JPS58196428A - Actual external force evaluation apparatus for rotating body - Google Patents

Actual external force evaluation apparatus for rotating body

Info

Publication number
JPS58196428A
JPS58196428A JP7829082A JP7829082A JPS58196428A JP S58196428 A JPS58196428 A JP S58196428A JP 7829082 A JP7829082 A JP 7829082A JP 7829082 A JP7829082 A JP 7829082A JP S58196428 A JPS58196428 A JP S58196428A
Authority
JP
Japan
Prior art keywords
vibration
rotating body
external force
excitation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7829082A
Other languages
Japanese (ja)
Inventor
Noriaki Hagiwara
憲明 萩原
Mitsuo Yoneyama
米山 光穂
Hiroshi Ishii
博 石井
Masuo Furudono
益夫 古殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7829082A priority Critical patent/JPS58196428A/en
Publication of JPS58196428A publication Critical patent/JPS58196428A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To quantitatively evaluate external force such as fluid force working on an object to be measured by measuring response to vibration when vibrating force is applied to the object such as wing in operation with a plurality of vibrators to determine a transmission function in the actual operation. CONSTITUTION:A vibrator 1 comprises a piezoelectric element vibrator 4 and an amplifier 5. The piezoelectric element vibrator 4 is mounted to locations corresponding to the bellies or nodes to match the vibration mode of a rotor 6 and excites the rotor 6. A vibration measuring apparatus 2 comprises a vibration measuring sensor 7 such as strain gauge and piezoelectric element and an amplifier 8. An analytic computation controller 3 comprises frequency analyzer (high- speed Fourier transform device) 10 for extracting frequency components of vibration response and a calculation controller 11 having a function of controlling and computing the frequency, amplitude and phase of a vibrating force. Based on the measured vibrating force and vibration response data, a transmission function Homega at each frequency and an external force F.omega are determined whereby the evaluation of the transmission function in the necessary frequency range and external force such as fluid force F. can be performed.

Description

【発明の詳細な説明】 本発明は実働運転時の外力測定に係り、特に軸流回転機
械の流体力評価に好適な実働外力測定評価装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to external force measurement during actual operation, and particularly to an actual external force measurement and evaluation device suitable for fluid force evaluation of an axial flow rotating machine.

従来の回転体加準法は、単一の圧電素子(ピエゾ素子と
も言う)を、回転体に貼υ付け、スリップリングなどを
介し、静止側から交流電圧を前記圧電素子に付加するこ
とで、回転体の加振を行なっていた。圧電素子は、回転
場に装着されるため、軽量小型が要求される。このため
、単一の圧電素子では、回転体に対応して十分な加振力
レベルを供給できなかったシ、同一回転体でも相対的に
剛性の低い低次振動モードしか十分な振動応答を発生さ
せることができなかった。さらに、軸流機械では、同一
段の翼列の各員が低次の振動モードで振動していても、
相互の振動位相に応じて流体力との達成効果が相異する
。特に、フラッタ−などの翼と流体力とが連成する自励
振動現象では、同一翼列の各翼位相差が自励振動現象発
生の重要な影響因子となる。このように、軸流機械の翼
振動特性解明には、従来の単一の圧電素子加振法では不
可能であった。
The conventional rotating body adjustment method involves attaching a single piezoelectric element (also called a piezo element) to a rotating body and applying an AC voltage to the piezoelectric element from the stationary side via a slip ring or the like. Excitation of a rotating body was performed. Since the piezoelectric element is attached to a rotating field, it is required to be lightweight and small. For this reason, a single piezoelectric element could not supply a sufficient level of excitation force to accommodate a rotating body, and even for the same rotating body, only low-order vibration modes with relatively low rigidity can generate sufficient vibration response. I couldn't let it go. Furthermore, in axial flow machines, even if each member of the blade row in the same stage is vibrating in a low-order vibration mode,
The effect achieved with the fluid force differs depending on the mutual vibration phase. In particular, in self-excited vibration phenomena such as flutter, in which a blade and fluid force are coupled, the phase difference between each blade in the same blade row becomes an important influencing factor for the occurrence of the self-excited vibration phenomenon. In this way, it has been impossible to elucidate the blade vibration characteristics of axial flow machines using the conventional single piezoelectric element excitation method.

