JPS5819719A - Production of digital magnetic head - Google Patents

Production of digital magnetic head

Info

Publication number
JPS5819719A
JPS5819719A JP11755281A JP11755281A JPS5819719A JP S5819719 A JPS5819719 A JP S5819719A JP 11755281 A JP11755281 A JP 11755281A JP 11755281 A JP11755281 A JP 11755281A JP S5819719 A JPS5819719 A JP S5819719A
Authority
JP
Japan
Prior art keywords
bar
magnetic
bond
core
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11755281A
Other languages
Japanese (ja)
Other versions
JPS634244B2 (en
Inventor
Masao Nakayama
正夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11755281A priority Critical patent/JPS5819719A/en
Publication of JPS5819719A publication Critical patent/JPS5819719A/en
Publication of JPS634244B2 publication Critical patent/JPS634244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/265Structure or manufacture of a head with more than one gap for erasing, recording or reproducing on the same track
    • G11B5/2651Manufacture

Abstract

PURPOSE:To obtain a tunnel erasion type magnetic head of high accuracy, by providing erasing gaps at both sides of a reading/writing gap and unifying a nonmagnetic material part and a magnetic material part at their opposite position and via a nonmagnetic spacer. CONSTITUTION:A U bar 10 and I bar 11 made of a ferromagnetic material are unified into a body via a nonmagnetic film 14 and a nonmagnetic gap 12. These bars 10 and 11 are used as a reading/writing (R/W) bond bar 13a and an erasing (E) bond bar 13b respectively. These bars 13a and 13b are joined to obtain a core 20 via a nonmagnetic spacer 15. The nonmagnetic part and the magnetic part of an R/W gap 21 and an E gap 22 of the core 20 are set opposite to each other. Thus such preformable core 20 is formed to a highly accurate tunnel erasion type digital magnetic head which is suited to a mass production with reduced variance of assembling accuracy.

Description

【発明の詳細な説明】 本発明は、トンネルイレーズ方式のデジタル磁気ヘッド
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a tunnel erase type digital magnetic head.

例えば、フロッピーディスクドライブに採用されている
磁気ヘッドは、データ(メディア)の互換性を保証する
だめコアの読出し/書込みギャップの両側にイレーズギ
ャップを設けた構造のものが一般的である。この種の磁
気ヘッドには、トンネルイレーズタイプのものとストラ
ドルイレーズタイプのものがあるが、いずれにしても1
つのトラックにデータを書込むとき、書込み幅をトリミ
ングして隣接するトラックのデータへの干渉を防止する
ようになっている。
For example, magnetic heads employed in floppy disk drives generally have a structure in which erase gaps are provided on both sides of the read/write gap of the core to ensure data (media) compatibility. There are two types of magnetic heads of this type: tunnel erase type and straddle erase type.
When writing data on one track, the writing width is trimmed to prevent interference with data on adjacent tracks.

ところで、従来のトンネルイレーズタイプの磁気ヘッド
は、第1図に示すように、中央に位置する読出し/書込
みコア層1と、その両側に位置するイレーズコア層2と
の3枚の同様な層をサンドイッチ構造に結合一体化する
工程を経て製作されていた。すなわち各コア層1,2は
、略同形(但し、厚さは異なってもよい)であって、同
図Bに示されているようにギャップ3を介して接合され
るL地磁気コア4とI型磁気コア5および該I型磁気コ
ア5に接着される非磁性の■7字部利6からなり、中央
の読出し/書込みコア層1は、外側のイレーズコア層2
と反対方向に対面するように配設され(同図C参照)、
前述の如く接合一体化されるのである。
By the way, as shown in FIG. 1, a conventional tunnel erase type magnetic head is made by sandwiching three similar layers: a read/write core layer 1 located in the center and erase core layers 2 located on both sides of the read/write core layer 1. It was manufactured through a process of joining and integrating it into the structure. That is, each core layer 1, 2 has approximately the same shape (however, the thickness may be different), and the L geomagnetic core 4 and the I It consists of a type magnetic core 5 and a non-magnetic 7-shaped part 6 bonded to the I type magnetic core 5, and the central read/write core layer 1 is connected to the outer erase core layer 2.
(see C in the same figure),
As mentioned above, they are joined and integrated.

