JPS58197252A - Method for refining fe-b-si alloy - Google Patents

Method for refining fe-b-si alloy

Info

Publication number
JPS58197252A
JPS58197252A JP7791982A JP7791982A JPS58197252A JP S58197252 A JPS58197252 A JP S58197252A JP 7791982 A JP7791982 A JP 7791982A JP 7791982 A JP7791982 A JP 7791982A JP S58197252 A JPS58197252 A JP S58197252A
Authority
JP
Japan
Prior art keywords
molten steel
boron
alloy
steel
boron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7791982A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Tsutomu Nozaki
野崎 努
Toshihiko Emi
江見 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7791982A priority Critical patent/JPS58197252A/en
Publication of JPS58197252A publication Critical patent/JPS58197252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To eliminate a stage for manufacturing an Fe-B alloy and to lower the manufacturing cost, by adding a boron compound to refined molten steel and by shifting boron into the molten steel by a reducing reaction. CONSTITUTION:Molten steel 3 obtd. by conventional melting with an electric furnace 1 is charged into a ladle refining furnace 2. An Fe-Si alloy 5 and coke 6 are added to the steel 3, and while heating the steel 3 with graphite electrodes 4, a boron compound 7 mixed with a flow of gaseous N2 is blown into the steel 3 through a lance 8 dipped in the steel 3. Boron is shifted into the steel 3 by a reducing reaction. B2O3, H3BO3, colemanite, borax, anhydrous borax or the like is used as the boron compound.

Description

【発明の詳細な説明】 本発明は、電磁特性の優れたアモルファス薄帯用合金で
ある)’e−B−3i系合金の溶製方法に関し、従来の
溶製法より安価で製造エネルギーを節約することのでき
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 'e-B-3i alloy, which is an alloy for amorphous ribbons with excellent electromagnetic properties, which is cheaper than conventional melting methods and saves production energy. Regarding how it can be done.

アモルファス(非結晶質)合金は、従来の6.5%5i
−Fe合金と比較して鉄損が極めて小芒く、ボールトラ
ンス用の捲コア材料等に利用することにより大幅な省エ
ネルギーが期待できる。
Amorphous (non-crystalline) alloy is the conventional 6.5% 5i
The iron loss is extremely small compared to -Fe alloys, and significant energy savings can be expected by using it as a wound core material for ball transformers.

また、アモルファス合金は、溶融合金を超急冷して30
〜56μm厚の薄板を直接製造するため、鋳造、熱延等
の工程を省−することができ、製造エネルギーコストを
低減するととができる利点を有する。
In addition, amorphous alloys can be made by ultra-quenching molten alloys.
Since a thin plate with a thickness of ~56 μm is directly manufactured, processes such as casting and hot rolling can be omitted, which has the advantage of reducing manufacturing energy costs.

このアモルファス合金には、 Fe −’B −Si3
元系の共晶点近傍の合金組成が最適とされ、この組成は
、Fe (80〜85原子%)−B(1o〜15原子チ
)−8i(2〜6原子チ)であり、重量%に換算すれば
、Fe−B (2,2,〜3.3重量%)−8i(1,
2〜3.5重量%)である。
This amorphous alloy contains Fe −'B −Si3
The alloy composition near the eutectic point of the elemental system is considered to be optimal, and this composition is Fe (80 to 85 at%)-B (10 to 15 atoms)-8i (2 to 6 atoms), and the weight% If converted to Fe-B (2,2,~3.3% by weight)
2 to 3.5% by weight).

従来のFe −B −Si合金の溶製方法は、低炭素溶
鋼にFe−8i合金およびFe−B合金を添加して上記
アモルファス合金組成のものを得ていた。
The conventional method for producing Fe-B-Si alloys involves adding Fe-8i alloy and Fe-B alloy to low-carbon molten steel to obtain the amorphous alloy composition described above.

ここで用いるFe−B合金は、以下の工程に従って製造
される。
The Fe-B alloy used here is manufactured according to the following steps.