本発明の目的は、回転体に装着した複数個の加振器によ
り、運転状態で加振力を翼などの被測定物に与え、その
振動応答を測定することで、実働運転時の伝達関数を求
めるとともに、被測定物に作用する流体力などの外力を
定量的に評価することができる回転体の実働外力評価装
置を提供するものである。
The purpose of the present invention is to apply excitation force to an object to be measured such as a blade during operation using a plurality of vibrators attached to a rotating body and measure the vibration response, thereby determining the transfer function during actual operation. An object of the present invention is to provide an actual external force evaluation device for a rotating body that can quantitatively evaluate an external force such as a fluid force acting on an object to be measured.

本発明の特徴とするところは、回転体に装着される複数
個のピエゾ素子加振器と、これらピエゾ素子加振器に対
応して加振位相または加振振幅制御機能をもつ増幅器と
、前記ピエゾ素子加振器によシ付与される振動を測定す
る振動測定子と、この振動測定子からの振動応答信号を
増幅する増幅器と、加振周波数成分に応じた振動応答周
波数成分を抽出する周波数分析装置と、各加振周波数に
応じて演算を実行する計算制御装置とから成るものであ
る。
The present invention is characterized by: a plurality of piezo element exciters mounted on a rotating body; an amplifier having an excitation phase or excitation amplitude control function corresponding to the piezo element exciters; A vibration measuring element that measures the vibration imparted by the piezo element exciter, an amplifier that amplifies the vibration response signal from this vibration measuring element, and a frequency that extracts the vibration response frequency component corresponding to the excitation frequency component. It consists of an analysis device and a calculation control device that performs calculations according to each excitation frequency.

以下、本発明の回転体の実働外力評価装置の一実施例を
説明する前にその測定原理について説明する。
Hereinafter, before explaining one embodiment of the actual external force evaluation device for a rotating body of the present invention, the measurement principle thereof will be explained.

測定原理とは、回転運転時の流体力などの外力F、(的
が作用している状態での伝達関数H(→と外力F、(→
を評価する測定データの処理に関するものでおる。測定
データ処理の原理を以下に説明する。まず、ピエゾ素子
加振器によシ、二進シの測定可能な加振力Fl(ハ)、
F2(ハ)を回転体に加えることで、それぞれに応じて
生じる測定可能な振動応答を01(→、σ2(→とする
。これらの振動応答には、外力F、による振動応答成分
σ、(ハ)も含まれたものとなっている。これらの諸デ
ータの間には、回転体の運転状態での振動特性を表わす
伝達関数H(→を介して次の関係式が成立している。
The measurement principle is an external force F such as fluid force during rotational operation, (transfer function H in the state where the target is acting) (→ and external force F, (→
This relates to the processing of measurement data for evaluating. The principle of measurement data processing will be explained below. First, a measurable binary excitation force Fl (c) is generated using a piezo element exciter.
By applying F2 (c) to the rotating body, the measurable vibration responses that occur accordingly are assumed to be 01 (→, σ2 (→). These vibration responses include vibration response components σ, ( C) is also included. Between these various data, the following relational expression is established via a transfer function H (→) that represents the vibration characteristics of the rotating body in its operating state.

