JPS5819570A - Controlling device for impression of voltage for inspecting ground fault point of distribution line - Google Patents

Controlling device for impression of voltage for inspecting ground fault point of distribution line

Info

Publication number
JPS5819570A
JPS5819570A JP11761281A JP11761281A JPS5819570A JP S5819570 A JPS5819570 A JP S5819570A JP 11761281 A JP11761281 A JP 11761281A JP 11761281 A JP11761281 A JP 11761281A JP S5819570 A JPS5819570 A JP S5819570A
Authority
JP
Japan
Prior art keywords
voltage
circuit
current
firing
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11761281A
Other languages
Japanese (ja)
Inventor
Koichi Kubota
久保田 宏一
Michihiro Matsumoto
松本 満弘
Kouji Zenimori
銭盛 光次
Tamotsu Matsumoto
保 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Original Assignee
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENKI SEIZO KK, Kyushu Electric Power Co Inc filed Critical KYUSHU DENKI SEIZO KK
Priority to JP11761281A priority Critical patent/JPS5819570A/en
Publication of JPS5819570A publication Critical patent/JPS5819570A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/10Locating faults in cables, transmission lines, or networks by increasing destruction at fault, e.g. burning-in by using a pulse generator operating a special programme

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To facilitate firing of an incomplete grounding point and maintain a proper value of a current after completion of the firing, by maintaining an appropriate value of a voltage impressed on a fault section of a distribution line by means of an automatic control circuit containing a bidirectional thyristor and a bidrectional diode. CONSTITUTION:When a power switch 2 is charged, an AC voltage is impressed on an boosting transformer 3 and a triode bidirectional thyristor 5, and thereby a current flowing through an automatic boosting circuit is increased to change a value of R3. Thereby the time constant of a circuit 7 is changed, a time required for a bidirectional trigger diode 6 to reach a breakover voltage is changed and a phase control of the thyristor 5 is conducted. In a boosting process, the rise of a primary current of the transformer is sharpest at a point whereat a firing angle is 90 deg., and there a crest value induced on the secondary side is large. When a fault point is in the state of incomplete grounding, an impressed voltage becomes vibrant and the firing is facilitated by an intermittent discharge current. When said point is near to the state of permanent grounding, grounding resistance decreases and the energy of the circuit is consumed by resistance. Therefore a vibrating part attenuates and thus a stable current flows.

Description

【発明の詳細な説明】 本発明は、地絡事故点探査効率を向上せしめ、装置の小
形軽量化を計った配電線地絡事故点探査用課電制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power charging control device for detecting a ground fault point in a power distribution line, which improves the efficiency of detecting a ground fault point and reduces the size and weight of the device.

高圧配電線の一線地絡時における地絡電流は一般に地絡
点の前後において大きく相異する。このことに着目して
地絡発生区間の配電線に適当な高電圧を印加し、線路に
沿う電流の分布を調べて電流の急変点を探査することに
より地絡事故点を見出すことが行われている。
In general, the ground fault current when a single line ground fault occurs in a high-voltage distribution line differs greatly between before and after the ground fault point. Focusing on this, the ground fault point can be found by applying an appropriate high voltage to the distribution line in the section where the ground fault has occurred, examining the current distribution along the line, and searching for sudden changes in the current. ing.

しかし事故点が不完全地絡状態にある場合には、保護継
電器動作によって電源がしゃ断され地絡電流が一旦消滅
すると絶縁が一時的に回復し、故障が内在したままで成
る期間経過した後に永久地絡事故に移行して、電力の供
給支障につながることがしばしば生ずる。
However, if the fault point is in an incomplete ground fault state, the power is cut off by the protective relay operation, and once the ground fault current disappears, the insulation will temporarily recover, and after the period during which the fault remains, it will become permanent. This often leads to ground faults, leading to interruptions in power supply.

したがって間欠性地絡に対しては、高電圧印加によって
不完全地絡点を強制的に焼成し、永久地絡事故に移行さ
せたのち検出器によって事故点を発見して不良個所を速
やかに修復することが望ましい。
Therefore, in the case of intermittent ground faults, the incomplete ground fault is forcibly burned out by applying high voltage, and the fault progresses to a permanent ground fault. After that, the fault point is detected by a detector and the faulty part is quickly repaired. It is desirable to do so.

