JPS58196924A - Non-conductive material electrolytic discharge machining method - Google Patents

Non-conductive material electrolytic discharge machining method

Info

Publication number
JPS58196924A
JPS58196924A JP7598682A JP7598682A JPS58196924A JP S58196924 A JPS58196924 A JP S58196924A JP 7598682 A JP7598682 A JP 7598682A JP 7598682 A JP7598682 A JP 7598682A JP S58196924 A JPS58196924 A JP S58196924A
Authority
JP
Japan
Prior art keywords
conductive
discharge
disc
conductive material
griding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7598682A
Other languages
Japanese (ja)
Inventor
Akio Kuromatsu
黒松 彰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO JIKI KENKYUSHO KK
Original Assignee
OYO JIKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO JIKI KENKYUSHO KK filed Critical OYO JIKI KENKYUSHO KK
Priority to JP7598682A priority Critical patent/JPS58196924A/en
Priority to GB08217168A priority patent/GB2106541B/en
Priority to DE19823223296 priority patent/DE3223296A1/en
Priority to US06/390,851 priority patent/US4448656A/en
Priority to FR8210993A priority patent/FR2508365B1/en
Publication of JPS58196924A publication Critical patent/JPS58196924A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/002Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/02Electrical discharge machining combined with electrochemical machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable griding and cutting with high accuracy in a short time by forming discharge bands and polishing bands on the peripheral surface of a disc in such a manner that an electric griding and a mechanical griding are laternately repeated to a non-conductive material to be ground. CONSTITUTION:In an electrolytic discharge machining method using a grinder having a conductive portion, electrodes of a voltage supply device E are connected to a disc 1 and a non-conductive material M to be ground. The disc 1 is rotated at high speed and electrolyte is supplied, so that a DC current of a fixed voltage is applied between the disc 1 and the material M. A solution of 1 to 2% of electrolyte NaNO3, NaCl, KNO3 or the like is used. Discharge bands 11 and polishing bands 12 are alternately brought into contact with the non- conductive material M with a short-time time lag by high-speed rotation of the disc 1 to generate pulses, so that electrolytic discharge is advanced by dielectric action. Thus, griding and cutting can be performed with high accuracy in a short time.

Description

【発明の詳細な説明】 解放電加工方法に関するものである,。[Detailed description of the invention] It is related to a release electric machining method.

超硬合金等のIilPA材の研削や切断加工方法として
最近では電気的エネルギーを使用する放電加工が行なわ
れている。
Recently, electric discharge machining using electrical energy has been used as a method for grinding and cutting IilPA materials such as cemented carbide.

しかし、放電加工は通電性を前提とした加工方法である
ため、セラミック、ガラス、石英、水晶、サファイヤ等
の非導電性の離削材を加工する場合には対応で色ない。
However, since electric discharge machining is a machining method that assumes electrical conductivity, it is not suitable for machining non-conductive cutting materials such as ceramics, glass, quartz, crystal, and sapphire.

不発明は、以上のような点を改善するためになされ友も
ので、非導電性の硬貿材でも、高I#度でかつ短時間で
研削,切断加工の日工症な電解放電加工方法t″提供る
ことを目的とする。
The invention was made to improve the above-mentioned points, and it is a method of electrolytic discharge machining that can grind and cut non-conductive hard materials at a high I# degree and in a short time. t''.

次に実施例について説明する。Next, an example will be described.

く1ン  研削円盤 研削内!1(1)(以千円盤という)は周端に4電部分
で構成する放電帯(11)と非導電部分で構成゛Lる研
皐帝(12)を交互に形成する円盤である。
Inside the grinding disk! 1 (1) (hereinafter referred to as a 1,000-disk disk) is a disk that alternately forms discharge bands (11) consisting of four electrically conductive portions and kenkotei (12) consisting of non-conductive portions at the circumferential edge.

以下本発明に使用する円11 (1)の一例について説
明する。
An example of circle 11 (1) used in the present invention will be described below.

すなわち円盤(1)はグリーンカーlランダム、ホワイ
トアランダム、ピンクアランダム,/リカダイヤモンド
等の粒子を、過当なノ9インターを用いて焼き固めた市
販品である。
That is, the disk (1) is a commercially available product made by baking and hardening particles of green curl random, white curl random, pink curl diamond, etc. using an excessive 9-inter.