σ、((−) = H(→・F、(→        
 ・・・(1)σ1(→=H(→・(F、(→+Ft(
→)    ・・・(2)σ2(→=H(m)・(F、
(o))+Fz(→)     −(3)そこで、(3
)−(2)の演算を行い、伝達関数H(→を求めると となり、(2)式に代入すれば、外力F、は次式のよう
に求めることができる。
σ, ((-) = H(→・F, (→
...(1) σ1(→=H(→・(F, (→+Ft(
→) ...(2)σ2(→=H(m)・(F,
(o))+Fz(→) −(3) Then, (3
)-(2) to obtain the transfer function H(→), and by substituting it into equation (2), the external force F can be obtained as shown in the following equation.

上述の手順を各加振周波数で行うことによシ、必要な周
波数領域の外力F、(→ならびに伝達関数H←)が求め
られる原理によるものである。
This is based on the principle that by performing the above-mentioned procedure at each excitation frequency, the external force F, (→ and transfer function H←) in the necessary frequency range can be obtained.

本発明の回転体の実働外力評価装置妊大別して加振装置
1と振動測定装置2ならびに分析演算制御装置3の三つ
から構成される。加振装置1としては、軸流機械の翼な
らびに回転機械に取付けるために、軽量小型の特性を持
つ圧電効果を利用したピエゾ素子加振器4と、各ピエゾ
素子加振器4に対応して設けた増幅器5から成シ、各増
幅器5は独立に加振振幅あるいは加振位相を変えること
ができる。また、複数個のピエゾ素子加振器4は回転体
6の振動モードの腹または節に対応した箇所に装着され
、同一加振周波数で加振位相あるいは加振振幅を適宜変
えて、必要な振動モードの形態となるように回転体6を
励振する。この加振方法によシ、回転体6の流れを乱す
ことなく、回転体6の必要な振動モードを励振できると
ともに、加えている加振力の検出が可能になる。
The actual external force evaluation device for a rotating body according to the present invention is broadly divided into three components: a vibration device 1, a vibration measurement device 2, and an analysis calculation control device 3. The excitation device 1 includes a piezo element exciter 4 that utilizes a piezoelectric effect that has the characteristics of being lightweight and compact, and a piezo element exciter 4 corresponding to each piezo element exciter 4, in order to be installed on the blades of axial flow machines and rotating machines. Each amplifier 5 can independently change the excitation amplitude or excitation phase. In addition, the plurality of piezo element vibrators 4 are installed at locations corresponding to the antinodes or nodes of the vibration mode of the rotating body 6, and the excitation phase or excitation amplitude is appropriately changed at the same excitation frequency to generate the necessary vibration. The rotating body 6 is excited so as to form a mode. This excitation method makes it possible to excite the necessary vibration mode of the rotor 6 without disturbing the flow of the rotor 6, and also makes it possible to detect the applied excitation force.

振動測定装置2は、歪ゲージやピエゾ素子などの振動測
定センサ7とこの振動測定センサ7からの振動応答信号
を増幅する増幅器8とからなる。
The vibration measurement device 2 includes a vibration measurement sensor 7 such as a strain gauge or a piezo element, and an amplifier 8 that amplifies a vibration response signal from the vibration measurement sensor 7.

また、加振装置1と振動測定装置2に共通なものとして
、回転側と静止側との情報を伝達する機器即ちスリップ
リング9が設けておる。
Further, as a common feature of the vibration excitation device 1 and the vibration measurement device 2, a device for transmitting information between the rotating side and the stationary side, that is, a slip ring 9 is provided.

分析演算制御装置3の基本構成は、加振周波数成分に応
じた振動応答周波数成分を抽出する周波数分析器(高速
フーリエ変換器)10と、各加振周波数に応じて式(1
)〜式(5)の演算を実行する計算制御装置11とから
なる。この計算制御装置11は第2図の手順に従って、
加振力の周波数、振幅。
The basic configuration of the analysis calculation control device 3 includes a frequency analyzer (fast Fourier transformer) 10 that extracts vibration response frequency components corresponding to excitation frequency components, and a frequency analyzer (fast Fourier transformer) 10 that extracts vibration response frequency components according to excitation frequency components, and
) to a calculation control device 11 that executes the calculation of equation (5). This calculation control device 11 follows the procedure shown in FIG.
Frequency and amplitude of excitation force.

