JPS635408Y2 - - Google Patents

Info

Publication number
JPS635408Y2
JPS635408Y2 JP1980142439U JP14243980U JPS635408Y2 JP S635408 Y2 JPS635408 Y2 JP S635408Y2 JP 1980142439 U JP1980142439 U JP 1980142439U JP 14243980 U JP14243980 U JP 14243980U JP S635408 Y2 JPS635408 Y2 JP S635408Y2
Authority
JP
Japan
Prior art keywords
transistor
generator
voltage
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980142439U
Other languages
Japanese (ja)
Other versions
JPS5765534U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980142439U priority Critical patent/JPS635408Y2/ja
Publication of JPS5765534U publication Critical patent/JPS5765534U/ja
Application granted granted Critical
Publication of JPS635408Y2 publication Critical patent/JPS635408Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は交流発電機の界磁制御装置に関するも
ので、特に発電機が最大定格出力(電流)以下の
運転時は定電圧制御を行い又最大定格出力運転時
は回転数の上昇に対応して出力電流を垂下せしめ
る機能を備えた界磁制御装置を提供するものであ
る。以下図面を用いて本考案を詳細説明する。第
1図は本考案の一実施例を示す回路図で、図にお
いて1は三相交流発電機、2はダイオードD1乃
至D6より形成される三相全波整流器、3は前記
整流器2の直流出力による充電される車載用蓄電
池、4は始動スイツチ、5は前記発電機1の界磁
巻線、6は前記発電機1の出力電圧もしくは蓄電
池3の電圧に応じて前記界磁巻線5の界磁電流を
制御する開閉回路で、電圧検出用抵抗R1,R2
及び定電圧ダイオードDZと、検出電圧が前記定
電圧ダイオードのツエナー電圧に達すると導通し
て複合トランジスタベースの電流を短絡(側絡)
するように接続されたトランジスタQ1と、前記
トランジスタQ1の非導通(OFF)時、抵抗R
5を介してベース電流が供給されて導通する界磁
電流制御用の複合トランジスタQ3及び前記トラ
ンジスタQ3が非導通になつた瞬間に界磁巻線5
の界磁電流転流用ダイオードD7等により形成さ
れている。次に7は前記開閉回路6を制御するリ
ミツタ回路で、前記整流器2の交流入力端と直
流出力端間に接続された抵抗R8、コンデンサ
C1の徴分回路DC及び前記徴分回路DCの出力に
より導通し、複合トランジスタQ3のベース電流
を短絡(側路)せしめるトランジスタQ2等によ
り形成されている。なお第1図中R3,R7は動
作安定用抵抗である。次に本案装置の動作につい
て第2図、第3図を参照して説明する。先ず第2
図は本案装置と比較した発電機1の最大出力特性
図で、横軸は回転数N(r.P.m)縦軸は出力電流
(A)を示すもので、該発電機1は曲線イに示す如く
重負荷時回転数Nの上昇に伴い出力電流I0が増加
し、第2図中点Pで示す最大出力電流に達すると
最早回転数Nの上昇に係わらず一定電流になる特
性を有するものとする。(なおこの状態を最大定
格運転と称す。)又、該発電機1の出力電流I0
界磁電流(以下IF)は比例関係にあるものとす
る。第3図は本案実施例装置の各部動作波形図で
ある。
[Detailed description of the invention] This invention relates to a field control device for an alternator. In particular, when the generator is operating at a maximum rated output (current) or below, constant voltage control is performed, and when the generator is operating at the maximum rated output, the rotation speed is controlled. The object of the present invention is to provide a field control device having a function of lowering the output current in response to the increase. The present invention will be explained in detail below using the drawings. FIG. 1 is a circuit diagram showing one embodiment of the present invention, in which 1 is a three-phase alternating current generator, 2 is a three-phase full-wave rectifier formed by diodes D1 to D6, and 3 is a DC output of the rectifier 2. 4 is a starting switch, 5 is a field winding of the generator 1, and 6 is a battery that charges the field of the field winding 5 according to the output voltage of the generator 1 or the voltage of the storage battery 3. In the switching circuit that controls the magnetic current, voltage detection resistors R1 and R2
and the constant voltage diode DZ, and when the detected voltage reaches the Zener voltage of the constant voltage diode, conducts and short-circuits the current of the composite transistor base (side-circuit).
When the transistor Q1 is non-conducting (OFF), the resistor R
The composite transistor Q3 for field current control conducts when a base current is supplied through the field winding 5, and the moment the transistor Q3 becomes non-conductive, the field winding 5 becomes conductive.
It is formed by a field current commutating diode D7 and the like. Next, 7 is a limiter circuit that controls the switching circuit 6, and is controlled by a resistor R8 connected between the AC input terminal and the DC output terminal of the rectifier 2, the component circuit DC of the capacitor C1, and the output of the component circuit DC. It is formed of a transistor Q2 and the like that is conductive and short-circuits (bypasses) the base current of the composite transistor Q3. Note that R3 and R7 in FIG. 1 are resistors for stabilizing operation. Next, the operation of the present device will be explained with reference to FIGS. 2 and 3. First, the second
The figure shows the maximum output characteristics of generator 1 compared to the proposed device, where the horizontal axis is the rotation speed N (rPm) and the vertical axis is the output current.
(A), the output current I0 of the generator 1 increases as the rotational speed N increases under heavy load as shown by curve A, and when it reaches the maximum output current shown at the middle point P in Figure 2, It is assumed that the current is constant regardless of the increase in the rotational speed N. (Note that this state is referred to as maximum rated operation.) Furthermore, it is assumed that the output current I 0 of the generator 1 and the field current (hereinafter referred to as IF) are in a proportional relationship. FIG. 3 is an operational waveform diagram of each part of the apparatus according to the present invention.