ホウ素(B)は、ソジウムボレイト鉱(SODIUM 
 BORATE  0RE)(通称ティンカル(TIN
CAL))、またはカルシウムボレイト鉱(CALCI
UM  BOR,ATE   0RE)(灰ホウ石(C
OLEMANITE))の形で産出し、精製過程および
硫酸処理を経て、ホウ酸(化学式H,BO,)が製造さ
れる。わが国では、ホウ酸のアルミニウム還元(テルミ
ット法)、マたは炭素還元(電気炉法)により、それぞ
れ、ホウ素を20重量%、10重量%前後を含有するF
e−B合金が製造されている。
Boron (B) is sodium borate (SODIUM)
BORATE 0RE) (commonly known as Tincal (TIN)
CAL)), or calcium borate (CALCI)
UM BOR, ATE 0RE) (Perioborite (C
Boric acid (chemical formula H, BO,) is produced through a purification process and sulfuric acid treatment. In Japan, F containing around 20% by weight and 10% by weight of boron is produced by aluminum reduction of boric acid (thermite method) and carbon reduction (electric furnace method).
e-B alloy is produced.

以上のようにFe−B合金製造は多くの工程と大量のエ
ネルギーを必要とするためコストが高く、最終製品のア
モルファス合金も非常に高価であった。
As described above, manufacturing Fe-B alloys requires many steps and a large amount of energy, resulting in high costs, and the final product, the amorphous alloy, is also very expensive.

1  3 1 本発明は、Fe−B合金を添加してFe −B −Si
合金を溶製する上記従来の方法に対し、ホウ素をホウ酸
以前の化合物の状態で直接溶鋼中に添加して還元し、ホ
ウ素を溶鋼中へ移行させるものであって、Fe−B合金
を製造する工程を省略し、大幅な省エネルギーを達成す
ることを目的とする。
1 3 1 In the present invention, Fe-B-Si is added by adding Fe-B alloy.
In contrast to the above-mentioned conventional method of producing alloys, boron is directly added to molten steel in a compound state prior to boric acid and reduced, and the boron is transferred into molten steel, thereby producing Fe-B alloy. The aim is to omit the process and achieve significant energy savings.

本発明者らは、ホウ素化合物を、溶鋼中のSiによって
還元し、還元生成したホウ素(B)を鋼中に移行する可
能性につき、各種の添加方法により広範な実験を行ない
、本発明を完成するに至った。
The present inventors conducted extensive experiments using various addition methods to investigate the possibility of reducing boron compounds with Si in molten steel and transferring the boron (B) produced by the reduction into steel, and completed the present invention. I ended up doing it.

本発明のFe −B−8i合金溶製法の原理は以下の通
りである。
The principle of the Fe-B-8i alloy melt manufacturing method of the present invention is as follows.

ホウ素化合物としては、B2O3、ホウ酸(H,BO,
χコレマナイト(2CaO・3B203・5H20)、
ボラツクス(Na、0・2B20.・10H20)、無
水ボラツクス(Na、0・2B、O,)  などを用い
る。これらのホウ素化合物のいずれかを溶鋼中に添加し
、鋼中の炭素、けい素によりこのホウ素化合物を還元し
てFe−B−8i合金とするものである。
Examples of boron compounds include B2O3, boric acid (H, BO,
χ Colemanite (2CaO・3B203・5H20),
Borax (Na, 0.2B20..10H20), anhydrous borax (Na, 0.2B, O,), etc. are used. One of these boron compounds is added to molten steel, and the boron compound is reduced by carbon and silicon in the steel to form an Fe-B-8i alloy.

B20.  を例にとり化学反応式で示せば次のように
なる。
B20. If we take this as an example and show it as a chemical reaction equation, it will be as follows.

2B、0.+ 3Si = 4B+3SiO,、・・・
(1)B、03+ 3C−2B+3CO・−・(2)還
元に必要なけい素はあらかじめFe−8i 合金または
金属けい素の形で鋼中に添加しておく。また炭素も同様
に、コークス等で加炭をしておくか、またはホウ素化合
物と同時に添加する。
2B, 0. +3Si=4B+3SiO,...
(1) B, 03+ 3C-2B+3CO (2) Silicon necessary for reduction is added to the steel in advance in the form of Fe-8i alloy or metallic silicon. Similarly, carbon is either carbonized with coke or the like, or added at the same time as the boron compound.