位相を制御して、かつ上述の演算を行なう機能を持つも
のである。分析演算制御装置11の周辺機器として、振
動測定装置2の増幅器8の後にフィルタ12と、連続情
報信号を離散的情報信号に変換するA/D変換器13と
を持つものとする。
It has the function of controlling the phase and performing the above-mentioned calculations. As peripheral equipment for the analysis arithmetic and control device 11, a filter 12 is provided after the amplifier 8 of the vibration measuring device 2, and an A/D converter 13 for converting a continuous information signal into a discrete information signal.

以下、第2図のデータ処理手順に従って測定方法を説明
する。
The measurement method will be explained below according to the data processing procedure shown in FIG.

まず、回転体6の測定しようとする振動モードに応じて
ピエゾ素子加振器4を回転体6の該当箇所に装着する。
First, the piezo element vibrator 4 is attached to a corresponding location on the rotating body 6 according to the vibration mode of the rotating body 6 to be measured.

例えば、第3図に示す遠心羽根車のような回転体の節直
径2本(一点鎖線)の振動モードを測定したい場合には
、周方向に90°毎ずらしてピエゾ素子加振器4を装着
し、加振力は相対加振振幅レベルを同じくして、加振位
相角を0°、180°と交互にすればよい。
For example, if you want to measure the vibration mode of two node diameters (dotted chain lines) of a rotating body such as the centrifugal impeller shown in Fig. 3, the piezo element exciter 4 is installed at intervals of 90° in the circumferential direction. However, the excitation force may be set at the same relative excitation amplitude level, and the excitation phase angle may be alternated between 0° and 180°.

また、軸流機械の翼の一次と二次曲げ振動モードを測定
したい場合には、第4図に示すように、振動モードを考
慮してピエゾ素子4を装着し、−次モードでは一次曲げ
変位モードは第4図(a)に示すように、−次曲げ応力
モードは第4図(b)に示すようになるため、第4図(
C)で示すように同相の加振力を与え、二次モードに対
しては二次曲げ変位モードは第4図(d)に示すように
、二次曲げ応力モードは第4図(e)に示すようになる
ため、第4図(f)で示すように逆相となる加振力を加
えればよい。
In addition, if you want to measure the primary and secondary bending vibration modes of the blade of an axial flow machine, as shown in Figure 4, a piezo element 4 is installed in consideration of the vibration mode, and in the -order mode, the primary bending displacement is measured. The mode is as shown in Figure 4(a), and the -order bending stress mode is as shown in Figure 4(b).
The in-phase excitation force is applied as shown in C), and for the secondary mode, the secondary bending displacement mode is shown in Figure 4 (d), and the secondary bending stress mode is shown in Figure 4 (e). Therefore, it is sufficient to apply an excitation force having an opposite phase as shown in FIG. 4(f).

なお、同一の振動モードでも相互異の干渉効果を測定す
る場合には第5図に示すようにピエゾ素子加振器4を装
着し、加振位相角が隣接する翼同志で一定な値になるよ
うに加振力を加えればよい。
In addition, when measuring mutually different interference effects even in the same vibration mode, a piezo element exciter 4 is installed as shown in Fig. 5, so that the excitation phase angle becomes a constant value for adjacent blades. Just apply an excitation force like this.

次に、ピエゾ素子加振器4に与えるべき加振周波数を設
定する。加振周波数の上限と下限は各振動モードに応じ
て適宜選定するとともに、各振動モード共振点近傍では
、加振周波数きざみを細かくして、共振特性の精度を上
げるようにする。
Next, the excitation frequency to be applied to the piezo element vibrator 4 is set. The upper and lower limits of the excitation frequency are appropriately selected according to each vibration mode, and in the vicinity of the resonance point of each vibration mode, the increments of the excitation frequency are made fine to increase the accuracy of the resonance characteristics.

