JPS58197235A - Method for recovering metal - Google Patents

Method for recovering metal

Info

Publication number
JPS58197235A
JPS58197235A JP7970182A JP7970182A JPS58197235A JP S58197235 A JPS58197235 A JP S58197235A JP 7970182 A JP7970182 A JP 7970182A JP 7970182 A JP7970182 A JP 7970182A JP S58197235 A JPS58197235 A JP S58197235A
Authority
JP
Japan
Prior art keywords
furnace
weight
metal
nodules
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7970182A
Other languages
Japanese (ja)
Other versions
JPS645095B2 (en
Inventor
Yasuhiro Okajima
岡島 靖弘
Yasuhiro Tsugita
泰裕 次田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7970182A priority Critical patent/JPS58197235A/en
Publication of JPS58197235A publication Critical patent/JPS58197235A/en
Publication of JPS645095B2 publication Critical patent/JPS645095B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To carry out operation with a uniform metallizing rate and high efficiency in the titled method by directly desulfurizing and reducing a substance contg. Ni-base metallic sulfide, by specifying the water content and crushing strength of raw briquettes to be charged into a circular vertical furnace to prevent the breaking of the briquettes. CONSTITUTION:A substance contg. Ni-base metallic sulfide is mixed with a carbonaceous reducing agent, Ca oxide and/or a substance forming Ca oxide, and Na salt, and the mixture is briquetted. The briquettes are charged into a circular vertical furnace from the top. They are directly heated to 750 deg.C with a nonreducing gas contg. <=1vol% O2 fed from a lower part of the furnace to form metal, and the metal is recovered. The briquettes are raw briquettes having 2-5wt% water content and >=0.5kg/cm<2> crushing strength or 5-8wt% water content and 0.5-2kg/cm<2> crushing strength, and they are charged into the furnace without carrying out predrying.

Description

【発明の詳細な説明】 物質な直接脱硫還元して金属を回収する方法に関する。[Detailed description of the invention] This invention relates to a method for recovering metals by direct desulfurization and reduction of materials.

金属硫化物含有物質を直接脱硫還元して金属を得る方法
の一つに水素による還元法があり、Trans. Me
t. Soc.’A工MK.:15 (/949) /
727に銅,ニッケル,コバルト及び鉄の水素還元法が
報告されている。この研究は、反応系にCaOを共存せ
しめMeS + H2 d Me + H2 S   
   (1)で生成するH2ElをCaO  によって
効果的に除去し、(1)式の反応を右方向に円滑に進行
せしめるようにしたものである。しかしながらこの反応
によって効率良く金属を析出させるためには加熱すると
同時に多量の水素ガス導入による強還元性雰囲気が必要
である。この加熱に重油燃焼ガスのような非還元性ガス
を用いれば当然水素ガス使用量も増大することとなり、
これは経済的でないため現在まで実用されるに至ってい
ない。
One of the methods for obtaining metals by directly desulfurizing and reducing metal sulfide-containing substances is the reduction method using hydrogen.Trans. Me
t. Soc. 'A Engineering MK. :15 (/949) /
727, a hydrogen reduction method for copper, nickel, cobalt, and iron was reported. In this study, CaO coexisted in the reaction system and MeS + H2 d Me + H2 S
H2El produced in (1) is effectively removed by CaO2, and the reaction of formula (1) is made to proceed smoothly in the right direction. However, in order to efficiently deposit the metal through this reaction, it is necessary to provide a strong reducing atmosphere by introducing a large amount of hydrogen gas at the same time as heating. If a non-reducing gas such as heavy oil combustion gas is used for this heating, the amount of hydrogen gas used will naturally increase.
Since this is not economical, it has not been put into practical use to date.

この様な不都合を解消するために、本発明者等はすでに
ニッケルを主体とする金属硫化物含有物質の直接脱硫還
元方法について種々検討し、ニッケルを主体とする金属
硫化物含有物質に炭素質還元剤、硫黄の固定のためのカ
ルシウム酸化物とカルシウム酸化物生成物質とのうちの
一方又は両方及びすトリウム塩を添加混合し、該混合物
を非還元性ガスにより7!;000以上に直接加熱する
工程な含む金属回収方法を開発し、且つ加熱炉として環
状竪型炉な使用することが特に好ましい実施態様である
ことな明らかにしている。(特願昭0−77572号参
照)。
In order to eliminate these inconveniences, the present inventors have already investigated various methods for direct desulfurization and reduction of materials containing metal sulfides, mainly nickel, and carbonaceous reduction methods to materials containing metal sulfides, mainly nickel. agent, one or both of calcium oxide and calcium oxide generating material for sulfur fixation, and thorium salt are added and mixed, and the mixture is heated with a non-reducing gas for 7 hours. We have developed a metal recovery method that includes a step of directly heating the metal to temperatures above 0.000 C, and have found that a particularly preferred embodiment is to use an annular vertical furnace as the heating furnace. (See Japanese Patent Application No. 0-77572).