工業規模において上記プロセスを成立させるためには、
上記fl) 、 (2)式によるホウ素化合物から鋼中
へのホウ素移行率を100優に近づける必要がある。発
明者らは、各種の添加方法により実験を行ない、次の(
3)式で定義するホウ素収率により、最適な添加方法を
決定した。
In order to establish the above process on an industrial scale,
It is necessary to make the boron transfer rate from the boron compound into the steel according to the above fl) and formula (2) close to well over 100. The inventors conducted experiments using various addition methods and obtained the following (
3) The optimal addition method was determined based on the boron yield defined by the formula.

ホウ素収率三(鋼中に移行したホウ素重量)/(ホウ素
化合物中に含有しているホウ素重量)X100 (%)
 ・−・・・・ (3)第1表に、ホウ素化合物の添加
方法とホウ素収率とを比較して示す。
Boron yield 3 (weight of boron transferred into steel) / (weight of boron contained in boron compound) x 100 (%)
... (3) Table 1 shows a comparison of the boron compound addition method and boron yield.

(4) 第1表 第1表から明らか人ように、反応容器の炉底羽口から溶
鋼中にホウ素化合物粉を吹き込んだ場合に最も収率がよ
く、浸漬ランスから同様に吹込んだ場合がこれに次ぐ。
(4) Table 1 It is clear from Table 1 that the yield is highest when the boron compound powder is injected into the molten steel from the bottom tuyere of the reaction vessel, and when similarly injected from the immersion lance. Next to this.

従ってホウ素化合物の添加方法は、反応容器の炉底羽口
または浸漬ランスから粉体として吹込む方法がホウ素を
効率よく溶鋼中へ移行させる点で優れている。
Therefore, as a method for adding boron compounds, a method in which boron is injected as a powder from the bottom tuyere or immersion lance of a reaction vessel is superior in that boron is efficiently transferred into molten steel.

本発明方法によるホウ素化合物の添加量は、添加方法が
最適の場合でも収率が50〜80チであるので、必要ホ
ウ素量に対して1.25〜2.0倍量を添加する必要が
ある。収率の低い方法では2.5〜5倍も必要となり、
経済的に不利である。
The amount of boron compound added by the method of the present invention is 1.25 to 2.0 times the required amount of boron because the yield is 50 to 80% even when the addition method is optimal. . Low-yield methods require 2.5 to 5 times more
Economically disadvantageous.

鋼中のけい素は、ホウ素化合物を還元するので、ホウ素
化合物添加前の鋼中けい素濃度(%Si〕は、最終的に
要求される鋼中目標けい素濃度〔チ81″lfより高め
ておく必要がある。目標とするFe−B−3重合金のホ
ウ素濃度を〔チB″Ifとし、ホウ素化合物添加前の鋼
中けい素濃度を〔%Si)。
Silicon in steel reduces boron compounds, so the silicon concentration in steel (%Si) before adding boron compounds should be higher than the ultimately required target silicon concentration in steel [chi81''lf]. The target boron concentration in the Fe-B-3 heavy alloy is [B''If], and the silicon concentration in the steel before addition of the boron compound is [%Si].

とすれば、[%5t)o  は次式で求められる。Then, [%5t)o can be found by the following formula.

〔チSi)。≧〔チSi″l(+1.94 CチB″I
f・・・(4)ここで、1.94はけい素によるホウ素
化合物(ホウ酸)の還元反応式から化学量論的に求めた
係数である。
[Chi Si). ≧〔chiSi″l(+1.94 CchiB″I
f...(4) Here, 1.94 is a coefficient determined stoichiometrically from the reduction reaction equation of a boron compound (boric acid) with silicon.

本発明に用いる反応容器は、底吹き転炉または加熱装置
を備えた取鍋が適当である。ホウ素化合物は粉状が好ま
しく、非酸化性または弱酸化性ガス気流と共に溶鋼中に
吹き込むことにより、反応の効率を高め、ホウ素を効果
的に溶鋼中へ移行させることができる。
The reaction vessel used in the present invention is suitably a bottom-blown converter or a ladle equipped with a heating device. The boron compound is preferably in powder form, and by blowing it into the molten steel together with a non-oxidizing or weakly oxidizing gas stream, the efficiency of the reaction can be increased and boron can be effectively transferred into the molten steel.

本発明により、高価なFe−B合金を使用するとと々く
、安価々ホウ素化合物を用いてFe −B−8重合金を
溶製することができ、従来のように大量のエネルギーを
消費するFe−B合金を使用する必要がなくなった。
According to the present invention, instead of using an expensive Fe-B alloy, Fe-B-8 heavy alloy can be melted using a boron compound at a low cost. - It is no longer necessary to use B alloy.