しかしながらこのような製造方法では、まず極めて薄肉
の読出し/書込み用コア層1及びイレーズ用コア層2を
作成し、次にラップポリッシュでトラック幅精度を出し
、それらを各々位置合わせして、また多くの場合はイレ
ーズ用コア層2の外側にアウトリガ−7が位置するよう
に5枚1組で位置合わせして、接着一体化するという非
常に煩瑣な作業が必要となる。因に従来好適とされるコ
ア層の厚みは、読出し/書込み用コア層1が13ミル(
約0.33 mtn )、イレーズ用コア層2が6ミル
(約0.45 mm )である。
However, in this manufacturing method, an extremely thin reading/writing core layer 1 and an erasing core layer 2 are first created, then lap polishing is performed to achieve track width accuracy, each of them is aligned, and many layers are created. In this case, it is necessary to align the five sheets in a set so that the outrigger 7 is located outside the erase core layer 2, and to bond and integrate them, which is a very complicated process. Incidentally, the thickness of the core layer conventionally considered suitable is 13 mils (13 mils) for the read/write core layer 1.
The erase core layer 2 has a thickness of about 6 mils (about 0.45 mm).

また、これらの半分の寸法のものもすでに使用されてい
る。このように各コア層1.2は極薄であるから、機械
的強度が極めて弱く取扱いを注意深く慎重にせねばなら
ないし、従って量産にあまり適した方法とは言えず、組
立て精度のばらつきも大きかった。
Also, devices half the size of these are already in use. Since each core layer 1.2 is extremely thin, its mechanical strength is extremely weak and must be handled carefully and carefully. Therefore, this method is not very suitable for mass production, and there are large variations in assembly accuracy. .

本発明の目的は、このような従来技術か有ずろ諸問題を
解決し、組立て容易で量産化に適し、組立て精度のばら
つきも少なく、かつ高精度とすることができろようなト
ンネルイレーズ形のテジタル磁気ヘッドの製造方法を提
供することにある。
The purpose of the present invention is to solve the problems inherent in the conventional technology, and to develop a tunnel erase type that is easy to assemble, suitable for mass production, has little variation in assembly accuracy, and can be made highly accurate. An object of the present invention is to provide a method for manufacturing a digital magnetic head.

以下、図面に基づき本発明について詳述する。Hereinafter, the present invention will be explained in detail based on the drawings.

第2図は本発明の一実施例を示す工程説明図である。ま
ず第2図Aに示すように、強磁性材(例えばフェライト
)からなるUバー10とIバー11とを非磁性ギャップ
12を介して接合一体化し、ボンド゛バーを作成する。
FIG. 2 is a process explanatory diagram showing an embodiment of the present invention. First, as shown in FIG. 2A, a U-bar 10 and an I-bar 11 made of a ferromagnetic material (for example, ferrite) are joined together via a nonmagnetic gap 12 to form a bond bar.

非磁性ギャップ12の形成相#1としては、チタン箔や
二酸化珪素又はガラス等のスパッタ膜等が用いられる。
As the forming phase #1 of the nonmagnetic gap 12, a sputtered film of titanium foil, silicon dioxide, glass, or the like is used.

このようなボンドパーを2個1組用意し、一方を読出し
/書込み用(以下RAWと略記する)ボンドパー13a
1他方をイレーズ用(以下Eと略記する)ボンドパーj
3bと称する。
A set of two such bondpers is prepared, one of which is used for reading/writing (hereinafter abbreviated as RAW) bondper 13a.
1. Bond par for erasing (hereinafter abbreviated as E) on the other side.
It is called 3b.