この環状竪型炉な使用して前記金属回収方法を実施する
ためには、ニッケルを主体とする金属硫化物含有物質に
炭素質還元剤、カルシウム酸化物とカルシウム酸化物生
成物質のうちの一方又は両方及びナトリウム塩を添加混
合し、この混合物な団鉱等の団塊に成形することが操業
上必要である。
In order to carry out the metal recovery method using this annular vertical furnace, a metal sulfide-containing material mainly composed of nickel, a carbonaceous reducing agent, calcium oxide and a calcium oxide-generating material or For operational purposes, it is necessary to add and mix both of these and the sodium salt, and to form this mixture into a mass such as briquette.

一般に、焙焼処理される物質をペレット、団鉱等として
処理する場合、炉内を移動する場合に受ける外力に対し
て必要な強度な与えるために予備乾燥を行なって成形の
ために加えた水分な除去したり、粘結性を与えるために
加えた粘結剤による凝固性な強めることが行なわれてい
る。この予備乾燥は、炉外で乾燥装置を用いて行なうか
、炉に(つと時間をかげて行なわれており経済的に好ま
しいものではない。
Generally, when the material to be roasted is processed into pellets, briquettes, etc., pre-drying is performed to give it the necessary strength to withstand the external forces it receives when moving through the furnace, and moisture is added for molding. Coagulability is strengthened by adding a caking agent to provide caking properties. This preliminary drying is carried out either outside the oven using a drying device or in the oven, which is not economically preferable.

本発明者等は前記混合物を団鉱機により生団塊に成形し
予備乾燥することなく、7S00C以上まで急速加熱を
行う試験を行ったところ、団塊が大きな音と共に破壊す
る現象が観察された。
The present inventors conducted a test in which the mixture was molded into green nodules using a briquette machine and rapidly heated to 7S00C or higher without pre-drying, and a phenomenon in which the nodules broke with a loud noise was observed.

このように団塊が破壊、いわゆるバースティングな起す
と実際の炉では、排ガス中に多量の煙灰となって混入し
、排ガスの浄化と煙灰の回収のため、多大な労力と大規
模な設備が必要となり、さらに加熱炉が本発明の場合の
環状竪型炉のようにシャフト炉タイプの場合には炉内の
圧損が上昇し、加熱用ガスを炉内に均一に通過させるこ
とができず、操業が不安定となり、ひいては焼成が不均
一となり、排出団塊の金属化率が個々に異なり、かつ平
均の金属化率も低下することになる。
In actual furnaces, when the nodules break down (so-called bursting), a large amount of smoke ash is mixed into the exhaust gas, and a great deal of labor and large-scale equipment is required to purify the exhaust gas and recover the smoke ash. Furthermore, if the heating furnace is of a shaft type, such as the annular vertical furnace used in the present invention, the pressure drop inside the furnace will increase, and the heating gas will not be able to pass through the furnace uniformly, making operation difficult. becomes unstable, and as a result, the firing becomes uneven, the metallization rate of the discharged nodules varies individually, and the average metallization rate also decreases.

本発明は、上記の問題を解決し、ニッケルを主体とする
金属硫化物含有物質、炭素質還元剤、カルシウム酸化物
とカルシウム酸化物生成物質のうちの一方または両方、
及びナトリウム塩の混合物を団塊とし、予備乾燥するこ
となく環状竪型炉に装入して非還元性ガスにより直接加
熱して金属を生成せしめて回収する方法において、金属
化率が均一で効率のよい操業を行いうる方法を提供する
ことな目的とする。
The present invention solves the above problems and includes a metal sulfide-containing material mainly containing nickel, a carbonaceous reducing agent, one or both of calcium oxide and calcium oxide-generating material,
In this method, a mixture of salts and sodium salts is made into agglomerates, charged into a circular vertical furnace without pre-drying, and directly heated with non-reducing gas to generate and recover metals. The purpose is to provide a method for good operation.

