generate electricity. Regarding the control method.
プラント負荷の変動によりガスタービン燃焼器
の燃料量を増減すると、ボイラで発生する蒸気圧
力に変動が生じ、定圧運転プラントでは好ましく
ない。このため、従来、圧力変動が大きくなる
と、第1の方式では燃料量の操作を負荷制御から
蒸気圧力制御に切換えたり、第2の方式では蒸気
圧力変動にともない生じる蒸気タービン回転数の
偏位を検出して調速材で蒸気加減弁を操作し、蒸
気圧力を制御する方策がとられていた。 If the amount of fuel in the gas turbine combustor is increased or decreased due to fluctuations in plant load, the steam pressure generated in the boiler will fluctuate, which is not desirable in a constant pressure operating plant. For this reason, conventionally, when pressure fluctuations become large, the first method switches the fuel amount control from load control to steam pressure control, and the second method controls the deviation of the steam turbine rotation speed that occurs due to steam pressure fluctuations. Measures were taken to detect this and operate the steam control valve using a regulating material to control the steam pressure.
このため、出力と蒸気圧力と独立に制御できな
い難点があつた。また、第1の方式では、ある時
点では出力か蒸気圧力のいずれかは制御されない
ことになる。また、第2の方式では圧力変動が回
転数変化に現われてから始めて修正操作が行われ
るため、時間遅れが生じ、制御性の向上が難かし
かつた。 For this reason, there was a drawback that output and steam pressure could not be controlled independently. Also, in the first method, either the output or the steam pressure will not be controlled at a certain point in time. Furthermore, in the second method, the correction operation is performed only after the pressure fluctuation appears as a change in the rotational speed, which causes a time delay and makes it difficult to improve controllability.
この発明は、プラント出力と蒸気出力を独立に
制御し、制御性のよいコンバインドサイクル発電
プラントの制御方式を提供することにある。 The object of the present invention is to provide a control system for a combined cycle power plant that independently controls plant output and steam output and has good controllability.
排熱ボイラを用いたコンバインドサイクル発電
プラントにおいて、発熱ボイラで発生する蒸気の
流量・圧力・温度の変化量はF(s)、P(s)、
T(s)、但しsはラプラス演算子、ガスタービ
ン燃焼器の燃料流量変化量B(s)と蒸気タービ
ン加減弁開度の変化量C(s)によつて左右さ
れ、下記のような伝達関数式で表現できる。 In a combined cycle power plant using a waste heat boiler, the amount of change in the flow rate, pressure, and temperature of steam generated in the heat generating boiler is F(s), P(s),
T(s), where s is determined by the Laplace operator, the amount of change in the fuel flow rate of the gas turbine combustor B(s), and the amount of change in the opening of the steam turbine control valve C(s), and the transmission is as follows. It can be expressed as a functional expression.
F(s)=Gfc(s)・B(s)
+Gfc(s)・C(s) ……(1)
P(s)=Gpb(s)・B(s)
+GPc(s)・C(s) ……(2)
T(s)=Gtb(s)・B(s)
+Gtc(s)・C(s) ……(3)
ただし、Gfb(s)は燃料流量変化による蒸気
流量への伝達関数、Gfc(s)は蒸気タービン加
減弁開度変化量による蒸気流量への伝達関数、
GPb(s)は燃料流量変化による蒸気圧力への伝
達関数、GPc(s)は蒸気タービン加減弁開度変
化量による蒸気圧力への伝達関数、Gtb(s)は
燃料流量変化による蒸気温度への伝達関数、Gtc
(s)は蒸気タービン加減弁開度変化量による蒸
気温度への伝達関数である。F(s)=Gfc(s)・B(s) +Gfc(s)・C(s)...(1) P(s)=Gpb(s)・B(s) +GPc(s)・C(s ) ...(2) T(s) = Gtb(s)・B(s) +Gtc(s)・C(s) ...(3) However, Gfb(s) is the transfer to steam flow rate due to fuel flow rate change The function, Gfc(s) is the transfer function to the steam flow rate due to the amount of change in the opening of the steam turbine control valve,
GPb(s) is a transfer function to steam pressure due to a change in fuel flow rate, GPc(s) is a transfer function to steam pressure due to a change in steam turbine regulator valve opening, and Gtb(s) is a transfer function to steam temperature due to a change in fuel flow rate. Transfer function, Gtc
(s) is a transfer function to the steam temperature due to the amount of change in the opening degree of the steam turbine control valve.
