JPS58196013A - Method for liquid phase epitaxial growth - Google Patents

Method for liquid phase epitaxial growth

Info

Publication number
JPS58196013A
JPS58196013A JP7824282A JP7824282A JPS58196013A JP S58196013 A JPS58196013 A JP S58196013A JP 7824282 A JP7824282 A JP 7824282A JP 7824282 A JP7824282 A JP 7824282A JP S58196013 A JPS58196013 A JP S58196013A
Authority
JP
Japan
Prior art keywords
solution
crystal
layer
growth
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7824282A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kashiwada
柏田 泰利
Toshihiro Kono
河野 敏弘
Kunio Aiki
相木 国男
Hirobumi Ouchi
博文 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7824282A priority Critical patent/JPS58196013A/en
Publication of JPS58196013A publication Critical patent/JPS58196013A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide epitaxial growth crystal with little crystal defect, by a method wherein GaAs crystal for preventing supersaturation of As in solution during cooling the solution is contacted to active layer entered in a solution vessel and upper portion of solution for cap layer. CONSTITUTION:Specified amount of solute of Al, n type impurity Te, p type impurity Zn is solved uniformly, and Ga solution to solve As in saturation is prepared at solution vessels 6-9 within H2 vapor of 760 deg.C. Solutions for various layers are entered in growing solution vessels 15-18 through small holes 11-14 provided on a boat part 10. GaAs crystals 19, 20 for preventing supersaturation of As in the solution during cooling are contracted to active layer entered in the vessels 16, 18 and upper portion of solution for cap layer. Temperature of the system is decreased and the solution is transferred, and solution for n-clad in sequence from the vessel 15 is contacted to a substrate crystal 21 thereby epitaxial multi-layer growth is performed at prescribed thickness and composition.

Description

【発明の詳細な説明】 本発明は化合物半導体レーザ素子の製造を目的とする液
相エピタキシャル法に係り、特に、素子の注入電流−光
出力特性不良原因となる結晶欠陥の低減に好適な結晶成
長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid phase epitaxial method for the purpose of manufacturing compound semiconductor laser devices, and in particular to a method for crystal growth suitable for reducing crystal defects that cause poor injection current-optical output characteristics of the device. Regarding the method.

半導体レーザ素子の製造を目的とし九 G町−,AlxAsを連続的に多層成長する方法として
、スライド・ボートを用いた液相エピタキシャル法が広
く用いられている。所定の温度で所定の溶質を均一に溶
解し、Asi飽和した成長用Ga溶液は、該溶液中に生
成したAt、O,スラグを除去する目的で小孔を通す。
A liquid phase epitaxial method using a slide boat is widely used as a method for continuously growing multiple layers of AlxAs for the purpose of manufacturing semiconductor laser devices. A growth Ga solution in which a predetermined solute is uniformly dissolved at a predetermined temperature and is saturated with Asi is passed through small holes for the purpose of removing At, O, and slag generated in the solution.

しかる後、反応系の温度を下げながら順次該溶液を基板
結晶に接触させて所望の多層成長を完了する。上記従来
の方法では各成長用溶液は、温度の降下によシ基板結晶
に接触する前に過冷却状態になっている。該溶液と該基
板結晶を接触し、エピタキシャル成長する目的で、該溶
液筐tは該基板結晶を移動する際、基板結晶表面と溶液
溜をもつボート部品の底部の間に設けた間隙から、n番
目の溶液の1部が(n+1)番目の溶液中に混入する。
Thereafter, the solution is successively brought into contact with the substrate crystal while lowering the temperature of the reaction system to complete the desired multilayer growth. In the conventional method described above, each growth solution is supercooled before it contacts the substrate crystal due to a drop in temperature. In order to bring the solution into contact with the substrate crystal and cause epitaxial growth, the solution housing t is moved from the n-th point from the gap provided between the substrate crystal surface and the bottom of the boat part having the solution reservoir when moving the substrate crystal. A part of the solution is mixed into the (n+1)th solution.