続いて、2通シの加振力レベルの切換えによシ、伝達関
数H(→と外力F、(→を求める測定データを取得する
作業である。
Next, the task is to obtain measurement data for determining the transfer function H (→) and the external force F (→) by switching the excitation force level twice.

次に、周波数分析作業によシ、加振力周波数に応じた振
動応答成分を抽出する。こうして測定された加振力なら
びに振動応答データを基にして、式(1)〜(瞳に従っ
て、各周波数での伝達関数H(→ならびに外力F、(→
を求めることになる。さらに、加振周波数を変化させる
ことにより、必要な周波数域での伝達関数、流体力など
の外力F、が評価できることになる。
Next, through frequency analysis work, a vibration response component corresponding to the excitation force frequency is extracted. Based on the excitation force and vibration response data thus measured, the transfer function H (→ and external force F, (→
will be asked for. Furthermore, by changing the excitation frequency, the transfer function and external force F such as fluid force can be evaluated in a necessary frequency range.

本発明によれば、はぼ任意の回転体にピエゾ素子加振器
を装着し、運転状態で必要な振動モードを励振できるた
め、従来測定困難であった運転状態での伝達関数を求め
ることができるとともに流体力などの外力を定量的に評
価できる効果がおる。
According to the present invention, it is possible to attach a piezo element exciter to almost any rotating body and excite the necessary vibration mode in the operating state, so it is possible to obtain the transfer function in the operating state, which has been difficult to measure in the past. At the same time, it has the effect of quantitatively evaluating external forces such as fluid force.

上述の外力評価機能に伴い、外力発生要因ならびに外力
予測に発展することができ、回転機械の運転時の振動応
答予測精度を向上することができるので、回転機械の信
頼性を向上させる効果がある。
Along with the above-mentioned external force evaluation function, it is possible to develop external force generation factors and external force prediction, and improve the accuracy of vibration response prediction during operation of rotating machines, which has the effect of improving the reliability of rotating machines. .