したがつて、ガスタービンでの燃料流量に拘わ
らず定圧運転を実現するためには、蒸気の圧力の
変化量p(s)=0、すなわち蒸気タービン加減
弁開度の変化量C(s)とガスタービン燃焼器の
燃料流量変化量B(s)の間に(4)式の
C(s)=G(s)・B(s)
但し
G(s)=−Gpb(s)/Gpc(s)……
(4)
関係があればよい。換言すれば、燃料流量信号を
伝達特性G(s)の要素を通して蒸気タービン加
減弁開度信号とすることにより、蒸気圧力を一定
に保つ定圧運転を実現できる。 Therefore, in order to achieve constant pressure operation regardless of the fuel flow rate in the gas turbine, the amount of change in steam pressure p(s) = 0, that is, the amount of change in steam turbine regulator valve opening C(s) and During the fuel flow rate change B(s) of the gas turbine combustor, C(s)=G(s)・B(s) in equation (4), where G(s)=-Gpb(s)/Gpc(s) )...
(4) There should be a relationship. In other words, by converting the fuel flow rate signal into the steam turbine control valve opening signal through the element of the transfer characteristic G(s), constant pressure operation in which the steam pressure is kept constant can be realized.
G(s)としては、例えばGpb(s)=
A/1+T1s、Gpc(s)=1+T2s/1+T1s
の場合には、G
(s)=A/B・1/1+T2sとなり、1次遅れフイ
ルタでよ
い。また、燃料流量変更による過渡応答時の圧力
変動は許容し、定常状態で定圧運転を実現できれ
ばよい場合には、G(s)=A/Bでよく、係数器を
用いればよい。 For G(s), for example, Gpb(s)=
A/1+T 1 s, Gpc(s)=1+T 2 s/1+T 1 s
In this case, G(s)=A/B·1/1+T 2 s, and a first-order lag filter may be used. Furthermore, if pressure fluctuations during transient response due to changes in fuel flow rate are allowed and constant pressure operation can be achieved in a steady state, G(s)=A/B may be used, and a coefficient multiplier may be used.
(4)式の関係が満されている場合には、(1)式と(3)
式は
F(s)={Gfb(s)−Gfc(s)・Gpb(s)/G
pc(s)}
・B(s) ……(5)
T(s)={Gtc(s)−Gtc(s)・Gpb(s)/G
pc(s)}
・B(s) ……(6)
となり、蒸気流量F(s)および蒸気温度T
(s)、したがつて蒸気タービン出力は燃料流量に
より一義的に決まる。ガスタービン出力は燃料流
量によつて決まつているから、蒸気タービンとガ
スタービンの出力の和であるコンバインドプラン
ト総合出力は、蒸気圧力を(4)式の関係で制御して
いる場合、ガスタービンの燃料流量で一義的に決
まる。 If the relationship in equation (4) is satisfied, then equation (1) and (3)
The formula is F(s) = {Gfb(s) − Gfc(s)・Gpb(s)/G
pc(s)} ・B(s) ……(5) T(s)={Gtc(s)−Gtc(s)・Gpb(s)/G
pc(s)} ・B(s) ...(6), and the steam flow rate F(s) and steam temperature T
(s), therefore, the steam turbine output is uniquely determined by the fuel flow rate. Since the gas turbine output is determined by the fuel flow rate, the combined plant total output, which is the sum of the outputs of the steam turbine and the gas turbine, is It is uniquely determined by the fuel flow rate.
したがつて、燃料流量とプラント総合出力の対
応関係を示す関数を、理論的あるいは実験的に求
めておき、プラント負荷要求信号をこの関数でガ
スタービンの燃料流量に相当する信号に変換し
て、燃料弁を操作すれば、負荷要求量に見合つた
プラント総合出力を発生することができる。 Therefore, a function indicating the correspondence between the fuel flow rate and the total plant output is determined theoretically or experimentally, and the plant load request signal is converted into a signal corresponding to the fuel flow rate of the gas turbine using this function. By operating the fuel valve, it is possible to generate a total plant output that matches the load demand.
この発明の第1の実施例の構成を、第1図の略
線図で説明する。 The configuration of the first embodiment of the present invention will be explained with reference to the schematic diagram in FIG.