この目的を達成するために、本発明は特許請求の範囲の
方法にしたがって原料を処理することにある。
To achieve this objective, the invention consists in treating raw materials according to the claimed method.

発明者は、団塊のバースティングな防止するため、原料
の粒度、添加水分率、団鉱機での通過回数などの製団条
件、および製造された生団塊の圧壊強度、落下強度など
の性状とバースティングの関係を調査した。この結果、
団塊のバースティングは生団塊の水分率と圧壊強度に密
接に関係しており、水分率3重量饅以下であるかもしく
は水分率5〜g重歇係の範囲で圧壊強度2 K97cm
2以下であればバースティングを防止できることが判明
した。なお、この場合の圧壊強度は、団塊の最大の横W
T面の直角方向に加えた団塊が破壊を生ずる荷重を、団
塊の最大の横断面の面積で割り算した値で表わしたもの
である。
In order to prevent the bursting of the nodules, the inventor investigated the granulation conditions such as the particle size of the raw material, the added moisture content, the number of passes through the briquette machine, and the properties such as the crushing strength and falling strength of the produced green nodules. We investigated the relationship between bursting. As a result,
The bursting of the baby boom is closely related to the moisture content and crushing strength of the raw baby boom, and the crushing strength is 2 K97cm when the moisture content is less than 3 kg or within the range of 5 to 5 g.
It was found that bursting can be prevented if the value is 2 or less. In addition, the crushing strength in this case is the maximum lateral W of the baby boom.
It is expressed as the value obtained by dividing the load that causes the nodule to break, which is applied in the direction perpendicular to the T plane, by the area of the maximum cross-section of the nodule.

試験の一例を示すと、ニッケルマツ)  (N177.
0゜C00乙、FθOグ、82/、0  重量%)を、
20メツシユ以下に粉砕し、これに700メツシユ以下
のコークス、(全炭素95重量%)、消石灰及び炭酸す
) IJウムをニッケルマット100重量部当りそれぞ
れ/9.2.9ψg、20重量部添加混合し、双輪式団
鉱機により、!3rnjrr厚、J51馴幅1.?OY
u:長のアーモンド状の形状の団塊な製造した。混合時
に添加する水の量および製団時の成形圧を調節して、種
々の水分率と圧壊強度を有する生団塊を得た。この生団
塊なN2雰囲気中で200°Cまで5分間で急速加熱し
バースティング状況の観察を行った。この結果を第1図
に示す。
An example of the test is nickel pine) (N177.
0゜C00, FθOg, 82/, 0% by weight),
Pulverized to 20 mesh or less, and mixed with coke of 700 mesh or less, (95% total carbon), slaked lime, and 20 parts by weight of IJum per 100 parts by weight of nickel matte, each at 9.2.9ψg/100 parts by weight. And, with the twin wheel type briquette machine! 3rnjrr thickness, J51 tread width 1. ? OY
u: Long, almond-shaped nodules were produced. By adjusting the amount of water added at the time of mixing and the molding pressure at the time of making the dough, green nodules having various moisture contents and crushing strengths were obtained. The material was rapidly heated to 200° C. for 5 minutes in this fresh N2 atmosphere, and the bursting state was observed. The results are shown in FIG.

第1図より、団塊のバースティング防止のためには、生
団塊の水分率がS重量係以下であるか、もしくは水分率
3〜g重量係の範囲で圧壊強度2x9/cm2以下であ
ることが必要なことがわかる。
From Figure 1, in order to prevent the bursting of the baby boons, the moisture content of the raw baby boons must be below the S weight factor, or the crushing strength should be below 2x9/cm2 within the range of moisture content from 3 to g weight factor. Understand what you need.

しかし、団塊はバースティングのほかに、炉内での荷重
による圧壊、移動にともなう破壊などの機械的破壊に耐
えろことが必要であり、この点から生団塊の圧壊強度が
0.3; Kl;l!/cm2 以下では炉内で崩壊し
て操業旧のトラブルとなり好ましくない。
However, in addition to bursting, the nodules are required to withstand mechanical destruction such as crushing due to load in the furnace and destruction due to movement, and from this point of view, the crushing strength of the green nodules is 0.3; Kl; l! /cm2 or less is not preferable as it will disintegrate in the furnace and cause operational problems.