次に、同図Bに示すように、R/Wボンドパー+3a及
びEボンドパー+3bの各々に、R/ANボンドパー1
3aの方かEボンドパー+3bの2倍のピッチとなるよ
うそのエバー側からUバー側に至る複数本の溝を並設し
、該溝内に非磁性相14を埋設する。溝形成はダイシン
グ・マシンによって精度よく行なうことができる。溝形
状は例えば次の」:うにする。R/Wボンドバー側は、
凸条部の幅かR/W +−ラックの幅に一致し、溝幅が
Eトラックの幅の2倍十αに相当するようにする。Eボ
ンドバー側は、凸条部の幅がEトラック幅に一致し、溝
幅がR/W +−ラックの幅に一致するものと前記αに
相当するものとを交互に配置する。ここで・、αは、切
断加工代よりもやや広めの幅であればよい。しかし。
Next, as shown in Figure B, apply R/AN bond par 1 to each of R/W bond par +3a and E bond par +3b.
A plurality of grooves are arranged in parallel from the ever side to the U bar side so that the pitch is twice that of E bond par + 3b, and the nonmagnetic phase 14 is buried in the grooves. Groove formation can be performed with high precision using a dicing machine. For example, the groove shape is as follows. On the R/W bond bar side,
The width of the protruding strip should match the width of the R/W + - rack, and the groove width should be equal to twice the width of the E track. On the E bond bar side, protrusions whose widths match the E track width, and grooves whose groove widths match the R/W+-rack width and those corresponding to the above α are arranged alternately. Here, α may be a width slightly wider than the cutting allowance. but.

αをR/W+−ラック幅に一致させれば、Eボンドパー
+3bの溝加工は第2図に示されているように、全て、
同一幅で溝加工ができるので、そのような例について説
明しであるが、溝幅を交FJ:に変えてもよい。いずれ
の場合においても、R/Wボンドバー+3aの溝ピッチ
がEボンドパー+3bの溝ピッチの2倍となっているこ
とか肝要である。埋設する非磁性材14として゛は、例
えばチタン酸バリウムやチタン酸カルシウムやフォルス
テライトのようなセラミックあるいはガラスなどを用い
ることかで・きる。このようにして得られた2個のボン
ドパー13a、+3bは、双方のIバ一部分が互いに対
向する如く非磁性スペーサ15を介して接着一体化され
ろ(同図C参照)。その場合、R/Wボンドパー+3a
の磁性材部分がそれと同幅のEボンドパー13bの非磁
性材部分と衝合するように位;腎させる。なお、本実施
例では、Eボンドパー131)の非磁性4′A部分は全
て同幅としたから、この場合には、双方の■バ一部分の
非磁性材部分と磁性材部分が互いに対向する如く位置さ
せれば充分である。非磁性スペーサ15としては、例え
ば二酸化珪素やガラスのスパッタ膜、あるいは薄板ガラ
スやチタン箔なとで゛よい。
If α is made to match the R/W + - rack width, the groove machining of E bond par + 3b will be completely as shown in Fig. 2.
Since grooves can be machined with the same width, such an example will be described, but the groove width may be changed to cross FJ:. In either case, it is important that the groove pitch of the R/W bond bar +3a is twice the groove pitch of the E bond par +3b. As the non-magnetic material 14 to be buried, for example, ceramic such as barium titanate, calcium titanate, or forsterite, or glass can be used. The two bond pars 13a and +3b obtained in this manner are bonded and integrated via the non-magnetic spacer 15 so that the I-bar portions of both are opposed to each other (see C in the same figure). In that case, R/W bond par +3a
Position the magnetic material part of the E-bond par 13b so that it collides with the non-magnetic material part of the E-bond par 13b having the same width. In this example, all the non-magnetic 4'A parts of the E-bond par 131) were made to have the same width, so in this case, the non-magnetic material part and the magnetic material part of both parts of the It is sufficient to locate it. The non-magnetic spacer 15 may be, for example, a sputtered film of silicon dioxide or glass, a thin plate of glass, or a titanium foil.

次に、同図Cの仮想線で示すように、接着−体化さ」′
1だバーブロックに後部切込み加工を胞ず。(後部−1
とはメテイ′γ(磁気記録媒体)摺動面に対して反対側
の部分をいう。この実施例で゛ば、R/Wボンlバー側
は後面から前向へ向って切込」:15、Eボンドバー側
は後側面から中央面flEで゛切込JJれている(同(
てI〕参fit、i )。
Next, as shown by the imaginary line in Figure C, it is glued into a body.
1. Rear notch processing is performed on the bar block. (Rear-1
refers to the part on the opposite side to the sliding surface of the metal ′γ (magnetic recording medium). In this example, the R/W bond bar side is cut from the rear surface to the front. The E bond bar side is cut from the rear surface to the center plane flE.
teI] Reference fit, i).