1はプラント負荷要求信号、2は第1変換器、
3は燃焼要求信号、4は燃焼制御系、5は燃焼
器、6はガスタービンプラント、7はその出力、
8は第2変換器、9は蒸気加減弁開度要求信号、
10は排ガス、11はボイラ(熱交換器)、12
は蒸気、13は蒸気加減弁、14は蒸気タービン
プラント、15はその出力である。プラント出力
に対応する燃焼量を決定する関数を保持した第1
変換器2と、燃焼量に対応する蒸気加減弁開度信
号9を発信する伝達特性を備えた第2変換器8か
らなる。いま、このコンバインドサイクル発電プ
ラントが分担する負荷量の変更指令がくると、こ
の信号1を第1変換器2で新しい要求負荷量に見
合う燃焼量に変換し、燃焼制御系4への燃焼要求
信号3として発信する。同時に、この燃焼要求信
号3は第2変換器8で蒸気加減弁開度信号9に変
換し、蒸気圧力を一定に保つべく蒸気加減弁13
へ発信する。 1 is a plant load request signal, 2 is a first converter,
3 is a combustion request signal, 4 is a combustion control system, 5 is a combustor, 6 is a gas turbine plant, 7 is its output,
8 is a second converter, 9 is a steam control valve opening request signal,
10 is exhaust gas, 11 is a boiler (heat exchanger), 12
is steam, 13 is a steam control valve, 14 is a steam turbine plant, and 15 is its output. The first one holds a function that determines the amount of combustion corresponding to the plant output.
It consists of a converter 2 and a second converter 8 having a transmission characteristic for transmitting a steam control valve opening signal 9 corresponding to the amount of combustion. Now, when a command to change the load to be shared by this combined cycle power plant is received, this signal 1 is converted into a combustion amount corresponding to the new required load by the first converter 2, and a combustion request signal is sent to the combustion control system 4. Send as 3. At the same time, this combustion request signal 3 is converted into a steam control valve opening signal 9 by a second converter 8, and the steam control valve 13 is converted to a steam control valve opening signal 9 to keep the steam pressure constant.
Send to.
次に、本発明の他の実施例を第2図のブロツク
図で説明する。 Next, another embodiment of the present invention will be explained with reference to the block diagram of FIG.
第2変換器の特性として、前述の第1変換器の
特性と第2変換器の特性を合わせもつたもの、す
なわちプラント負荷要求信号をそれに見合う蒸気
加減弁開度に変換する特性を持つた第2′変換器1
6を用い、蒸気圧減弁開度を燃焼量からではな
く、プラント負荷要求信号1から直接、決定する
ようにした制御方式である。第3図は、本発明が
フイードバツク制御系へ適用される場合の構成を
示す略線図である。17はプラント負荷要求信号
1からプラント総合出力28を減算する混合器、
18はプラント出力調節計、19はその出力、2
0は燃焼要求信号3と出力19とを加算する混合
器、21は蒸気圧力設定値、23はそれから蒸気
圧力22を減算する混合器、24は蒸気圧力調節
計、26はその出力25と蒸気加算弁開度要求信
号9とを加算する混合器、27は出力7と出力1
5を加算する混合器である。 The characteristics of the second converter include the characteristics of the first converter and the characteristics of the second converter, that is, a characteristic that converts the plant load request signal into the corresponding steam control valve opening. 2′ converter 1
6, this is a control method in which the steam pressure reducing valve opening degree is determined directly from the plant load request signal 1 rather than from the combustion amount. FIG. 3 is a schematic diagram showing a configuration when the present invention is applied to a feedback control system. 17 is a mixer that subtracts the plant total output 28 from the plant load request signal 1;
18 is the plant output controller, 19 is its output, 2
0 is a mixer that adds combustion request signal 3 and output 19, 21 is a steam pressure set value, 23 is a mixer that subtracts steam pressure 22 from it, 24 is a steam pressure controller, and 26 is its output 25 and steam addition Mixer 27 adds output 7 and output 1 with valve opening request signal 9
This is a mixer that adds 5.
すなわち、第1図または第2図の本発明の制御
方式を、第3図に示すように、プラント出力フイ
ードバツク制御系及び蒸気圧力フイードバツク制
御系が組込まれているプラントに適用する場合に
は、燃焼量要求信号3をプラント出力調節計の操
作出力19に附加し、蒸気加減弁開度要求信号9
を、蒸気圧力調節計の操作出力25に附加しても
よい。第4図は、本発明を制御弁が調速機で制御
されている系へ適用する場合のブロツクダイアグ
ラムである。29は調速機30の設定値である燃
焼要求信号3からガスタービンプラント6の回転
数31を減算する混合器、32は調速機33の設
定値である蒸気加減弁開度要求信号9から蒸気タ
ービンブラント14の回転数34を減算する。混
合器である。 That is, when the control method of the present invention shown in FIG. 1 or 2 is applied to a plant in which a plant output feedback control system and a steam pressure feedback control system are incorporated as shown in FIG. The amount request signal 3 is added to the operation output 19 of the plant output controller, and the steam control valve opening request signal 9 is generated.
may be added to the operation output 25 of the steam pressure regulator. FIG. 4 is a block diagram when the present invention is applied to a system in which a control valve is controlled by a speed governor. 29 is a mixer that subtracts the rotation speed 31 of the gas turbine plant 6 from the combustion request signal 3 which is the setting value of the governor 30; 32 is the steam control valve opening request signal 9 which is the setting value of the governor 33; The rotational speed 34 of the steam turbine blunt 14 is subtracted. It is a mixer.