実施例1 5トン規模の底吹き転炉を用い、通常の吹錬を終了した
後除滓し、金属けい素300ゆ、炭素(コークス)30
kpを溶鋼に添加した。次いでホウ酸(H,BO8) 
300kllを炉底羽口よりN、ガス気流に混入して溶
鋼へ吹込んだ。
Example 1 A 5-ton scale bottom-blowing converter was used to remove the slag after completing normal blowing to produce 300 yu of metal silicon and 30 yen of carbon (coke).
kp was added to the molten steel. Then boric acid (H, BO8)
300 kiloliters of nitrogen was mixed into the gas stream and blown into the molten steel through the bottom tuyeres of the furnace.

溶鋼の成分変化を第2表に示す。Table 2 shows changes in the composition of molten steel.

第2表 溶鋼の成分変化(単位は重量%)この溶製例の
場合には、ホウ素吹き込み後のホウ素濃度がo、q64
量チであり、目標とする2、2〜3.3重に%に満たな
いが、不足分はFe−B合金(J) (ホウ素純分19チ)を130kg/を添加することに
より補った。このFe−B合金使用量は従来法の2/3
であり、経済的に有利となることは明らかである。
Table 2 Changes in the composition of molten steel (unit: weight%) In the case of this melting example, the boron concentration after boron injection is o, q64
Although the amount was less than the target 2.2-3.3%, the deficiency was made up by adding 130kg/Fe-B alloy (J) (boron purity 19%). . The amount of Fe-B alloy used is 2/3 of the conventional method.
Therefore, it is clear that it is economically advantageous.

実施例2 第1図(a) 、 (b) 、 (C)に示すプロセス
によりFe−B−8重合金を溶製した。
Example 2 A Fe-B-8 heavy alloy was produced by the process shown in FIGS. 1(a), (b), and (C).

(a)  電気炉1を用いて通常の溶解を行なって得た
溶鋼3を取鍋精錬炉2に移し、 (b)  この溶鋼3に、Fe−8重合金5を90kg
/11炭素(コークス)6を8kg/lを添加し、(C
)  黒鉛電極4に′より加熱しながら、溶鋼中に浸漬
したランス8からホウ酸7をN、ガス気流に混入して総
量200に9/を吹き込んだ。
(a) Transfer molten steel 3 obtained by ordinary melting using electric furnace 1 to ladle refining furnace 2, (b) Add 90 kg of Fe-8 heavy alloy 5 to this molten steel 3.
/11 Carbon (coke) 6 was added at 8 kg/l, (C
) While heating the graphite electrode 4 with a lance 8 immersed in the molten steel, boric acid 7 was mixed into the N gas stream and 9/2 was blown into the total amount 200.

第3表に、本実施例の溶鋼成分変化を示す。最終成分と
して目標値を達成し、この時のホウ素収率は78チであ
った。
Table 3 shows changes in molten steel composition in this example. The target value for the final component was achieved, and the boron yield at this time was 78%.

(8) 第3表 溶鋼成分変化(単位は重量%)(8) Table 3 Changes in molten steel composition (unit: weight%)

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (C)は取鍋精錬装置
を用いた本発明の実施例の工程図である。 1・−・電気炉 2・・・取鍋精錬炉 3・−・溶鋼 4・・・電極 5・・・Fe−8i合金 6・・・炭素(コークス) 7・・・ホウ酸 8・−ランス 、′ (11) 第1 (a)    (b) ム (C)
FIGS. 1(a), 1(b), and 1(C) are process diagrams of an embodiment of the present invention using a ladle refining apparatus. 1... Electric furnace 2... Ladle refining furnace 3... Molten steel 4... Electrode 5... Fe-8i alloy 6... Carbon (coke) 7... Boric acid 8... Lance ,' (11) 1st (a) (b) Mu (C)

Claims (1)