本発明は、上記の原理に基づく地絡事故点探査装置の課
電制御に用いるもので、双方向サイリスタと双方向ダイ
オードを含む自動制御回路から構成され、配電線の事故
区間に印加する電圧を適切な値に維持して不完全地絡個
所の焼成を促進するとともに、焼成完了後は探査装置か
ら事故点へ流出する電流を、検出に適した値に保持する
手段を有している。
The present invention is used for power charging control of an earth fault point detection device based on the above principle, and is composed of an automatic control circuit including a bidirectional thyristor and a bidirectional diode, and controls the voltage applied to a fault section of a distribution line. The current is maintained at an appropriate value to promote firing of the incomplete ground fault location, and after firing is completed, the current flowing from the exploration device to the fault location is maintained at a value suitable for detection.

第1図は、地絡事故点探査システムおよび本発明による
課電制御装置の一実施例の構成と動作原理を示したもの
で、図中の一点鎖線で囲まれた範囲が本発明の対象とな
る部分である。第1図において、1は電源として使用す
るガソリンエンジン付交流発電機、2は電源スィッチ、
3は昇圧用変圧器、4は単相全波整流回路、5は昇圧用
変圧器1次(低圧側)回路の開閉用交流スイッチとして
使用する3極双方向サイリスタ、6は3極双方向サイリ
スタのスイッチング動作のタイミング制御(位相制御)
に用いる双方向トリガーダイオード、7は双方向トリガ
ーダイオードのターンオン位相調整用のコンデンサと抵
抗、8は電流変化を抵抗値に変換する変換回路(たとえ
ばフォトカプラ)、9は自動昇圧回路、10は定電流制
御回路、llは課電部から配電線路へ流出する電流の検
出回路、12は自動昇圧回路9と定電流制御回路10と
の切換を自動的に行わせるためのリレー回路である。
FIG. 1 shows the configuration and operating principle of an embodiment of the ground fault point detection system and the power supply control device according to the present invention. This is the part that becomes. In Figure 1, 1 is an alternator with a gasoline engine used as a power source, 2 is a power switch,
3 is a step-up transformer, 4 is a single-phase full-wave rectifier circuit, 5 is a 3-pole bidirectional thyristor used as an AC switch for opening/closing the primary (low-voltage side) circuit of the step-up transformer, and 6 is a 3-pole bidirectional thyristor. Timing control (phase control) of switching operation of
7 is a capacitor and resistor for adjusting the turn-on phase of the bidirectional trigger diode, 8 is a conversion circuit (for example, a photocoupler) that converts current changes into a resistance value, 9 is an automatic booster circuit, and 10 is a constant voltage regulator. In the current control circuit, 11 is a detection circuit for detecting the current flowing from the power supply section to the distribution line, and 12 is a relay circuit for automatically switching between the automatic booster circuit 9 and the constant current control circuit 10.

また13は配電線路に流れる地絡電流の計測に使用する
可搬型の活線電流計であシ、例えば光フアイバ絶縁高電
圧用電流計である(特開昭55−138661号公報参
照)。
Reference numeral 13 designates a portable live-line ammeter used to measure ground fault current flowing in a power distribution line, such as an optical fiber insulated high-voltage ammeter (see Japanese Patent Application Laid-Open No. 138661/1983).

まず本発明による課電装置を適用した地絡事故点探査シ
ステム全般の動作について説明する。第1図において電
源スイッチ2を投入すると100デルト、60ヘルツの
交流電圧がガソリンエンジン付発電機1から昇圧用変圧
器3の1次側へ供給され、変圧器3の2次側(高圧側)
には、サイリスタ交流スイッチ5のオン・オフによって
1次側に流れる励磁電流に応じた交流電圧が発生する。
First, the general operation of the ground fault point detection system to which the power charging device according to the present invention is applied will be explained. In FIG. 1, when the power switch 2 is turned on, an AC voltage of 100 delt and 60 hertz is supplied from the generator 1 with gasoline engine to the primary side of the step-up transformer 3, and the secondary side (high voltage side) of the transformer 3.
An alternating current voltage is generated according to the excitation current flowing to the primary side by turning on and off the thyristor alternating current switch 5.