つまり、燃焼器5の燃料流量及び蒸気加減弁1
3が第4図のように調速機30および33で操作
されている場合には、第1変換器2及び第2変換
器8の特性としてそれらの出力3および9が調速
機30および33の設定信号となる変換特性を加
味したものを使用すればよい。 In other words, the fuel flow rate of the combustor 5 and the steam control valve 1
3 is operated by speed governors 30 and 33 as shown in FIG. It is sufficient to use a setting signal that takes into account the conversion characteristics.
なお、排熱回収ボイラの応答が遅く、プラント
負荷要求に対するプラント発電出力の追従性が悪
い場合には、プラント負荷要求信号として実際の
負荷要求量より位相を進ませた信号を用いて、負
荷変化に対するプラント発電出力の応答性を改善
している場合もある。 In addition, if the response of the waste heat recovery boiler is slow and the follow-up of the plant power generation output to the plant load request is poor, a signal whose phase is advanced from the actual load request is used as the plant load request signal to adjust the load change. In some cases, the responsiveness of plant power generation output to
かくして本発明の制御方式は、以上説明したよ
うに、排熱回収ボイラを使用したコンバインサイ
クル発電プラントの物理性特性を活用して、プラ
ント出力と蒸気圧力の制御を独立化し、プラント
出力及び蒸気圧力をともに良好に制御する効果が
ある。 Thus, as explained above, the control method of the present invention utilizes the physical characteristics of a combined cycle power generation plant using an exhaust heat recovery boiler to make the control of plant output and steam pressure independent. It has the effect of controlling both.
第1図は本発明の一実施例の構成を表わす略線
図、第2図は本発明の他の実施例を示すブロツク
図、第3図は本発明がフイードバツク制御系へ適
用される場合の構成を示す略線図、第4図は本発
明を制御弁が調速機で制御されている系へ適用す
る場合のブロツクダイアグラムである。
1……プラント負荷要求信号、2……第1変換
器、3……燃焼要求信号、4……燃焼制御系、5
……燃焼器、6……ガスタービンプラントで7は
その出力、8……第2変換器、9……蒸気加減弁
開度要求信号、10……排ガス、11……ボイラ
(熱交換器)、12……蒸気、13……蒸気加減
弁、14……蒸気タービンプラントで15はその
出力、16……第2′変換器、17,20,23,
26,27,29,32……混合器、18……プ
ラント出力調節計で19はその出力、21……蒸
気圧力設定値、24……蒸気圧力調節計で25は
その圧力、30,33……調速機、31,34…
…回転数(電圧)。
FIG. 1 is a schematic diagram showing the configuration of one embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a diagram showing the structure of a feedback control system in which the present invention is applied. A schematic diagram showing the configuration, FIG. 4 is a block diagram when the present invention is applied to a system in which the control valve is controlled by a speed governor. 1... Plant load request signal, 2... First converter, 3... Combustion request signal, 4... Combustion control system, 5
... Combustor, 6 ... Gas turbine plant, 7 is its output, 8 ... Second converter, 9 ... Steam control valve opening request signal, 10 ... Exhaust gas, 11 ... Boiler (heat exchanger) , 12... Steam, 13... Steam control valve, 14... Steam turbine plant, 15 is its output, 16... 2' converter, 17, 20, 23,
26, 27, 29, 32... Mixer, 18... Plant output controller, 19 is its output, 21... Steam pressure set value, 24... Steam pressure regulator, 25 is its pressure, 30, 33... ...Governor, 31, 34...
...Rotation speed (voltage).