また、水分率2重量係未満では団鉱機によって生団塊に
成形することが困難である。
In addition, if the moisture content is less than 2 parts by weight, it is difficult to form it into a green lump using a briquette machine.

したがって、急速加熱の温度勾配?有する竪型環状炉へ
装入する生団塊としては、水分率2〜S重歇係でOjK
り7cm2  以上の圧壊強度、もしくは水分率5〜g
重量係でO,S〜2にり70m2の圧壊強度を有するこ
とが必要である。
Hence the temperature gradient for rapid heating? The raw nodules to be charged into the vertical annular furnace with a moisture content of 2 to S are OjK.
Compressive strength of 7 cm2 or more or moisture content of 5 to 5 g
It is necessary to have a crushing strength of 70 m2 in terms of weight.

ナトリウム塩は酸化ナトリウム又は分解、反応によりN
a20Q生成するものが使用できる。例えば炭酸塩、亜
硫酸塩、硫酸塩、・・ロゲン化物等を使用できる。ナト
リウム塩の添加率はニッケルな主体とする金属硫化物含
有物質100重量部当りNa2O換算で0.5重量部以
上とするのが好ましく、1重量部以上であれば一層好・
まtい。1重量部以上では金属化率は殆んど飽和するの
であまり多くする必要はない。
Sodium salts can be converted to sodium oxide or N by decomposition and reaction.
You can use the one that generates a20Q. For example, carbonates, sulfites, sulfates, rogens, etc. can be used. The addition rate of the sodium salt is preferably 0.5 parts by weight or more, calculated as Na2O, per 100 parts by weight of the metal sulfide-containing material, which is mainly nickel, and more preferably 1 part by weight or more.
Wait. If the amount is 1 part by weight or more, the metallization rate will be almost saturated, so there is no need to increase it too much.

炭素質還元剤として石炭、コークス、木炭等を使用でき
、場合により液状の炭素質物質(例えばピッチ、重油等
)を用いても良い。
Coal, coke, charcoal, etc. can be used as the carbonaceous reducing agent, and in some cases, a liquid carbonaceous substance (eg, pitch, heavy oil, etc.) may also be used.

炭素質還元剤の添加量は、下記の反応式(2)%式%(
2) から理論計算される量の72倍以上とするのが適当であ
る。
The amount of carbonaceous reducing agent added is determined by the following reaction formula (2) % formula % (
2) It is appropriate to set it to 72 times or more the amount theoretically calculated from .

カルシウム酸化物生成物質とは、熱分解してOaOを生
成する物質をいう。このような物質として例えば石灰石
、消石灰などが適当である。もちろん生石灰も使用でき
、これらを併用しても良い。
The calcium oxide producing substance refers to a substance that is thermally decomposed to produce OaO. Suitable examples of such substances include limestone and slaked lime. Of course, quicklime can also be used, and these may be used in combination.

カルシウム酸化物やカルシ、ラム酸化物生成物質の添加
量は(2)式から理論計算される量の72倍以上とする
のが適当である。但しあまり多過ぎると回収金属の分離
効率を悪化するので/、2〜25倍の範囲が適当である
It is appropriate that the amount of calcium oxide, calci, or lamb oxide-forming substance added be at least 72 times the amount theoretically calculated from equation (2). However, if the amount is too large, the separation efficiency of recovered metals will deteriorate, so a range of 2 to 25 times is appropriate.

ニッケルを主体とする金属硫化物含有物質は、20メツ
シユ以下に粉砕して用いる。又、炭素質還元剤、カルシ
ウム酸化物やカルシウム酸化物生成物質、ナ) IJウ
ム塩の固形のものは適宜粉砕したものな用いると良い。
The metal sulfide-containing substance mainly composed of nickel is used after being ground into 20 meshes or less. In addition, solid forms of carbonaceous reducing agents, calcium oxides, calcium oxide generating substances, and IJium salts may be appropriately ground.

この場合粉砕しながら混合するようにすれば一層混合は
ば(なる。
In this case, if you mix while grinding, the mixture will be even better.