(n+1)番目゛の溶液中のAt含有量がn番目の溶液
のそれより小さい場合は、該n番目の溶液の混入により
、(n+1 )番目の溶液中のAsの溶解度が低下し、
該溶液中KGaAtAsの微結晶が生成し、該微結晶が
エピタキシャル成長結晶表面に付着し、素子特性に悪影
響を及ぼす欠陥を生起する欠点があった。
If the At content in the (n+1)th solution is smaller than that in the nth solution, the solubility of As in the (n+1)th solution decreases due to the mixing of the nth solution,
There was a drawback that KGaAtAs microcrystals were formed in the solution, and the microcrystals adhered to the surface of the epitaxially grown crystal, causing defects that adversely affected device characteristics.

本発明の目的は、半導体レーザ素子の特性に悪影響を及
ぼす結晶欠陥の少ないエピタキシャル成長結晶t*供す
ることにある。
An object of the present invention is to provide an epitaxially grown crystal t* with fewer crystal defects that adversely affect the characteristics of a semiconductor laser device.

第1図よりG1.、xAlxAsを成長するGa溶液中
のAsの溶解度は、該溶液中のAtの含有量が高いほど
小さいことがわかる。したがって、基板結晶に接触させ
てエピタキシャル成長する直前の、過冷却状態にある成
長用溶液中に、該溶液中のAj含有量よシも高いAtt
有量をもつ溶液が混入すると、前者溶液中のAaの過飽
和度が増々高くなり、溶液中にGaAlAsの微結晶が
晶出してしまう。核微結晶はエピタキシャル成長結晶表
面に沈着するが、確率的には、該微結晶の結晶学的方位
は、エピタキシャル成長結晶の結晶学方位とは相対的に
異なるため、′:#微結晶を原点として、成長方向に、
最終的な多層エピタキシャル層表面にまで達する凹状孔
となる欠陥を生起する。この結晶欠陥は半導体レーザ素
子の特性、特に不発振素子の原因と表る。該結晶欠陥の
発生を阻止する方法として、At含有量の相対的に少な
い溶液にQaAs結晶を接触させ、反応系の温度降下に
伴なう該溶液中のAsの過飽和度を緩和し、温度降下中
宮に溶液温度においてAsが平衡濃度付近の溶解量とな
るように制御する手段を用いた。
From Figure 1, G1. It can be seen that the higher the At content in the solution, the lower the solubility of As in the Ga solution in which , xAlxAs is grown. Therefore, in a supercooled growth solution immediately before epitaxial growth in contact with a substrate crystal, Att which has a higher Aj content than the solution.
If a solution having a certain amount of Aa is mixed in, the degree of supersaturation of Aa in the former solution will increase, and GaAlAs microcrystals will crystallize in the solution. The core microcrystal is deposited on the surface of the epitaxially grown crystal, but stochastically, the crystallographic orientation of the microcrystal is relatively different from that of the epitaxially grown crystal. In the direction of growth
This causes defects that become concave holes that reach the surface of the final multilayer epitaxial layer. This crystal defect appears as a cause of the characteristics of a semiconductor laser device, especially a non-oscillating device. As a method for preventing the generation of crystal defects, a QaAs crystal is brought into contact with a solution having a relatively low At content, and the degree of supersaturation of As in the solution accompanying the temperature drop in the reaction system is alleviated. A method was used to control the amount of dissolved As at the solution temperature so that the amount of dissolved As was near the equilibrium concentration.