さらに、流体力を中心とする外力発生要因の改善0) は、流体特性の改善にもつながシ、回転機械の性能向上
の効果を生むことになる。
Furthermore, improvement of external force generation factors centered on fluid force0) will lead to improvement of fluid characteristics, which will have the effect of improving the performance of rotating machinery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の回転体の実働外力測定評価装置の構
成図、第2図は、本発明の実働外力を求めるための加振
力の設定手順と測定データ処理手順を示す図、第3図は
、本発明の一実施例でおる羽根車へのピエゾ素子加振器
の装着位置を示すもの、第4図(a)〜(f)は、本発
明の一実施例である翼へのピエゾ素子加振器の装着位置
と振動モードを示すもの、第5図は、本発明の一実施例
であるピエゾ素子加振器を装着した状態を示すものであ
る。 4・・・ピエゾ素子加振器、5・・・加振力位相可変増
幅器、7・・・振動測定子、訃・・振動応答信号増幅器
、10・・・周波数分析器、11・・・計算制御装置。 (10) 才!; 口 手続補正書(方式) 1、事件の表示 昭和57年特許願第 78290  号λ発明の名称 回転体の実働外力評価装置 3、補正をする者 名  fi;    (51Q)株式会社  日  立
 製 作 所代 表 名   三   1)  勝  
 茂4、代 理 人 7、補正の内容 (1)  図面中第4図を添付図面のとおりに訂正する
。 (2)  明細書の第10頁第9行目〜同頁第11行目
の[第4図(at〜げ)は、〜 示すもの、」ヲ次のと
おりに訂正する。 「第4図(at〜(0は本発明の一実施例である翼への
ピエゾ素子加振器の装着位置と曲げ振動モードを示すも
ので、第4図(a)は翼、の−次曲げ変位モードを示す
図、第4図(blは一次曲げ応力モードを示す図、第4
図(C1は一次モードに対するピエゾ素子加振器の装着
位置を示す図、第4図(diは二次曲げ変位モードを示
す図、第4図(elは二次曲げ応力モードを示す図、第
4図(flは二次モードに対するピエゾ素子加振器の装
着位置を示す図、」才4目
FIG. 1 is a block diagram of an apparatus for measuring and evaluating an actual external force of a rotating body according to the present invention, FIG. Figure 3 shows the mounting position of the piezo element exciter on the impeller, which is an embodiment of the present invention, and Figures 4 (a) to (f) show the mounting position of the piezo element exciter on the impeller, which is an embodiment of the present invention. FIG. 5 shows the mounted position and vibration mode of the piezo element vibrator according to an embodiment of the present invention. 4... Piezo element exciter, 5... Excitation force phase variable amplifier, 7... Vibration measuring element, 2... Vibration response signal amplifier, 10... Frequency analyzer, 11... Calculation Control device. (10) Sai! Written amendment (method) 1. Indication of the case Patent Application No. 78290 1982 λ Name of the invention Actual external force evaluation device for rotating body 3 Name of the person making the amendment fi; (51Q) Manufactured by Hitachi, Ltd. Representative Name 3 1) Masaru
Shigeru 4, Agent 7, Contents of amendment (1) Figure 4 of the drawings is corrected as shown in the attached drawing. (2) "What is shown in Figure 4," on page 10, line 9 to line 11 of page 10 of the specification is corrected as follows. "Figure 4 (at~(0) shows the installation position and bending vibration mode of the piezo element vibrator on the wing, which is an embodiment of the present invention, and Figure 4 (a) shows the attachment position and bending vibration mode of the wing A diagram showing the bending displacement mode, Fig. 4 (bl is a diagram showing the primary bending stress mode, Fig. 4
Figures (C1 is a diagram showing the mounting position of the piezo element vibrator for the primary mode, Figure 4 (di is a diagram showing the secondary bending displacement mode, Figure 4 (el is a diagram showing the secondary bending stress mode, Figure 4 (fl is a diagram showing the mounting position of the piezo element exciter for the secondary mode,

Claims (1)

【特許請求の範囲】 1、回転体に装着される複数個のピエゾ素子加振器と、
これらピエゾ素子加振器に対応して加振位相または加振
振幅制御機能を持つ増幅器と、前記ピエゾ素子加振器に
より付与される振動を測定する振動測定子と、この振動
測定子からの振動応答信号を増幅する増幅器と、加振周
波数成分に応じた振動応答周波数成分を抽出する周波数
分析装置と、各加振周波数に応じて演算を実行する計算
制御装置とから成る回転体の実働外力評価装置。 2、 ピエゾ素子加振器を回転体の振動モードの節に対
応した位置に装着することを特徴とする特許請求の範囲
第1項記載の回転体の実働外力評価装置。 3、 ピエゾ素子加振器を回転体の振動モードの腹に対
応した位置に装着することを特徴とする特許請求の範囲
第1項記載の回転体の実働外力評価装置。 □4.各々のピエゾ素子加振器を同一の加振周波数で加
振振幅を独立に変更できることを特徴とする特許請求の
範囲第1項記載の回転体の実働外力評価装置。 5、各々のピエゾ素子加振器を同一の加振周波数で加振
位相を独立に変更できることを特徴とする特許請求の範
囲第1項記載の回転体の実働外力評価装置。
[Claims] 1. A plurality of piezo element exciters mounted on a rotating body;
An amplifier having an excitation phase or excitation amplitude control function corresponding to these piezo element exciters, a vibration measuring element for measuring the vibration imparted by the piezo element exciter, and a vibration measuring element from the vibration measuring element. Actual external force evaluation of a rotating body consisting of an amplifier that amplifies the response signal, a frequency analyzer that extracts the vibration response frequency component according to the excitation frequency component, and a calculation control device that performs calculations according to each excitation frequency. Device. 2. The actual external force evaluation device for a rotating body according to claim 1, wherein the piezo element vibrator is mounted at a position corresponding to a node of a vibration mode of the rotating body. 3. The actual external force evaluation device for a rotating body according to claim 1, wherein the piezo element vibrator is mounted at a position corresponding to the antinode of the vibration mode of the rotating body. □4. 2. The actual external force evaluation device for a rotating body according to claim 1, wherein the excitation amplitude of each piezo element vibrator can be independently changed at the same excitation frequency. 5. The actual external force evaluation device for a rotating body according to claim 1, wherein the excitation phase of each piezo element vibrator can be changed independently at the same excitation frequency.
JP7829082A 1982-05-12 1982-05-12 Actual external force evaluation apparatus for rotating body Pending JPS58196428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7829082A JPS58196428A (en) 1982-05-12 1982-05-12 Actual external force evaluation apparatus for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7829082A JPS58196428A (en) 1982-05-12 1982-05-12 Actual external force evaluation apparatus for rotating body