【特許請求の範囲】 I  Fe −B−8i合金を溶製する方法において、
あらかじめ溶製した溶鋼にホウ素化合物を添加し、還元
反応によりホウ素を溶鋼中へ移行させることを特徴とす
るFe−B −8i合金溶製方法。 2 底吹き転炉を用いて溶鋼を脱炭昇温した後、炉底羽
口を通してホウ素化合物を非酸化性または弱酸化性ガス
気流と共に該溶鋼中に吹込み、あらかじめ該溶鋼中に添
加されたけい素、炭素によシ該ホウ素化合物を還元し、
ホウ素を溶鋼中へ移行させる特許請求の範囲第1項記載
のFe −B −Si合金溶製方法。 3 加熱装置を備えた取鍋精錬装置内の溶鋼にFe−8
i合金と炭素とを添加した後、該溶鋼を加熱しながらホ
ウ素化合物を非酸化性または弱酸化性ガス気流と共に溶
鋼中に吹込む特許請求の範囲第1項記載のFe−B−8
i合金溶製方法。
[Claims] A method for melting an IFe-B-8i alloy,
A method for producing an Fe-B-8i alloy, which comprises adding a boron compound to previously produced molten steel and transferring boron into the molten steel through a reduction reaction. 2. After decarburizing the molten steel using a bottom blowing converter and raising the temperature, a boron compound is blown into the molten steel through the bottom tuyere along with a non-oxidizing or weakly oxidizing gas stream, and the boron compound added in advance to the molten steel is reducing the boron compound with silicon and carbon,
The Fe-B-Si alloy melting method according to claim 1, wherein boron is transferred into molten steel. 3 Fe-8 is added to the molten steel in a ladle refining device equipped with a heating device.
Fe-B-8 according to claim 1, wherein after adding the i-alloy and carbon, a boron compound is blown into the molten steel together with a non-oxidizing or weakly oxidizing gas stream while heating the molten steel.
i Alloy melting method.
JP7791982A 1982-05-10 1982-05-10 Method for refining fe-b-si alloy Pending JPS58197252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7791982A JPS58197252A (en) 1982-05-10 1982-05-10 Method for refining fe-b-si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7791982A JPS58197252A (en) 1982-05-10 1982-05-10 Method for refining fe-b-si alloy

Publications (1)

Publication Number Publication Date
JPS58197252A true JPS58197252A (en) 1983-11-16

Family

ID=13647480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7791982A Pending JPS58197252A (en) 1982-05-10 1982-05-10 Method for refining fe-b-si alloy

Country Status (1)

Country Link
JP (1) JPS58197252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357653A (en) * 2011-11-14 2012-02-22 江苏银宇模具材料有限公司 Preparation process for nanoparticle reinforced die steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357653A (en) * 2011-11-14 2012-02-22 江苏银宇模具材料有限公司 Preparation process for nanoparticle reinforced die steel

Similar Documents

Publication Publication Date Title
CN100469932C (en) V2O5 direct alloying steelmaking technology
CN103320571B (en) Refining method for reducing inclusions in steel for steel cord
KR930001133B1 (en) Method of producing boron alloy
US4286984A (en) Compositions and methods of production of alloy for treatment of liquid metals
CN111001767B (en) High-saturation magnetic induction intensity iron-based amorphous soft magnetic alloy and preparation method thereof
CN103233092B (en) Process for smelting steel special for corrosion-resistant heat exchanger
US1727180A (en) Vanadium-aluminum-silicon alloy
JPS58197252A (en) Method for refining fe-b-si alloy
US2867555A (en) Nodular cast iron and process of manufacture thereof
CN101565792B (en) Method for smelting boron steel
US3172758A (en) Oxygen process for producing high
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
CN114480777A (en) Method for realizing 82B high-carbon tapping of converter through double-slag method
US4617052A (en) Process for preparing a mother alloy for making amorphous metal
CN109972062B (en) High-purity large electroslag ingot and production method thereof
CN113278884A (en) Smelting process and production method of blank for refractory steel bar
US2715064A (en) Method of producing silicon steel
US4190435A (en) Process for the production of ferro alloys
US4602950A (en) Production of ferroboron by the silicon reduction of boric acid
CN114427014B (en) Smelting method of high-manganese non-magnetic steel
Sussman et al. Development of a new method to produce melts suitable for the production of amorphous Fe− Si− B materials
SU1574673A1 (en) Malleable cast iron
US3063831A (en) Method of making titaniumcontaining alloys
SU914640A1 (en) Charge for melting phosphorus-free manganese slag
KR890004863B1 (en) Process for high quality fe-si