加熱に用いる非還元性ガスは重油等の液体燃料の燃焼ガ
スとして容易に得られる。このようなガスは他の固体や
気体燃料によっても得られる。この非還元性ガスは酸素
濃度l容量チ以下とするのが好ましい。これ以」二では
生成した金属の酸化、復硫反応が活発化し、生成金属の
硫黄及び酸素濃度が上昇し、炭素質還元剤を浪費するこ
とにもなるからである。
The non-reducing gas used for heating is easily obtained as combustion gas of liquid fuel such as heavy oil. Such gases can also be obtained from other solid or gaseous fuels. This non-reducing gas preferably has an oxygen concentration of 1 volume or less. Otherwise, the oxidation and resulfurization reactions of the produced metal will become more active, the sulfur and oxygen concentrations of the produced metal will increase, and the carbonaceous reducing agent will be wasted.

本発明におけるニッケルを主体とする金属硫化物含有物
質の直接脱硫還元反応は次のようにして起ると考えられ
る。先ず炭素質還元剤は所要の温度で燃焼ガス中のH2
C、C02と水性ガス反応、ブルドワ反応等によってH
2、Co等の還元性ガスを生成し、この還元性ガスが金
属硫化物と反応してH2S 、 CO8等の硫化物ガス
を生成しつつ脱硫還元反応を進行せしめ、且つ雰囲気を
還元性として生成金属の復硫反応を防止する。H2S 
、 CO8等の硫化物ガスはカルシウム酸化物と反応し
て硫黄分がカルシウムで固定化される。上記還元性ガス
の生成反応は約乙0O0C以上で進行し、又ニッケル、
コバルト、銅硫化物の脱硫還元反応は約1.000C以
上で進行するので、この温度以上に加熱すればニッケル
、コバルト、銅については(2)式の反応を右方向へ進
行させることは可能であるが、実用的な反応速度を得る
には7SO0C以上にする必要がある。脱硫還元反応の
量適温度は金属の種類によ□って異なり、又還元性ガス
生成反応の最適温度は使用する炭素質還元剤により異な
るので、この組合せと温度は、適宜選定すれば良い。例
えば多量の熱分解ガスを発生する瀝青炭、褐炭は7jO
〜9000Cに適しており、コークスは900−/20
00Cで使用するのに適している。
The direct desulfurization-reduction reaction of a metal sulfide-containing substance mainly composed of nickel in the present invention is thought to occur as follows. First, the carbonaceous reducing agent reduces H2 in the combustion gas at the required temperature.
H by C, C02 and water gas reaction, Bourdois reaction, etc.
2. Generates a reducing gas such as Co, and this reducing gas reacts with metal sulfide to generate sulfide gases such as H2S and CO8 while proceeding with the desulfurization reduction reaction, and creates a reducing atmosphere. Prevents resulfurization reactions in metals. H2S
, Sulfide gas such as CO8 reacts with calcium oxide, and the sulfur content is fixed with calcium. The above-mentioned reducing gas production reaction proceeds at temperatures above about 000C, and nickel,
Since the desulfurization reduction reaction of cobalt and copper sulfides proceeds at temperatures above about 1.000C, it is possible for the reaction of equation (2) to proceed in the right direction for nickel, cobalt, and copper by heating above this temperature. However, in order to obtain a practical reaction rate, it is necessary to increase the temperature to 7SO0C or higher. The appropriate temperature for the desulfurization reduction reaction varies depending on the type of metal, and the optimum temperature for the reducing gas production reaction varies depending on the carbonaceous reducing agent used, so the combination and temperature may be selected as appropriate. For example, bituminous coal and lignite that generate large amounts of pyrolysis gas are 7JO
Suitable for ~9000C, coke is 900-/20
Suitable for use at 00C.

脱硫還元反応の進行と共に炭素質還元剤が消費されるが
、残留炭素分が低下すると生成する還元ガス量も低下し
、還元性雰囲気か弱くなって復硫反応が起るようになる
。残留炭素が乙j重重量板下になると復硫反応は顕著と
なるので、残留炭素は733重量係上、好ましくは20
′重量係以上にすると良い。これは加熱処理抜力産出物
を分析することにより知ることができ、その値によって
炉内の滞留時間が過大とならないように調節すると自い
As the desulfurization reduction reaction progresses, the carbonaceous reducing agent is consumed, but as the residual carbon content decreases, the amount of reducing gas produced also decreases, the reducing atmosphere becomes weaker, and the resulfurization reaction occurs. Since the resulfurization reaction becomes significant when the residual carbon reaches below the weight plate, the residual carbon should be 733% by weight, preferably 20% by weight.
'It is better to make it above the weight rating. This can be determined by analyzing the heat treatment extraction force product, and the residence time in the furnace can be adjusted based on that value so that the residence time in the furnace does not become excessive.