後部切込め形成後、R/Wボンド゛バー13aの升磁1
′1体埋i1ジ位置中央にて細断ずろど、同図ICに示
さ1.11ているJ′うに、R/WコアとEコアとかブ
リフオーノ\されに一コア20を得ることかできろ。7
1号21で示されているのかR/Wギヤツブ、句号22
で示されているのがEギャップ。
After forming the rear notch, square 1 of the R/W bond bar 13a
If you shred 1 body in the center of the 1st position, you can get 20 cores by using the R/W core and E core as shown in 1.11 in the same figure IC. . 7
Is it indicated by No. 1 21? R/W gear knob, No. 22
What is shown is the E gap.

である。R/Wコア及びEコアにはそれぞれ専用のコイ
ルか巻装され、特にR/Wコアはバンクバーで閉磁路と
されるが、それらは従来公知の磁気ヘッドの場合と同様
なので図示するのは省略する。
It is. The R/W core and the E core are each wound with a dedicated coil, and the R/W core in particular is made into a closed magnetic circuit with a bank bar, but these are the same as in the case of conventionally known magnetic heads, so they are not shown in the diagram. Omitted.

メディア摺動面側からみた図を第3図に示す。Figure 3 shows a view from the media sliding surface side.

本発明にJ5ね、げ、R/W +−ラックとEトラック
の相対的位置関係を任意に選べる利点がある。
The present invention has the advantage that the relative positional relationship between the J5 rack and the E track can be arbitrarily selected.

その様子を第4図に示す。すなわち、R/Wボンド7<
−の磁性材部分に対向する部分のEボンドバーの溝幅を
R/W)ラック幅より狭くずろと(たたし、R/Wボン
ドバーの溝ピッチは、Eボンドバーの尚ピッチの2倍に
ずろ)、R/Wのトラック幅をEギャップの内間隔より
狭くすることができる。このようなことは本発明によっ
てはしめて達成されることである。従来のトンネルイレ
ーズで・は両側のイレーズトラックがらのフリンジ効果
でl・リミングすることしかできなかったか、上記実施
例によればより積極的にイレーズ内間隔によって書込み
トラック幅を決定することができ、最適設層が可能とな
る。つまり、メディアの膨張係数等を考慮してオフトラ
ック時のマージンをより大きくすることかできろ。
The situation is shown in Figure 4. That is, R/W bond 7<
- The groove width of the E-bond bar in the part facing the magnetic material part of the R/W) should be narrower than the rack width (the groove pitch of the R/W bond bar should be twice the pitch of the E-bond bar). ), the R/W track width can be made narrower than the inner interval of the E gap. This is achieved by the present invention. In the conventional tunnel erase, it was only possible to perform rimming due to the fringe effect of the erase tracks on both sides, but according to the above embodiment, the write track width can be more actively determined by the interval within the erase. Optimal layering becomes possible. In other words, it would be possible to increase the off-track margin by taking into consideration the expansion coefficient of the media, etc.

本発明の更に他の実施例を第5図A、Hに示す。それら
は第2図B、EK対応した図として示されている。この
実施例は、ボンドバーに1バー側からUバー側に至る複
数本の溝とともに、それと直角方向にメチイア摺動両側
に溝入れ加圧を行ない、該溝内に非磁性相14を埋設す
るコニうにし/ζもので゛ある。R/Wホ゛ンドハー及
びEボンドバーの双方にこのような加工を行う。
Still another embodiment of the invention is shown in FIGS. 5A and 5H. They are shown as corresponding figures in FIG. 2B, EK. In this embodiment, the bond bar has a plurality of grooves extending from the 1-bar side to the U-bar side, and grooves are made and pressurized on both sides of the metal slide in the direction perpendicular to the grooves, and a non-magnetic phase 14 is buried in the grooves. Sea urchin/ζ is a sea urchin. This processing is performed on both the R/W hardware and the E bond bar.