Publications (1)

Publication Number Publication Date
JPS58196428A true JPS58196428A (en) 1983-11-15

Family

ID=13657802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7829082A Pending JPS58196428A (en) 1982-05-12 1982-05-12 Actual external force evaluation apparatus for rotating body

Country Status (1)

Country Link
JP (1) JPS58196428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
FR2630213A1 (en) * 1988-04-11 1989-10-20 Inst Mash TEST DEVICE FOR VENTILATOR PALLETS VIBRATION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
JPH055057B2 (en) * 1983-11-17 1993-01-21 Mitsubishi Heavy Ind Ltd
FR2630213A1 (en) * 1988-04-11 1989-10-20 Inst Mash TEST DEVICE FOR VENTILATOR PALLETS VIBRATION

Similar Documents

Publication Publication Date Title
Pratt et al. Non-linear analysis of stick/slip motion
CN101310427A (en) Stator core loosening diagnosis device and stator core loosening diagnosis method
CN106017758B (en) A kind of synchronous online testing device of motor static torque and test method
JP3313028B2 (en) Measurement method of bending stiffness and tension of cable under tension
Oberholster et al. Online condition monitoring of axial-flow turbomachinery blades using rotor-axial Eulerian laser Doppler vibrometry
JPS58196428A (en) Actual external force evaluation apparatus for rotating body
US4031744A (en) Method and apparatus for analyzing a damped structural specimen
CN108896908B (en) Method for accurately identifying damping parameters in finite element vibration calculation model of motor
RU2673950C1 (en) Method for determining forms of vibrations of rotating wheels of turbomachines
JP3036237B2 (en) Transmission test equipment
JP2004117088A (en) Method for measuring bearing characteristic and bearing
Yatsun et al. Experimental study into rotational-oscillatory vibrations of a vibration machine platform excited by the ball auto-balancer
US6959688B2 (en) Method for monitoring engine order forcing frequency
JP2005188941A (en) Motor torque ripple measuring device and its method
Dawson et al. Specifying and designing flexible shaft electrical machines
JPS60122327A (en) Investigating method of load-dependent oscillation of rotary machine
JPH07270229A (en) Rotary machine test device
SU721678A1 (en) Method and device for determining two components of mechanical oscillations of a structure
JPH0815100A (en) Vibration diagnosing device with exciting function
JPS60122328A (en) Investigating method of rotating speed-dependent oscillation of rotary machine
Moore et al. Design considerations for a sensitive propulsion dynamometer for small ship models
RU2034255C1 (en) Method for determination of position of structure center of mass
SU1796952A1 (en) Method for vibration control of faults of load-bearing members of aircraft structures
JPH0743207A (en) Vibration meter
RU2017297C1 (en) Method of determination of wire dancing