円盤(1)を#4成する粒子は絶縁牲と耐摩耗性に優れ
たものであれば、−ヒ配以外の材料を使用することもo
J能である。
As long as the particles forming #4 of the disk (1) have excellent insulation and wear resistance, materials other than -hysterite may be used.
It is J-Noh.

円盤(1)の中心部には、軸孔(2)を開設し、その内
周面には通電筒(3)を設け、この通電筒(3)と円盤
(1)の側面中心部で接する、ド−ナッツ状の集電板(
4)を形成する。
A shaft hole (2) is formed in the center of the disc (1), and a current-carrying cylinder (3) is provided on the inner peripheral surface of the shaft hole, and the current-carrying cylinder (3) contacts at the center of the side surface of the disc (1). , donut-shaped current collector plate (
4) Form.

通電筒(3)と集電板(4)は導電性に優れた公知の金
属等で構成する。
The current carrying tube (3) and the current collecting plate (4) are made of a known metal or the like with excellent conductivity.

この円盤(1)の端曲面には、横断方向に端鍔を刻設し
、側面には、この淋と、集電板(4)−\連絡する側面
溝を、等間隔、または不等間隔に刻設する。
The end curved surface of this disk (1) is carved with an end flange in the transverse direction, and the side surface is provided with side grooves that communicate with the current collecting plate (4) at equal or unequal intervals. be engraved on.

との両溝の内部は、尋電性′fr有する嫁、銅、ニッケ
ルの合金等の材料で埋設し、放電帯(11)と、放電帯
(11)と集電板(4)を連絡する遡1jL路(13)
を形成する。本体(1)の周面で、導電帯(11)を形
成しない部分は、そのまま研jll帝(1z)を形成す
ることになる。
The insides of both grooves are filled with a material such as an alloy of copper and nickel that has low electrical properties, and connect the discharge band (11) and the discharge band (11) and the current collector plate (4). Retrospective 1jL road (13)
form. The portion of the circumferential surface of the main body (1) that does not form the conductive band (11) will form the conductive band (1z) as it is.

その結果、周端に形成された各放電帯(11)rゴ通電
路(13)を介して集電板(3)と電気的に接続するわ
けである。
As a result, each discharge band (11) r formed at the peripheral edge is electrically connected to the current collector plate (3) via the current conducting path (13).

〈2〉  印加電流 本発明の研削方法VこはIk流電流を使用すえ・、。<2> Applied current The grinding method of the present invention uses an Ik current.

すなわち円盤(1)と被研削物(M)へはそわぞれ電極
を接続し両者(1)(M>間に一定′離圧(1)直流電
ftを印加できるよう構成する。
That is, electrodes are connected to the disk (1) and the object to be ground (M), respectively, so that a constant separation pressure (1) (1) and DC current ft can be applied between the two (1) (M>).

ところで被研削物(M)が非導電性の素材の場合には通
電が行なわれないため放′vLは発生しないはずである
By the way, if the object to be ground (M) is made of a non-conductive material, no electricity is applied, so no discharge 'vL should occur.

しかし前記構造の円盤(1)に電極を接続した状態で高
速で回転すると放電部分(放電帯)と非放電部分(研摩
帯)とが交互に短時間差で被ψr制m (M)に接触す
ることになる。
However, when the disk (1) with the above structure is rotated at high speed with electrodes connected, the discharge part (discharge band) and the non-discharge part (polished zone) alternately contact the ψr-controlled m (M) with a short time difference. It turns out.

その結釆、被研削物(M)にrユ不連続の・ゼルス波が
印加されることになり、非導電性の被研削@ (MJ 
Wこ一屯作用が生じる。
As a result, a discontinuous Zers wave is applied to the workpiece to be ground (M), and the non-conductive workpiece to be ground (MJ
W-force action occurs.

そのため被研削物(M)が非導電性の素材でbつでも放
電がi3J能となる。
Therefore, even if the object to be ground (M) is made of a non-conductive material and there are b, the discharge can be performed with i3J capability.