以下、第2図と同様の手順をとることによって第5図B
に示すようなプリフォームされたコアを得ろことができ
る。得られたコアは従来のものと略同様の構造となり、
リーケージフラツクスが問題となるような場合には、こ
の実施例のものの方が好ましいといえる。
Below, by following the same procedure as in Figure 2, Figure 5B is created.
It is possible to obtain a preformed core as shown in FIG. The obtained core has almost the same structure as the conventional one,
In cases where leakage flux is a problem, this embodiment is preferable.

本発明は上記のように構成したトンネルイレーズ形のデ
ジタル磁気ヘッドの製造方法であるから、組立て容易で
量産化に適し、R/WとEとがプリフォームされた状態
で得られるだめ機械的強度も大−C゛あり、その後の取
扱いは容易であるし、R/Wトラック幅はR/Wグイシ
ングピツチで、まだ記録幅は−rし〜ズダイシング溝幅
で更にイレーズトラック幅はEダイシングビッヂで・そ
れぞれ決まるから、切断寸法によらずに精度よく、また
ラップポリッシュを行わずに寸法のバラツギの少ないも
のを得ろことができ、ロス1ダウンを図ることかできる
なと、実用的効果は人で゛ある。
Since the present invention is a method for manufacturing a tunnel erase type digital magnetic head configured as described above, it is easy to assemble, suitable for mass production, and has excellent mechanical strength that can be obtained when the R/W and E are preformed. The R/W track width is R/W dicing pitch, the recording width is still -r, the dicing groove width is large, and the erase track width is E dicing pitch. Since each is determined individually, it is possible to obtain products with high precision regardless of cutting dimensions, and with less variation in dimensions without lap polishing, and it is possible to reduce loss by 1. The practical effect is that It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、l’3.Cはそitぞ、!−+従来技術の説
明図、第2図は本発明方法の一実施例を示す工程説明図
、第3図はそ」1によって製作されたヘッドの平面図、
第4図は他の実施例により得られろヘッドの平面図、第
5図A、Bは更に他の実施例の部分工程説明図である。 10・・Uバー、11・・Iバー、12・・非磁性ギャ
ップ、+3a・・R/Wボンドバー、+3b・・Eボン
ドバー、14・・非磁性材、15・非磁性スペーサ、2
0・・コア、21・・R/wギャップ、2?・ Eギャ
ップ。 特許出願人  富士電気化学株式会社 代  理  人   尾   股   行   離間 
      茂   見        種間    
  荒   木   友之 助耳3図 フ5 第4図 2’1   22 図
Figure 1A, l'3. C is it! -+Explanatory diagram of the prior art; Figure 2 is a process diagram showing an embodiment of the method of the present invention; Figure 3 is a plan view of the head manufactured by method 1;
FIG. 4 is a plan view of a head obtained by another embodiment, and FIGS. 5A and 5B are partial process explanatory diagrams of still another embodiment. 10... U bar, 11... I bar, 12... Non-magnetic gap, +3a... R/W bond bar, +3b... E bond bar, 14... Non-magnetic material, 15- Non-magnetic spacer, 2
0...core, 21...R/w gap, 2?・E gap. Patent Applicant: Fuji Electrochemical Co., Ltd.
Tanema Shigemi
Tomoyuki Araki Assistant ear 3 figure F5 Figure 4 2'1 22 figure

Claims (1)