また、産出物中にはCaS、CaC2灰分等も残留する
が、この産出物を種々の方法で処理して金属を回収する
ことができる。例えば、金属を他の含有物と分離するに
は浮選、磁選、比重選鉱、静電選鉱等の選鉱手段が有効
である。
In addition, CaS, CaC2 ash, etc. remain in the product, and the metals can be recovered by processing this product by various methods. For example, ore beneficiation methods such as flotation, magnetic separation, specific gravity separation, and electrostatic separation are effective for separating metals from other contained materials.

以上に述べた本発明の方法にしたがって、生団塊を予備
乾燥することなく、そのまま環状竪型炉に装入して直接
脱硫還元による金属回収方法を実施すれば、乾燥、脱硫
還元を一部で短時間に熱効率良く行なえ、より一層均−
な焼成が行なえることによる金属化率の向上ができ、煙
灰の発生を少なくすることができる。
According to the method of the present invention described above, if the green nodules are directly charged into the annular vertical furnace without pre-drying and the metal recovery method is carried out by direct desulfurization reduction, drying and desulfurization reduction can be partially performed. Thermal efficiency can be achieved in a short time, making it more even.
The metallization rate can be improved by performing firing, and the generation of smoke ash can be reduced.

実施例 1 ニッケルマット (Ni 77.0. co O,1,
Fe Oll。
Example 1 Nickel matte (Ni 77.0. co O,1,
FeOll.

5210 各重量%)を20メツシユ以下に粉砕し、こ
れに100メツシユ以下のコークス(全炭素9Sルマツ
) 700重量部当りそれぞれ/9.93.2重量部添
加混合し、水を加えてこの混合物の水分率をp、 s重
量係に調節し、双輪式団鉱機により成形圧を調節しつつ
23 lLIM厚、Δ部幅1.70雌長のアーモンド状
の形状で水分率V、 S重量係、圧壊強度3.y、!7
/cm2の生団塊に成形した。この生団塊を環状竪型炉
の上部から連続的に供給し、一方炉下部から重油燃焼ガ
スを炉の排ガスの一部と混合し温度qs。
5210 (each weight%) to 20 mesh or less, and to this, 9.93.2 parts by weight or less per 700 parts by weight of coke (all carbon 9S rumatsu) of 100 mesh or less was added and mixed, and water was added to form this mixture. The moisture content was adjusted to p, s weight ratio, and the molding pressure was adjusted using a twin-wheel briquette machine, and the moisture content was adjusted to 23 lLIM thickness, Δ part width 1.70 female length, almond-shaped shape, moisture content V, s weight ratio, Crushing strength 3. Y-! 7
The mixture was molded into a green mass of /cm2. The raw nodules are continuously fed from the upper part of the annular vertical furnace, while heavy oil combustion gas is mixed with a part of the furnace exhaust gas from the lower part of the furnace at a temperature of qs.

OC1酸素濃度O7容量係に調節して吹き込んだ。It was blown in while adjusting the OC1 oxygen concentration and O7 capacity.

団塊の炉内滞留時間は65分で、に0000以上の温度
経過時間はttS分であった。炉内での団塊の・く−ス
ティングは皆無であった。炉からの産出団塊は引き続き
ロータリークーラーで冷却後水中に投入した。水冷した
団塊は湿式ボールミルで700メツシユ以下に粉砕し、
このスラリーを7000ガウスの湿式磁選機で処理した
結果、Ni 9’1.!;、 C3I、3゜s /、o
、 c o2各重量係のニッケル金属粉が得られた。ニ
ッケルの金属化率は貿重量係であった。
The residence time of the nodules in the furnace was 65 minutes, and the elapsed time of the temperature above 0,000 was ttS minutes. There was no crusting of nodules in the furnace. The nodules produced from the furnace were subsequently cooled in a rotary cooler and then poured into water. The water-cooled nodules are crushed into 700 mesh pieces or less using a wet ball mill.
As a result of processing this slurry with a wet magnetic separator at 7000 Gauss, Ni 9'1. ! ;, C3I, 3゜s /, o
, co2 nickel metal powder of each weight ratio was obtained. The metallization rate of nickel was related to the trade weight.