この電圧を単相全波整流回路4によって脈流の高電圧に
変換し、配電線の故障区間に印加する。事故点が不完全
地絡状態にある場合には、この脈流高電圧によって事故
点を焼成し永久地絡状態に移行させる。上記の焼成期間
中および永久地絡へ移行した後に配電線路に流出する電
流値は、課電制御装置の定電流制御装置によってあらか
じめ設定された値に保たれる。したがって可搬型の活線
電流計13によって配電線路に沿う地絡脈流電流に含ま
れる120ヘルツの交流成分の分布を調べ、この電流成
分が急変する点を見出すことによって事故点を知ること
ができる。
This voltage is converted into a pulsating high voltage by the single-phase full-wave rectifier circuit 4 and applied to the faulty section of the distribution line. If the fault point is in an incomplete ground fault state, this pulsating high voltage burns the fault point and transitions it to a permanent ground fault state. The current value flowing into the distribution line during the firing period and after transition to a permanent ground fault is maintained at a preset value by the constant current control device of the power supply control device. Therefore, the fault point can be determined by examining the distribution of the 120 Hz AC component included in the ground fault pulsating current along the distribution line using the portable live-line ammeter 13 and finding the point where this current component suddenly changes.

次に本発萌の対象とする課電制御装置の動作について説
明する。    ゛ まず1、電圧スイッチ2を投入すると、交流発電機lか
ら60ヘルツ100&ルトの正弦波交流電圧が昇圧用変
圧器3および3極双方向サイリスタ5に加わり、一方、
自動昇圧回路9の積分時定数に従って漸増する電流が電
流−抵抗値変換回路8に流れて抵抗R3の値を変化させ
る。これにともなって、コンデンサc1.c2と抵抗R
1,R2*R3からなる回路7の充放電の時定数が変る
ため、双方向トリガーダイオード6がブレークオーバ電
圧に達する時間が変化し、双方向トリガーダイオード6
から3極双方向サイリスタ5へ出されるr−ト制御信号
の位相制御が行われる。したがって、課電制御装置の電
源投入前における3極双方向サイリスタの点弧位相を1
80°に設定し、自動昇圧回路の時定数に従って点弧位
相を漸次θ°の方向に移行させるようにすれば、変圧器
302次電圧、したがって配電線路に印加される電圧は
自動的に上昇する。第2図はとの昇圧過程における変圧
器1次電流の波形の遷移状況を示したもので、(1)は
課電制御装置投入瞬時で3極双方向サイリスタの点弧角
180°、(2) 、 (3) 、 (4)はそれぞれ
点弧角135” 。
Next, the operation of the power charging control device that is the target of this development will be explained.゛First, when the voltage switch 2 is turned on, a 60 Hz 100° sine wave AC voltage is applied from the AC generator 1 to the step-up transformer 3 and the 3-pole bidirectional thyristor 5;
A current that gradually increases according to the integral time constant of the automatic booster circuit 9 flows into the current-resistance value conversion circuit 8 and changes the value of the resistor R3. Along with this, capacitor c1. c2 and resistance R
Since the charging/discharging time constant of the circuit 7 consisting of 1, R2*R3 changes, the time for the bidirectional trigger diode 6 to reach the breakover voltage changes, and the bidirectional trigger diode 6
Phase control of the r-to control signal output from the three-pole bidirectional thyristor 5 is performed. Therefore, the firing phase of the 3-pole bidirectional thyristor is set to 1 before the power supply control device is powered on.
80° and the firing phase is gradually shifted in the direction of θ° according to the time constant of the automatic step-up circuit, the secondary voltage of the transformer 30 and therefore the voltage applied to the distribution line will automatically rise. . Figure 2 shows the transition state of the waveform of the transformer primary current during the step-up process. ), (3), and (4) each have a firing angle of 135”.