次に加工方法について説明する。Next, the processing method will be explained.

(1,〉  直流電流の印加 電圧惧給装fit (E)から円盤(1)と研削加工フ
べき非導電性の被研削物(M)へ電極を接続する。
(1,> Connect the electrode from the DC current applied voltage supply device (E) to the disc (1) and the non-conductive workpiece (M) to be ground.

次に円盤(1)を高速で回転させ電解pfLを供給【7
、両者(1)(M)間に一定電圧の直流電流を印加する
Next, rotate the disk (1) at high speed to supply electrolytic pfL [7
, a constant voltage DC current is applied between both (1) and (M).

電解液としては、 NaNO3、Na1l 、 KNO
3JI)の1〜2%溶液を使用することができる。
As electrolytes, NaNO3, Na1l, KNO
3JI) can be used.

〈2〉  電気的研削 前述のように非導電性の被研削物(N1)には円盤(1
)f高速で回転することにより放電@ (11)と研摩
帯(12)とが短時間の時間差で交互に髪mlしてパル
スが発生し酵電作用によって電解放電が進行する。
<2> Electrical grinding As mentioned above, the non-conductive object to be ground (N1) has a disk (1
) By rotating at high speed, the electric discharge @ (11) and the polishing band (12) alternately generate hair ml with a short time difference, generating pulses, and electrolytic discharge progresses due to electrolytic action.

被研削物(M)は電解放電作用によって浴融される。The object to be ground (M) is bath melted by electrolytic discharge action.

ノゼルス間隔を変化することによって被研81」物(M
)の電解に最適な印加電流電圧の最大値を求めることが
できる。
By changing the nose spacing, the object to be polished (M
) can determine the maximum value of applied current and voltage that is optimal for electrolysis.

すなわちパルスの決定には0円盤(1)の回転速度の変
化、■円盤(1)の放電帯(11)の幅、■放電帯と次
の牧寛帝との間隔、が影譬することになる。
In other words, the determination of the pulse is influenced by changes in the rotational speed of the 0 disc (1), ■ the width of the discharge band (11) of the disc (1), and ■ the distance between the discharge band and the next Maki Kantei. Become.

実施例として次のような数値をあげることができた。As an example, we were able to give the following numerical values.

電圧   5〜100■ を流  01〜IOA ノゼルス液50〜50110)IZ 〈3〉  機械的研削 放電帯(11)による被研削物(M)の表−1のわす力
・な溶解が進行した後、次11にの俗解部分ヒを非導電
性の研jII帝(12)が通過する。
Flow voltage 5~100■ 01~IOA Nozers liquid 50~50110) IZ <3> After the mechanical grinding discharge belt (11) has progressed to melt the workpiece (M) according to the force shown in Table 1, Next, the non-conductive KenjII Emperor (12) passes through the commonly understood part of 11.

このときは放電は行なわれず研摩帯(12)がわずかに
1@解した部分の表1釦を機械的に剥離除去する。
At this time, no discharge is performed, and the abrasive band (12) mechanically peels off and removes the slightly exposed portion of the Table 1 button.

以Eのように円盤(1)の周面に形成された放電帯(1
1)と研摩帯(12)が非導電性の被研削物へりに電気
的研削と機械的研1’lljを交1Vこ繰り返【7てf
Iなうため極めて効率の良い−f削が口I能となる。。
As shown in E, the discharge band (1) formed on the circumferential surface of the disk (1)
1) and the abrasive band (12) alternate electrical grinding and mechanical grinding 1'llj to the edge of the non-conductive workpiece by 1V [7 and f].
Because of this, extremely efficient -f cutting becomes a practical function. .

<42  他の実施例 以上は非導電性の砥石に部分的に放電帯を形成L= ′
fc砥石を用いる場合について説明したが、導電性の砥
石に部分的に非導電性の研摩帯を形成した砥石を用い得
ることも勿論であるすなわち周面ヒに研摩帯と放電帝を
交互に形成したものであれば使用可能である。
<42 In other examples and above, a discharge band is partially formed on a non-conductive grindstone L='
Although the case where an FC grinding wheel is used has been explained, it is of course possible to use a grinding wheel in which a conductive grinding wheel is partially formed with a non-conductive grinding zone. It can be used if it is.