以下、本発明の一実施例t 説明する。第2図に作製し
た可視半導体レーザ素子の構造を示す。第1図において
1はn−QaAs基板、2はn−G an、 ss A
41.41人1層、3はG A6. B A 16.4
 A 8層(活性層)、4はP −G”o、 * s 
A to、 4@ A s層、5はn−GaA1キャッ
プ層でおる。該素子を実現する液相エピタキシャル成長
では、活性層3とキャップ層5用の溶液が、溶液用のA
t含有量において、各々1つ前の溶液であるn−クラッ
ド層2およびp−クラッド層4用の溶液中のAt含有量
より少なく設計される。したがって、n−クラッド層2
用溶液の活性層3用溶液への混入およびp−クラッド層
4用溶液のキャップ層5用溶液への混入による活性層お
よびキャップ層用溶液中へのGaAtAs微結晶の晶出
金防ぐべく、活性層およびキャップ層用溶液に、第3図
に示すようKQaAs結晶を接触させた状態で成長を行
なった。
An embodiment of the present invention will be described below. FIG. 2 shows the structure of the visible semiconductor laser device manufactured. In Fig. 1, 1 is an n-QaAs substrate, 2 is an n-Gan, ss A
41. 41 people in 1st layer, 3 in GA6. B A 16.4
A 8 layers (active layer), 4 is P-G”o, *s
A to, 4@As layer, 5 is an n-GaA1 cap layer. In liquid phase epitaxial growth to realize this device, the solution for the active layer 3 and the cap layer 5 is
The t content is designed to be smaller than the At content in the solutions for the n-cladding layer 2 and the p-cladding layer 4, which are the previous solutions. Therefore, n-cladding layer 2
In order to prevent the crystallization of GaAtAs microcrystals into the active layer and cap layer solutions due to the mixing of the solution for the active layer 3 into the solution for the active layer 3 and the mixing of the solution for the p-cladding layer 4 into the solution for the cap layer 5, Growth was carried out with a KQaAs crystal in contact with the layer and cap layer solutions as shown in FIG.

成長の詳細は以下の通りである。まずAtgn型不純物
Te、P型不純物Znの溶質を所定の量均−に溶解し、
Asを飽和溶解するQa浴溶液、溶液溜6,7,8.9
において温度760CでH8気流中で作製し、しかる後
、ボート部品10に備わる小孔11,12,13.14
を通して該各層用溶液を成長用溶液溜15.16,17
.18に入れた。この時溶液溜16.18に入つt活性
層およびキャップ層用溶液の上部に溶液の冷却に伴なう
溶液中のAsの過飽和を防ぐ目的のQjl、l1k11
結晶19,201−接触させた。次に760Cより0.
5tZ’/−で系の温度を降下させつつ、溶液の過冷却
度が5Cとなつ1時点で、溶液を移動し、溶液溜15に
あるn−クラッド用溶液力1ら順次基板結晶21に接触
して、所定の厚さ、組成のエピタキシャル多層成長を行
なった。活性層およびキャップ層用溶液に′)aAs結
晶を接触させない従来の方法の場合、該溶液中の晶出す
るGaAtAs微結晶に起因する欠陥が、成長ウェー7
1表面で5000〜12000ケ/ cm ”発生して
いたが、本実施例の方法では、該欠陥密度が30〜10
00ケアcm”であった。また、従来の方法で作製した
成長ウェーハから半導体レーザ素子を作製した場合の不
発振素子の発生率は15〜35%であった。これに対し
、本発明の方法を採用した場合の不発振素子の発生率は
0〜5%であった。
The details of the growth are as follows. First, solutes of Atgn type impurity Te and P type impurity Zn are uniformly dissolved in predetermined amounts,
Qa bath solution that saturates As, solution reservoirs 6, 7, 8.9
After that, the small holes 11, 12, 13, 14 provided in the boat part 10
The solutions for each layer are passed through the growth solution reservoirs 15, 16, 17.
.. I put it in at 18. At this time, Qjl and l1k11 for the purpose of preventing supersaturation of As in the solution as the solution cools are placed above the active layer and cap layer solutions entering the solution reservoir 16.18.
Crystal 19,201-contacted. Next, 0.
While lowering the temperature of the system by 5tZ'/-, at a point when the degree of supercooling of the solution reaches 5C, the solution is moved and sequentially contacts the substrate crystal 21 starting from the n-cladding solution 1 in the solution reservoir 15. Then, epitaxial multilayer growth with a predetermined thickness and composition was performed. In the case of the conventional method in which the aAs crystal is not brought into contact with the solution for the active layer and the cap layer, defects caused by GaAtAs microcrystals crystallized in the solution are generated in the growth wafer 7.
The defect density was 5,000 to 12,000 defects/cm" per surface, but with the method of this example, the defect density was reduced to 30 to 10
00 care cm''. Furthermore, when semiconductor laser devices were fabricated from growth wafers fabricated by the conventional method, the incidence of non-oscillating devices was 15 to 35%. The incidence of non-oscillating elements was 0 to 5%.