90°、45° の場合で、(1) 、 (2) 、 
(3) 、 (4)の順に変圧器2次電圧実高値は高く
なる。との昇圧過程において点弧角90°の点で変圧器
1次電流の立上りがもっとも急峻であるため変圧器の磁
束変化が大きく、変圧器2次側に誘起する電圧の波高値
が大きい。したがって、事故点が不完全地絡の状態にあ
って地絡抵抗が大きい場合には、点弧角90°付近で線
路に印加される電圧は第3図に示すように振動的となり
、この電圧によって不完金地終点に間欠的な放電電流が
流れて焼成が促進される。焼成が進行して永久地絡状態
に近づくと地絡点の抵抗が減少し、回路のエネルギーが
抵抗に消費されるため電流の振動分は減衰して安定々電
流が継続して地絡点を流れるようになる。なお、変圧器
の2次電圧は、振動電圧の尖頭値が避雷器の衝撃放電開
始電圧よシ十分低くなるように定め、振動電圧による避
雷器の誤動作を防止している。
In the case of 90° and 45°, (1), (2),
The actual high value of the transformer secondary voltage increases in the order of (3) and (4). In the step-up process, the rise of the primary current of the transformer is the steepest at the point of the 90° firing angle, so the change in the magnetic flux of the transformer is large, and the peak value of the voltage induced on the secondary side of the transformer is large. Therefore, if the fault point is in a state of incomplete ground fault and the ground fault resistance is large, the voltage applied to the line near the firing angle of 90° becomes oscillatory as shown in Figure 3, and this voltage An intermittent discharge current flows to the end point of the unfinished metal base to promote firing. As firing progresses and approaches a permanent ground fault state, the resistance at the ground fault point decreases, and as the energy of the circuit is consumed by the resistance, the oscillations of the current are attenuated and the current continues stably until the ground fault point is reached. It becomes flowing. The secondary voltage of the transformer is determined so that the peak value of the oscillating voltage is sufficiently lower than the shock discharge starting voltage of the lightning arrester to prevent malfunction of the lightning arrester due to the oscillating voltage.

次に自動定電流制御回路の動作について説明する。脈流
高電圧の印加によって配電線5流出する電流の大きさは
、第1図の検出回路11において電圧として取出され、
平滑回路によって直流に変換されたのち、リレー動作回
路12の比較器へ導かれる。この電圧の大きさが比較器
の設定電圧値より大きくなるとリレーが付勢されて自動
昇圧回路9から自動定電流制御回路10への切換えが行
われる。自動定電流制御回路10では電流設定値に対応
する直流電圧と、検出回路の出力直流電圧との差をとシ
出し、この差電圧に比例する電流を第1図の電流−抵抗
値変換回路8に供給し、前述の原理によシ配電線路へ流
出する電流を常に一定値に維持するように3極双方向サ
イリスタの点弧位相の制御を行う。したがって課電制御
装置の電源投入後の電圧ならびに電流の制御はすべて自
動的に行われる。地絡事故点の状態が永久地絡に近く地
絡抵抗が小さい場合には、上記の焼成過程を経ることな
くリレー回路が動作し、地絡電流を検出に適した値に維
持する。
Next, the operation of the automatic constant current control circuit will be explained. The magnitude of the current flowing out of the distribution line 5 due to the application of the pulsating high voltage is extracted as a voltage in the detection circuit 11 of FIG.
After being converted into direct current by the smoothing circuit, it is guided to the comparator of the relay operation circuit 12. When the magnitude of this voltage becomes larger than the set voltage value of the comparator, the relay is energized and switching from the automatic booster circuit 9 to the automatic constant current control circuit 10 is performed. The automatic constant current control circuit 10 calculates the difference between the DC voltage corresponding to the current setting value and the output DC voltage of the detection circuit, and converts a current proportional to this difference voltage into the current-resistance value conversion circuit 8 of FIG. The firing phase of the three-pole bidirectional thyristor is controlled so that the current flowing out to the distribution line is always maintained at a constant value based on the above-mentioned principle. Therefore, all voltage and current controls are automatically performed after the power supply control device is powered on. If the state of the ground fault point is close to a permanent ground fault and the ground fault resistance is small, the relay circuit operates without going through the above firing process to maintain the ground fault current at a value suitable for detection.