また以上は研削用の円盤について説明したが。Also, the above explanation was about the grinding disk.

円盤(1)を1−以下の薄さに形成すれば、同様の作用
によって非導電材の切断用として使用が可能となる。
If the disk (1) is formed to have a thickness of 1 or less, it can be used for cutting non-conductive materials due to the same effect.

本発明は以上説明したようになるから次のような効果を
期待することができる。
Since the present invention is as explained above, the following effects can be expected.

〈イ〉 従来の電解研削技術では不1’[とされていた
非導電性の素材に対して、周面に導電部分と非導電部分
を交互に配置してなる円IiEを高速で回転させ、この
円盤と素材間Kri流電訛を印加することによりノゼル
スを発生させS電作用VCより放電がaJ能となる。
<B> For a non-conductive material that was considered to be non-conductive with conventional electrolytic grinding technology, a circle IiE consisting of alternating conductive parts and non-conductive parts on the circumference is rotated at high speed. By applying a Kri current between this disk and the material, a nozerus is generated and the discharge becomes aJ function due to the S electric current VC.

従って非導電体に対して放電時の電気的研削や切断かり
能となる。
Therefore, it becomes possible to electrically grind or cut a non-conductive material during discharge.

〈口〉  また電気的研削と交互に円盤の非導電部分に
よる機械的研削が^速で行なわれるため内研削の効果が
相乗的に発生し、研削、切断効率が向上する。
〈口〉 Also, since the electrical grinding and the mechanical grinding using the non-conductive portion of the disc are performed at high speed, the effect of internal grinding occurs synergistically, improving the grinding and cutting efficiency.

<)・〉  仕トげ寸法、表面精1のきひし、い場合で
も電解砥石の場合のように次の工程で機械的研削を別に
施す必要がない。
<)・〉 Even if the finish dimensions and surface precision are not as sharp as 1, there is no need to separately perform mechanical grinding in the next process as in the case of an electrolytic grindstone.

〈ニン 仕ヒがり而は機械的研削e(よるものよりも清
ら力・なrkJを得ることができる。
It is possible to obtain a purer force and more rkJ than mechanical grinding.

く・19  本発明に使用する愼わrユ、匠米の電解研
削#+4は伯のように、多孔性で杉る必要はなく、巾威
の機砿研剛用憾石と生く同買のものが使用Cきるので、
giuでカフが生じ離〈、薄肉成ルを容易にすることが
できる。
19 The electrolytic grinding #+4 of Takumai used in the present invention does not need to be made porous like Haku, and can be used in the same way as the grinding stone used by Kakumai. Since you can use C,
With GIU, a cuff is formed and released, making it easier to form a thin wall.

41囲の量率な続開 図CJ4−発例の加工方法め統明図。41 volume rate continuation Figure CJ4 - A schematic diagram of the processing method of the example.

1:円盤、11;放電帝、12.研*帝、特許出願人南
限会社 Lta用磁気研兇t’tr代 理 人 升埋土
 山 目 期 生 手続補正誉 昭和57年7月12日 特IR庁長官若杉和夫殿 1、事件の表示 特願昭57−75986方 2発明の名称 非導電材の電解放電加工方法 3神止をする者 事件との関係  出願人 住 所 神奈川県横浜市−見区駒岡町602名 称 有
限会社 応用磁気研死所 代表者  黒 松 彰 雄 41(埋入 住 所 東京S港区新橋2丁目12査17号竹本ビル6
02 電話501−9385氏 名 (8241) f
P理土 山 [」 朔 化5輛止結もの日付  自  
発。
1: Disk, 11; Discharge Tei, 12. Ken*Tei, Patent Applicant Southern Limited Company Lta Magnetic Research t'tr Agent, Masu Filled Earth, Yamame period, Raw Procedures Amendment Honorary Statement, July 12, 1980, Mr. Kazuo Wakasugi, Director General of the Special IR Agency, 1, Indication Special of the Case Application No. 57-75986 (2) Name of the invention Electrolytic discharge machining method for non-conductive materials (3) Relationship to the case of a person who performs a divine restraint Applicant Address 602 Komaoka-cho, Mi-ku, Yokohama City, Kanagawa Prefecture Name: Applied Magnetic Research Co., Ltd. Representative: Akio Kuromatsu 41 (Address: Takemoto Building 6, No. 17, Shinbashi 2-12, Minato-ku, Tokyo)
02 Phone 501-9385 Name (8241) f
P Ridoyama [”Saku 5 car stop date from]
From.