また環状竪型炉の排ガスへの煙灰量は装入ニッケルマッ
ト量のO/7重量%あった。
The amount of smoke ash in the exhaust gas from the annular vertical furnace was O/7% by weight of the amount of nickel matte charged.

実施例 2 実施例1と同じ組成及び粒度のニッケルマット、コーク
ス、消石灰、炭酸ナトリウムを実施例1と同じ配合比で
混合し、水を加えてこの混合物の水分率な65重量%に
調節し、23ttW厚5.23ijam幅、30鶴長の
アーモンド状の形状で水分率乙S重量%、圧壊強度/、
 2 K!77cm2の生団塊に成形した。この生団塊
を環状竪型炉の上部から連続的に装入し実施例1と同じ
条件で焙焼した。炉内での団塊のバースティングは皆無
であった。炉からの産出団塊を実施例1と同様に処理し
てNi 9tI/、 Ca/J 、 S/、3.C0,
3各重量係のニッケル金属粉を得た。ニッケルの金属化
率は999重量%あった。また、環状竪型炉の排ガスへ
の煙灰量は装入ニッケルマット量の0./、3重量%で
あった。
Example 2 Nickel matte, coke, slaked lime, and sodium carbonate having the same composition and particle size as in Example 1 were mixed in the same blending ratio as in Example 1, and water was added to adjust the moisture content of this mixture to 65% by weight. 23ttW thickness 5.23ijam width, 30 crane length almond-shaped shape, moisture content S weight %, crushing strength /,
2K! It was molded into a 77 cm2 raw mass. This green nodule was continuously charged from the upper part of the annular vertical furnace and roasted under the same conditions as in Example 1. There was no bursting of nodules in the furnace. The nodules produced from the furnace were treated in the same manner as in Example 1 to obtain Ni 9tI/, Ca/J, S/, 3. C0,
3 Each weight of nickel metal powder was obtained. The metallization rate of nickel was 999% by weight. In addition, the amount of smoke ash in the exhaust gas of the annular vertical furnace is 0.0% of the amount of nickel matte charged. /, 3% by weight.

比較例 1 実施例1と同じ組成及び粒度のニッケルマット、コーク
ス、消石灰、炭酸ナトリウムを実施例Jと同じ配合比で
混合し、水を加えてこの混合物の水 ゛分率な乙5重量
%に調節し、双輪式団鉱機により成形圧を調節し、23
rlL’m厚、:l!i rr1M幅1.’?(nLm
長ノアーモンド状の形状で水分率45重量%、圧壊強度
30Kq/cm2の生団塊に成形した。この生団塊を実
施例1と同様に環状竪型炉に装入したところ、炉上部で
バースティングをおこし炉内の圧力損失が増加して炉内
温度勾配が急変し、産出団塊に焼きむらが生じ、ニッケ
ルの金属化率はと5重量%に低下した。この時、排ガス
への煙灰量は装入ニッケルマット量の2重量%に増加し
た。
Comparative Example 1 Nickel matte, coke, slaked lime, and sodium carbonate having the same composition and particle size as Example 1 were mixed in the same mixing ratio as Example J, and water was added to bring the water content of this mixture to 5% by weight. The molding pressure was adjusted using a twin-wheel briquette machine, and 23
rlL'm thickness, :l! i rr1M width 1. '? (nLm
It was molded into a green nodule in the shape of a long almond with a moisture content of 45% by weight and a crushing strength of 30 Kq/cm2. When this green nodule was charged into an annular vertical furnace in the same manner as in Example 1, bursting occurred at the top of the furnace, the pressure loss in the furnace increased, the temperature gradient inside the furnace suddenly changed, and the produced nodule was unevenly baked. As a result, the nickel metallization rate decreased to 5% by weight. At this time, the amount of smoke ash in the exhaust gas increased to 2% by weight of the amount of nickel matte charged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、生団塊の圧壊強度、水分率とバースティング
の発生状況との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the crushing strength and moisture content of green nodules and the occurrence of bursting.