以上説明したように、本発明による課電制御装置を使用
す−ることによって、地絡事故点探査効率が向上すると
ともに作業員の監視負担も軽減される。また課電用変圧
器および電源用交流発電機容量の低減が可能となるため
装置の小型軽量化を計ることができる噌
As explained above, by using the power supply control device according to the present invention, the efficiency of ground fault point detection is improved and the monitoring burden on workers is also reduced. In addition, it is possible to reduce the capacity of the power transformer and power supply alternator, making it possible to reduce the size and weight of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の課電制御装置ならびにとの課電制御
装置を適用する配電線事故点探査システムの構成図であ
る。 第2図は自動昇圧過程における昇圧用変圧器1次側電流
波形図で(1)は3極双方向サイリスタ点弧角α=18
0°、(2)はα=135°、(3)はα=90°、(
4)はα=45°の場合をそれぞれ示すものである。 第3図は不完金地終点の焼成中の昇圧用変圧器2次側の
電圧波形の例を示すものである。 1・・・ガソリンエンジン付正弦波交流発電機、2・・
・電源開閉器、3・・・昇圧用変圧器、4・・・単相全
波驚流回路、5・・・3極双方向サイリスタ、6・・・
双方向トリガーダイオード、7・・・双方向トリガーダ
イオードのターンオン位相調整回路、8−・・電流−抵
抗値変換回路、9・・・自動昇圧回路、lO・・・定電
流制御回路、11・・・電流検出回路、12・・・リレ
ー動作制御回路、12a、12b・・・リレーのa接点
とb接点、13・・・光ファイ・ぐ−絶縁高電圧用電流
計。 第2図 、l−\、 45’ 第3図
FIG. 1 is a configuration diagram of a power charging control device according to the present invention and a distribution line fault detection system to which the power charging control device is applied. Figure 2 is a diagram of the primary current waveform of the step-up transformer during the automatic step-up process, and (1) is the 3-pole bidirectional thyristor firing angle α = 18
0°, (2) α=135°, (3) α=90°, (
4) shows the case where α=45°. FIG. 3 shows an example of the voltage waveform on the secondary side of the step-up transformer during firing of the unfinished metal terminal. 1...Sine wave alternator with gasoline engine, 2...
・Power switch, 3...Step-up transformer, 4...Single-phase full-wave current circuit, 5...3-pole bidirectional thyristor, 6...
Bidirectional trigger diode, 7-- Bidirectional trigger diode turn-on phase adjustment circuit, 8-- Current-resistance value conversion circuit, 9-- Automatic booster circuit, lO-- Constant current control circuit, 11-- - Current detection circuit, 12... Relay operation control circuit, 12a, 12b... Relay a contact and b contact, 13... Optical fiber/insulated high voltage ammeter. Figure 2, l-\, 45' Figure 3

Claims (1)

【特許請求の範囲】 課電部の昇圧用変圧器の一次側の回路に挿入された双方
向電流制御回路と、 課電部から配電線路へ流出する電流を検出する電流検出
回路と、 その電流検出回路の検出電流の大きさがある設定値より
小さい間は、不完全地絡点の焼成が促進されるような波
高値の電圧を二次側に発生するために点弧角90°附近
で前記双方向電流制御回路を点弧するための自動昇圧回
路と、 電流検出回路の検出電流の大きさがある設定値より大き
くなると、配電線路へ流出する電流を一定値に維持する
ように前記双方向電流制御回路を制御するための自動定
電流制御回路と、を備えたことを特徴とする配電線地絡
事故点探査用課電制御装置。
[Scope of Claims] A bidirectional current control circuit inserted into the primary side circuit of a step-up transformer in a power supply section, a current detection circuit that detects a current flowing from the power supply section to a distribution line, and the current While the magnitude of the detection current of the detection circuit is smaller than a certain set value, the firing angle is set at around 90° in order to generate a voltage on the secondary side with a peak value that promotes firing of the incomplete ground fault point. an automatic booster circuit for igniting the bidirectional current control circuit; and an automatic booster circuit for igniting the bidirectional current control circuit; and an automatic booster circuit for igniting the bidirectional current control circuit; A power charging control device for detecting a ground fault point in a distribution line, comprising: an automatic constant current control circuit for controlling a forward current control circuit.
JP11761281A 1981-07-29 1981-07-29 Controlling device for impression of voltage for inspecting ground fault point of distribution line Pending JPS5819570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11761281A JPS5819570A (en) 1981-07-29 1981-07-29 Controlling device for impression of voltage for inspecting ground fault point of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11761281A JPS5819570A (en) 1981-07-29 1981-07-29 Controlling device for impression of voltage for inspecting ground fault point of distribution line