b嬌正の対象   明細書 7袖正の同各 <1>  特許請求の範囲の記載を下記のように補正す
る。
b. Object of correction The statement of the scope of claims is amended as follows.

「 砥石の端面に導電性の放電帯と、非導電性の研摩帯
とを交互に有する円#1を使用し。
``Circle #1 is used which has alternating conductive discharge bands and non-conductive polishing bands on the end face of the grinding wheel.

その砥石の導電性放電帯と。The conductive discharge band of the grinding wheel.

非導電性素材との間に、 直流電圧を印加し。between the non-conductive material, Apply DC voltage.

円盤にH転を与えて行なうこと1r%像とする。What is done by giving an H rotation to the disk is a 1r% image.

非導電材の電解放電加工方法」 〈2〉  第7jj第8行目の記at下記のように補止
する。
"Electrolytic discharge machining method for non-conductive materials"<2> The statement in the 8th line of 7jj is supplemented as follows.

「がロエ能となる。“becomes Roe Noh.

次になせ゛非導電性物質に通電作用か生じるのかを検討
してみると以下のような口」飽性が考えられる。但し正
確なりIA論解明まだ先のことであり、以下は現実に非
導電性物質の加工が出来るという績象から推棚した推論
である3゜くイ〉 被加工物は非導電性物質であるとい
っても10〇一完全な結晶ではなく不#II物が混在し
、でいる。
Next, if we consider whether an electrifying effect occurs in a non-conductive substance, we can think of saturation as shown below. However, the precise IA theory is still a long way from being clarified, and the following is an inference based on the fact that it is actually possible to process non-conductive materials. 3. The workpiece is a non-conductive material. However, it is not a 1001 perfect crystal, but contains a mixture of impurities.

このわずかの不純物のうち導電性の物質電通じて通電し
、被加工物の表向に導電作用が生じるi’I能性が考え
られる。
Among these small amounts of impurities, it is thought that there is an i'I ability that conducts electricity through the conductive substance and causes a conductive effect on the surface of the workpiece.

く口〉 被加工物の表面の微空隙に電解液が浸透し1表
面に導電作用が生じるg]油性が考えられる、。
〉 The electrolyte penetrates into the micro-pores on the surface of the workpiece and conductive action occurs on the surface. g] Possibly oily.

くハ〉 砥石の放電帯が不連続状態で被加工物と結果放
電が生じる^[性も考えられる。
Kuha〉 It is also possible that the discharge zone of the grinding wheel is discontinuous and as a result discharge occurs with the workpiece.

現実に被加工物に、eルスによる共振周波数倉与えるこ
とによって磁石との間に火花が発生12ている。
In reality, sparks are generated 12 between the workpiece and the magnet by applying a resonance frequency to the workpiece due to e-Rus.

\ニン 磁石と被尻工物の表向と高速で接触することに
よって表面龜度か多少上昇する。
\Nin When the magnet comes into contact with the surface of the workpiece at high speed, the surface roughness increases somewhat.

そのm度上昇により恨加lL物の一部の電子か動きやす
い状物となりぞCが4電体に変化しで導電作用か生じる
口」舵柱も考えられる。
It is also conceivable that due to the m degree increase, some of the electrons in the object become movable, and C changes into a four-electric substance, causing a conductive effect.

・・17 磁石の杷鰍部か間欠的に錦電体である被加工
物に接触することにより内8…[に蓄電されそれが放電
するのではないかとも考えられる。
...17 It is thought that when the loquat part of the magnet intermittently comes into contact with the workpiece, which is a brocade electric body, electricity is stored and discharged.