【特許請求の範囲】[Claims] 1、 強磁性材からなるUバーとエバーとを非磁性ギャ
ップを介して接合してなる2個のボンドバーのそれぞれ
に、一方が他方の2倍のピッチとなるようにエバー側か
らUバー側へ至る複数本の溝を並設し、該谷溝内に非磁
性材を埋設し、前記2個のボンドバーな両■バ一部の非
磁性材部分と磁性材部分とが略対向する如き位置で非磁
性スペーサを介して接着一体化した後、後部切込み加工
を施し、両方のボンドバ一部分の非磁性体埋設位置にて
細断し、読出し/書込み用とイレーズ用とがプリフォー
ムされたコアを得ることを特徴とするトンネルイレーズ
形デジタル磁気ヘッドの製造方法。
1. For each of the two bond bars, which are made by bonding a U-bar made of ferromagnetic material and an Ever, through a non-magnetic gap, from the Ever side to the U-bar side so that one has twice the pitch of the other. A plurality of grooves are arranged in parallel, and a non-magnetic material is buried in the valley grooves, and the non-magnetic material part and the magnetic material part of a part of the two bond bars are substantially opposed to each other. After bonding and integrating via a non-magnetic spacer, the rear part is cut and shredded at the position where the non-magnetic material is embedded in a portion of both bond bars to obtain a preformed core for reading/writing and erasing. A method for manufacturing a tunnel erase digital magnetic head, characterized in that:
JP11755281A 1981-07-27 1981-07-27 Production of digital magnetic head Granted JPS5819719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11755281A JPS5819719A (en) 1981-07-27 1981-07-27 Production of digital magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11755281A JPS5819719A (en) 1981-07-27 1981-07-27 Production of digital magnetic head

Publications (2)

Publication Number Publication Date
JPS5819719A true JPS5819719A (en) 1983-02-04
JPS634244B2 JPS634244B2 (en) 1988-01-28

Family

ID=14714629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11755281A Granted JPS5819719A (en) 1981-07-27 1981-07-27 Production of digital magnetic head

Country Status (1)

Country Link
JP (1) JPS5819719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230609A (en) * 1985-04-05 1986-10-14 Matsushita Electric Ind Co Ltd Production of magnetic head
US4768120A (en) * 1986-09-08 1988-08-30 Alps Electric Co., Ltd. Complex magnetic head having non-magnetic center core
JPS63316307A (en) * 1988-05-18 1988-12-23 Ngk Insulators Ltd Core for composite magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147310A (en) * 1975-06-12 1976-12-17 Matsushita Electric Ind Co Ltd Production method of magnetic head
JPS5651018A (en) * 1979-09-28 1981-05-08 Toshiba Corp Composite magnetic head
JPS5654624A (en) * 1979-10-12 1981-05-14 Toshiba Corp Compound magnetic head and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147310A (en) * 1975-06-12 1976-12-17 Matsushita Electric Ind Co Ltd Production method of magnetic head
JPS5651018A (en) * 1979-09-28 1981-05-08 Toshiba Corp Composite magnetic head
JPS5654624A (en) * 1979-10-12 1981-05-14 Toshiba Corp Compound magnetic head and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230609A (en) * 1985-04-05 1986-10-14 Matsushita Electric Ind Co Ltd Production of magnetic head
US4768120A (en) * 1986-09-08 1988-08-30 Alps Electric Co., Ltd. Complex magnetic head having non-magnetic center core
JPS63316307A (en) * 1988-05-18 1988-12-23 Ngk Insulators Ltd Core for composite magnetic head
JPH0311002B2 (en) * 1988-05-18 1991-02-15 Nippon Gaishi Kk

Also Published As

Publication number Publication date
JPS634244B2 (en) 1988-01-28

Similar Documents

Publication Publication Date Title
JPH03504295A (en) 2-mode multi-track magnetic head
JPS5819719A (en) Production of digital magnetic head
US5548459A (en) Floating magnetic head
JPS634243B2 (en)
JPH04143911A (en) Magnetic head
JPS58179930A (en) Production of digital magnetic head
JPS6220113A (en) Composite type magnetic head and its manufacture
JPS59140616A (en) Magnetic head
JPH02172006A (en) Magnetic head
KR940004485B1 (en) Magnetic head and manufacturing method thereof
JPS62229508A (en) Magnetic head and its manufacture
JPS62226406A (en) Magnetic head
JPH0366009A (en) Production of magnetic head
JPS62219213A (en) Composite magnetic head
JPH0469807A (en) Magnetic head
JPS6045909A (en) Magnetic head
JPS62291718A (en) Manufacture of magnetic head
JPS61289513A (en) Magnetic head
JPS6222212A (en) Composite magnetic head and its manufacture
JPS63161510A (en) Composite magnetic head
JPH03119507A (en) Magnetic head
JPS6192411A (en) Manufacture of magnetic head
JPH01112510A (en) Magnetic head for f.d.d.
JPS6342327B2 (en)
JPS59135625A (en) Production of magnetic head