Publications (1)

Publication Number Publication Date
JPS5819570A true JPS5819570A (en) 1983-02-04

Family

ID=14716064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11761281A Pending JPS5819570A (en) 1981-07-29 1981-07-29 Controlling device for impression of voltage for inspecting ground fault point of distribution line

Country Status (1)

Country Link
JP (1) JPS5819570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139263A (en) * 1986-12-01 1988-06-11 Kansai Electric Power Co Inc:The Automatic test apparatus for distribution line section
WO2012100945A1 (en) * 2011-01-26 2012-08-02 Ms-Technik Mess- Und Regelungstechnik Gmbh & Co. Kg Method and device for locating a fault
CN110726916A (en) * 2019-09-19 2020-01-24 中国南方电网有限责任公司超高压输电公司检修试验中心 Automatic testing device and method for breakover voltage of protection thyristor of MMC power module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139263A (en) * 1986-12-01 1988-06-11 Kansai Electric Power Co Inc:The Automatic test apparatus for distribution line section
WO2012100945A1 (en) * 2011-01-26 2012-08-02 Ms-Technik Mess- Und Regelungstechnik Gmbh & Co. Kg Method and device for locating a fault
CN110726916A (en) * 2019-09-19 2020-01-24 中国南方电网有限责任公司超高压输电公司检修试验中心 Automatic testing device and method for breakover voltage of protection thyristor of MMC power module
CN110726916B (en) * 2019-09-19 2020-11-20 中国南方电网有限责任公司超高压输电公司检修试验中心 Automatic testing device and method for breakover voltage of protection thyristor of MMC power module

Similar Documents

Publication Publication Date Title
US4240009A (en) Electronic ballast
US5479086A (en) Process and device for reducing the inrush current when powering aninductive load
US20020101188A1 (en) Method and apparatus for controllably generating sparks in an ingnition system or the like
US4107579A (en) Starting and operating ballast for high pressure sodium lamp
JPS58148672A (en) Static voltage control cirucit
US4241285A (en) Power supply for SMAW welding and stud welding
US3588465A (en) Line voltage compensating pulsed power welding supply
JPS5819570A (en) Controlling device for impression of voltage for inspecting ground fault point of distribution line
JPH0591719A (en) Testing method of self-excited converter
JPH06141483A (en) Charger of secondary battery
JPS6224877A (en) Capacitor type spot welding machine
JPH05245634A (en) Method and device for reigniting arc in shielding gas welding process
JPH11333323A (en) Method of preventing glow discharge for electric dust collector
JPH0728535A (en) Power source circuit
JPH0242387Y2 (en)
JPH0349807Y2 (en)
JPS5834833B2 (en) flash device
KR0125894B1 (en) Electric shock prevention apparatus of alternating current welding machine
RU64122U1 (en) UNIVERSAL UNIT FOR ARC WELDING AND PLASMA CUTTING
JPS63290199A (en) Gas turbine generator
SU812463A1 (en) Phase controlling circuit
SU1260129A1 (en) Apparatus for switching power supply source of electric welding arc
KR910007186B1 (en) Ac arc welding device
RU2028892C1 (en) Inverter constant-current source for arc welding
JPS635408Y2 (en)