Claims (1)
ル発電プラントの負荷制御と蒸気圧力制御に関
し、プラント負荷要求信号をガスタービンの燃焼
要求信号に変換する第1変換器と、燃焼要求信号
を蒸気加減弁開度要求信号に変換する第2変換器
を備え、プラントに対する負荷要求にしたがつ
て、ガスタービンと蒸気タービンの出力の和であ
るプラント出力が、負荷要求値に一致するように
ガスタービン燃焼器の燃焼量を第1変換器で決定
し、燃料制御系への燃焼要求信号として発信する
とともに、蒸気圧力を一定に保つための蒸気加減
弁開度を、燃焼要求信号から第2変換器で決定
し、蒸気加減弁開度要求信号として発信し、プラ
ントを操作することにより、コンバインドサイク
ル発電プラントの出力と蒸気圧力を制御すること
を特徴とするコンバインドサイクル発電プラント
の制御方法。 2 特許請求の範囲第1項記載のものにおいて、
第1変換器と第2変換器の特性を合せもつた、プ
ラント負荷要求信号を蒸気加減弁開度要求信号に
変換する手段を用いた、コンバインドサイクル発
電プラントの出力と蒸気出力を制御することを特
徴とするコンバインドサイクル発電プラントの制
御方法。[Scope of Claims] 1 Regarding load control and steam pressure control of a combined cycle power plant using an exhaust heat recovery boiler, a first converter that converts a plant load request signal into a combustion request signal of a gas turbine, and a combustion request signal. a second converter that converts the signal into a steam control valve opening request signal, and according to the load request for the plant, the plant output, which is the sum of the outputs of the gas turbine and the steam turbine, matches the load request value. The combustion amount of the gas turbine combustor is determined by the first converter and transmitted as a combustion request signal to the fuel control system, and the steam control valve opening degree for keeping the steam pressure constant is determined from the combustion request signal by the second converter. A method for controlling a combined cycle power plant, characterized in that the output and steam pressure of the combined cycle power plant are controlled by determining the signal using a converter, transmitting the signal as a steam control valve opening request signal, and operating the plant. 2. In what is stated in claim 1,
Controlling the output and steam output of a combined cycle power plant using means for converting a plant load request signal into a steam control valve opening request signal, which has the characteristics of a first converter and a second converter. A control method for a combined cycle power plant featuring features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2153379A JPS55114825A (en) | 1979-02-26 | 1979-02-26 | Controlling method of combined-cycle generating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2153379A JPS55114825A (en) | 1979-02-26 | 1979-02-26 | Controlling method of combined-cycle generating plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55114825A JPS55114825A (en) | 1980-09-04 |
JPS6149491B2 true JPS6149491B2 (en) | 1986-10-29 |
Family
ID=12057588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2153379A Granted JPS55114825A (en) | 1979-02-26 | 1979-02-26 | Controlling method of combined-cycle generating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55114825A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896109A (en) * | 1981-12-04 | 1983-06-08 | Toshiba Corp | Control device for combined generation plant |
JP4909853B2 (en) * | 2007-09-27 | 2012-04-04 | 株式会社東芝 | Power plant and control method thereof |
-
1979
- 1979-02-26 JP JP2153379A patent/JPS55114825A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55114825A (en) | 1980-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101446807B (en) | Realization method for heat-engine plant speed regulating system model in power system simulation | |
JP3672312B2 (en) | A method for operating a combined cycle steam and gas turbine power generation system with a constant configurable droop. | |
WO1983001651A1 (en) | Hrsg damper control | |
JPS6158644B2 (en) | ||
JPS6149491B2 (en) | ||
JPS6039842B2 (en) | Boiler/turbine coordinated voltage transformation operation method | |
RU98103507A (en) | REGULATING SYSTEM FOR REGULATING A TURBINE ROTATION FREQUENCY, AND ALSO A METHOD FOR TURBIN ROTATION FREQUENCY REGULATION AT A LOAD RESET | |
JP3792853B2 (en) | Combined cycle control device and gas turbine control device | |
JPH0486359A (en) | Output control unit of co-generation plant | |
SU575433A1 (en) | Device for automatic setting of permissible conditions of turbine starting | |
JPH05272361A (en) | Load controller of combined-cycle power generating plant | |
JPS6115244B2 (en) | ||
JPH0339165B2 (en) | ||
SU885703A1 (en) | System for controlling steam temperature after heat generating unit undustrial superheater | |
JP3061881B2 (en) | Control device for coal gasification power plant | |
JPS6111444Y2 (en) | ||
SU989110A2 (en) | Power unit power control system | |
JPS63100237A (en) | Load control method of coal gasification power plant | |
JPS60524B2 (en) | Combined cycle plant output control device | |
SU767372A1 (en) | Method of controlling heat load of turbine with steam take-off | |
JPS622126B2 (en) | ||
JPS6334365B2 (en) | ||
JPS6119808B2 (en) | ||
JPS637247B2 (en) | ||
JPS6214688B2 (en) |