Claims (1)

【特許請求の範囲】[Claims] (])  ニッケルを主体とする金属硫化物含有物質に
炭素質還元剤、カルシウム酸化物とカルシウム酸化物生
成物質のうちの一方または両方、及びナトリウム塩な添
加混合し、該混合物な団塊に成形しこれを環状竪型炉の
上部から装入し、環状竪型炉の下部から送入した酸素含
有数l容量係以下の非還元性ガスによって団塊+Q7j
000以上に直接加熱して金属を生成せしめる金属回収
方法において、前記団塊として水分率2〜5重量係で0
.3 KO/cm2以上の圧壊強度もしくは水分率t 
−、r重量係で05〜.2 K9/cm2の圧壊強度を
有する生団塊を予備乾燥することな(炉に装入すること
を特徴とする金属回収方法。
(]) A carbonaceous reducing agent, one or both of a calcium oxide and a calcium oxide generating substance, and a sodium salt are added to and mixed with a metal sulfide-containing material mainly composed of nickel, and the mixture is formed into a mass. This is charged from the upper part of the annular vertical furnace, and is made into nodules +Q7j by the non-reducing gas having an oxygen content of less than the number liter capacity coefficient and sent from the lower part of the annular vertical furnace.
In a metal recovery method in which metal is generated by direct heating to a temperature of 0.000 or more, the lump has a moisture content of 2 to 5% by weight and is 0.
.. 3 Compressive strength or moisture content t of KO/cm2 or more
-, r weight section 05~. 2. A metal recovery method characterized by charging raw nodules having a crushing strength of K9/cm2 into a furnace without pre-drying them.
JP7970182A 1982-05-11 1982-05-11 Method for recovering metal Granted JPS58197235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7970182A JPS58197235A (en) 1982-05-11 1982-05-11 Method for recovering metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7970182A JPS58197235A (en) 1982-05-11 1982-05-11 Method for recovering metal

Publications (2)

Publication Number Publication Date
JPS58197235A true JPS58197235A (en) 1983-11-16
JPS645095B2 JPS645095B2 (en) 1989-01-27

Family

ID=13697508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7970182A Granted JPS58197235A (en) 1982-05-11 1982-05-11 Method for recovering metal

Country Status (1)

Country Link
JP (1) JPS58197235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238225A (en) * 1987-03-26 1988-10-04 Sumitomo Metal Mining Co Ltd Method for refining blister copper
CN102367512A (en) * 2011-09-07 2012-03-07 王号德 Method for deep reduction and magnetic separation of nickel and iron in lateritic nickel ore carbon-containing pellets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238225A (en) * 1987-03-26 1988-10-04 Sumitomo Metal Mining Co Ltd Method for refining blister copper
CN102367512A (en) * 2011-09-07 2012-03-07 王号德 Method for deep reduction and magnetic separation of nickel and iron in lateritic nickel ore carbon-containing pellets

Also Published As

Publication number Publication date
JPS645095B2 (en) 1989-01-27

Similar Documents

Publication Publication Date Title
US2855290A (en) Method of reducing iron oxide to sponge iron
US4239530A (en) Process for producing metallized iron pellets
US2792298A (en) Iron oxide reduction
EA009599B1 (en) Self-reducing, cold-bonded pellets and method for their production (embodiments)
CN107299218B (en) A kind of iron vitriol slag desulfurization pelletizing, preparation and its application
US3617256A (en) Process for simultaneously producing powdered iron and active carbon
US3788841A (en) Recovery of metal values from manganese nodules
RU2596730C2 (en) Method of producing reduced iron agglomerates
RU2669653C2 (en) Method of producing granular metallic iron
US4209322A (en) Method for processing dust-like matter from metallurgical waste gases
JPS58197235A (en) Method for recovering metal
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
US3495973A (en) Gas-solid reaction
JPH06330198A (en) Method for recovering zinc in dust
JPS6040500B2 (en) Metal recovery method
CN206256125U (en) The processing system of iron vitriol slag
JP7416340B1 (en) Method for producing hot metal
JPH09241769A (en) Treatment of lead sulfate-containing material
WO2024018692A1 (en) Method for smelting nickel-containing oxide ore
US890233A (en) Method of dephosphorizing and reducing iron ore.
RU2720015C1 (en) Method for continuous preparation of wet finely ground iron-ore concentrate for liquid-phase reduction of metals
CN116024427B (en) Method for preparing low-phosphorus molten iron based on high-temperature melting of high-phosphorus iron ore metallization product
RU2782595C1 (en) Method for producing pellets from ore materials
JPS5819729B2 (en) Seikorohekiyoukiyuusuruni Textile Kiyoukakaijiyoutaino Seikomirhaikibutsudustkarano Seizouhou