Claims (1)

【特許請求の範囲】 砥石の端面に非導電性の放電帯と、導電性の研傘帝とを
交互に有する円盤を使用し、 その砥石の導電性放電帯と、 非導電性素材との間に、 l1lfIL電圧を印加し、 円盤に回転を与えて行なうことを%徴とする、非導電材
の電解研削加工方法
[Scope of Claims] A disc having alternating non-conductive discharge bands and conductive grooves on the end face of the grinding wheel is used, and between the conductive discharge band of the grinding wheel and a non-conductive material. A method for electrolytic grinding of non-conductive materials, which is characterized by applying l1lfIL voltage and rotating the disc.
JP7598682A 1981-06-24 1982-05-08 Non-conductive material electrolytic discharge machining method Pending JPS58196924A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7598682A JPS58196924A (en) 1982-05-08 1982-05-08 Non-conductive material electrolytic discharge machining method
GB08217168A GB2106541B (en) 1981-06-24 1982-06-14 Electrolytic and electric discharge machining of electrically non-conductive workpieces
DE19823223296 DE3223296A1 (en) 1981-06-24 1982-06-22 METHOD FOR ELECTROLYTIC OR ELECTRICAL DISCHARGE PROCESSING OF A NON-CONDUCTIVE WORKPIECE
US06/390,851 US4448656A (en) 1981-06-24 1982-06-22 Electrolytic/electric discharge machining of a non-conductive workpiece
FR8210993A FR2508365B1 (en) 1981-06-24 1982-06-23 METHOD FOR MACHINING A NON-CONDUCTIVE PART, BY ELECTROLYTIC / ELECTRIC DISCHARGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7598682A JPS58196924A (en) 1982-05-08 1982-05-08 Non-conductive material electrolytic discharge machining method

Publications (1)

Publication Number Publication Date
JPS58196924A true JPS58196924A (en) 1983-11-16

Family

ID=13592090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7598682A Pending JPS58196924A (en) 1981-06-24 1982-05-08 Non-conductive material electrolytic discharge machining method

Country Status (1)

Country Link
JP (1) JPS58196924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156619A (en) * 1983-01-28 1984-09-05 Oyo Jiki Kenkyusho:Kk Method of electric discharge/electrolytic grinding and cutting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926425A (en) * 1982-07-21 1984-02-10 三共株式会社 Method of detecting omission of insertion of appended document

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926425A (en) * 1982-07-21 1984-02-10 三共株式会社 Method of detecting omission of insertion of appended document

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156619A (en) * 1983-01-28 1984-09-05 Oyo Jiki Kenkyusho:Kk Method of electric discharge/electrolytic grinding and cutting

Similar Documents

Publication Publication Date Title
US5639363A (en) Apparatus and method for mirror surface grinding and grinding wheel therefore
US4849599A (en) Machining method employing cutting or grinding by conductive grindstone
JPH05131365A (en) Method and device for seting grinding wheel
JPS58196924A (en) Non-conductive material electrolytic discharge machining method
JP3295896B2 (en) Electrolytic dressing method using adjustable total grinding wheel
JP2838314B2 (en) Electrolytic interval dressing grinding method
TW544363B (en) Metal-less bond grindstone, electrolytic dressing grinding method and device using same
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JP3250931B2 (en) Grinding method and apparatus using magnetic field
JPS6228121A (en) Method and device for electrolytic discharge grinding
JPH07285071A (en) Electrolytic dressing grinding method and device
JPS58165926A (en) Electrolytic machining method
JPH06254754A (en) Mirror grinding device and method
JPS5959321A (en) Electrolytic discharge method
JPS59156619A (en) Method of electric discharge/electrolytic grinding and cutting
JPS5976721A (en) Electrolytic and electric discharge machining method
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JPS614665A (en) Cutting-off grinding method using current-carriable grinding wheel
JPS59152019A (en) Electrolytic, electric discharge and grind wheel machining
JPS5919636A (en) Surface grinder
JPH0373273A (en) Rotating grindstone
JPS5926425B2 (en) Electrolytic grinding method for non-conductive materials
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPS61197124A (en) Electro-chemical discharge machine and electro-chemical discharge machining method
SU1000207A1 (en) Method of diamond electrochemical grinding