本発明によれば、成長溶液の過剰な過冷却が阻止でき、
これに基づく欠陥が低減できるので、半導体レーザ素子
の特性歩留り上向の効果がある。
According to the present invention, excessive supercooling of the growth solution can be prevented;
Since defects based on this can be reduced, there is an effect of improving the characteristic yield of semiconductor laser devices.

【図面の簡単な説明】[Brief explanation of the drawing]

ザ素子の端面方向からみた側面図、第3図はグラファイ
トボートの側面図である。
FIG. 3 is a side view of the graphite boat as seen from the end face direction of the element.

Claims (1)

【特許請求の範囲】 1、スライド−ボート方式によるGJIm、 z kl
、xAs(Oくx<;:1 )連続多層液相エピタキシ
ャル成長において、各要用溶液を、別々に分離しておく
目的で設けられた溶液溜で所定の溶質を均一に溶解し、
かつAsの飽和したGa溶液として用いるに際し、At
混晶比Xが相対的に太きカ層(X、)の次にXが相対的
に小さな層(X、。 Xs <Xs  )k成長する場合、後者の溶液にのみ
鉄溶液のAsの過飽和度を下げる目的のGJIAI結晶
を接触させておくことを特徴とする液相エピタキシャル
成長方法。
[Claims] 1. GJIm, z kl by slide-boat system
, xAs (Ox<;:1) In continuous multilayer liquid phase epitaxial growth, a predetermined solute is uniformly dissolved in a solution reservoir provided for the purpose of separating each required solution,
And when used as a Ga solution saturated with As, At
When a layer (X,) with a relatively large mixed crystal ratio X is grown next to a layer (X,) with a relatively small X (Xs < Xs), supersaturation of As in the iron solution occurs only in the latter solution. A liquid phase epitaxial growth method characterized by keeping GJIAI crystals in contact with each other for the purpose of lowering the temperature.
JP7824282A 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth Pending JPS58196013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7824282A JPS58196013A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7824282A JPS58196013A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS58196013A true JPS58196013A (en) 1983-11-15

Family

ID=13656547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7824282A Pending JPS58196013A (en) 1982-05-12 1982-05-12 Method for liquid phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS58196013A (en)

Similar Documents

Publication Publication Date Title
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
US6144044A (en) Gallium phosphide green light-emitting device
JPS58196013A (en) Method for liquid phase epitaxial growth
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JPS5853826A (en) Liquid epitaxial growing method
van Oirschot et al. LPE growth of DH laser structures with the double source method
US4620854A (en) Method of preparing indium ingots
US4566934A (en) Cleaning technique for LPE melt ingots
JPS59101823A (en) Liquid-phase epitaxial growth device
JPH0967190A (en) Liquid phase epitaxial growth method
JPH04254321A (en) Liquid phase epitaxial growth method
JPH0242771A (en) Light-emitting semiconductor element substrate and manufacture thereof
JPH0572359B2 (en)
JPH09312264A (en) Vapor growing method and vapor growing equipment
JP3202405B2 (en) Epitaxial growth method
JPH0818099A (en) Manufacture of semiconductor light emitting element
JPS6325292A (en) Crystal growth of mixed crystal of indium gallium phosphide
JPS58135635A (en) Semiconductor crystal growth
JPH0846238A (en) Manufacture of semiconductor multilayered film and light-emitting diode
JPH0697098A (en) Growing method for semiconductor crystal
JPH0772117B2 (en) Liquid phase epitaxial growth method and apparatus
JPH06291068A (en) Liquid phase epitaxial growth method
JPS59111379A (en) Manufacture of light emitting semiconductor device
JPS60236220A (en) Method for liquid-phase epitaxial growth
JPS60145608A (en) Liquid phase epitaxial growth method