<動作1 (定常運転)> 発電機1が未発電の状態で始動スイツチ4を閉
すると蓄電池3の端子電圧が前記開閉回路6に印
加される。
<Operation 1 (Steady Operation)> When the starting switch 4 is closed while the generator 1 is not generating power, the terminal voltage of the storage battery 3 is applied to the switching circuit 6.

そしてこの端子電圧が抵抗R1,R2によつて
分圧される定電圧ダイオードDZのツエナー電圧
VZのツエナー電圧VZに達しない状態では該定電
圧ダイオードDZは導通しない。このためトラン
ジスタQ1はベース電流が流れず、非導通状態に
ある。一方界磁電流制御用の複合トランジスタQ
3は前記トランジスタQ1が非導通であれば抵抗
R5を介してベース電流が流れるので、導通状態
となる。
The Zener voltage of the constant voltage diode DZ where this terminal voltage is divided by resistors R1 and R2
The constant voltage diode DZ does not conduct when the Zener voltage VZ of VZ is not reached. Therefore, no base current flows through the transistor Q1, and the transistor Q1 is in a non-conducting state. Composite transistor Q for one-sided field current control
3, if the transistor Q1 is non-conductive, the base current flows through the resistor R5, so that the transistor Q1 becomes conductive.

そして前記複合トランジスタQ3が導通すれば
界磁巻線5には界磁電流IFが流れるので、発電
機1は発電可能な状態になる。また始動スイツチ
4を閉成すれば図示しない点火装置を介してエン
ジンは始動される。エンジンが始動し、発電機1
が始動すると第3図aに示す交流電圧を発生す
る。(なお第3図aはW相のみの電圧波形を示
す。)そしてこの交流電圧は整流器2により全波
整流されて蓄電池3を充電すると共に、図示しな
い他の負荷に供給される。
When the composite transistor Q3 becomes conductive, a field current IF flows through the field winding 5, so that the generator 1 becomes ready to generate electricity. Furthermore, when the starting switch 4 is closed, the engine is started via an ignition device (not shown). The engine starts and generator 1
When started, it generates an alternating current voltage as shown in FIG. 3a. (Note that FIG. 3a shows the voltage waveform of only the W phase.) This AC voltage is full-wave rectified by the rectifier 2 to charge the storage battery 3, and is also supplied to other loads (not shown).

以下第1図においてリミツタ回路7を無視して
説明する。蓄電池3の端子電圧VBは充電が進む
につれ次第に上昇し、第3図Cに示す時間t1に
おいてツエナー電圧Vzに達すると定電圧ダイオ
ードDZは導通し、トランジスタQ1も導通する。
(第3図d)一方複合トランジスタQ3は非導通
(第3図e)となり、界磁巻線5の界磁電流IFは
減少する(第2図h)この結果発電機1の出力は
低下し、又、蓄電池3の端子電圧も負荷給電等に
より低下し、時間t2において再びツエナー電圧
Vz以下になると上記と反対にトランジスタQ1
が非導通、複合トランジスタQ3が導通状態にな
り、交流出力を増加せしめ、蓄電池3の端子電圧
VBを再び上昇せしめる。このように蓄電池3の
端子電圧を検出することにより、その電圧の大小
により界磁巻線5の電流を増減させて、発電機1
の出力電圧をある一定値に調整する。次にリミツ
タ回路7の動作について説明する。先ず発電機1
の各相(UVW)には回転数に比例した交流電圧
(第3図a)を生じるが、整流器2の交流入力の
一端及び直流出力の一端間には第2図bに示
す如く蓄電池3によつてクランプされたほゞ矩形
波の出力電圧が発生する。(なおこの電圧は発電
機1の回転数に比例した周波数をもつ電圧波形で
ある。)そしてこの出力電圧は抵抗R8及びコン
デンサC5の徴分回路DCに回転数検出信号とし
て入力され、第3図fに示すように時間t2〜t
3の間徴分電流が流れる。一方トランジスタQ2
は前記徴分電流がベースに流れる間第3図gの如
く導通状態になる。該トランジスタQ2が導通す
るとトランジスタQ1の非導通状態に係わらず、
抵抗R5を介す複合トランジスタQ3のベース電
流を短絡(側路)するため、この間該複合トラン
ジスタQ3は第3図eに示す点線の如く時間t2
〜t3の間非導通になり、界磁電流はダイオード
D7に転流し、減少する。(第3図h)従つて前
述のようにリミツタ回路7を無視すると蓄電池3
は時間t2以降時間t4において定電圧ダイオー
ドDZのツエナー電圧Vzに達するものが、リミツ
タ回路7の挿入により該蓄電池3の端子電圧の立
上りが遅れ、時間t5において、ツエナー電圧
Vzに達することになり、結果的には複合トラン
ジスタQ3は時間t5まで導通状態を保ち(第3
図e)界磁電流IFが流れる(第3図h)ために
発電機1の出力電圧は上記と同様にある一定値に
調整できる。
The following explanation will be given while ignoring the limiter circuit 7 in FIG. The terminal voltage VB of the storage battery 3 gradually increases as charging progresses, and when it reaches the Zener voltage Vz at time t1 shown in FIG. 3C, the constant voltage diode DZ becomes conductive, and the transistor Q1 also becomes conductive.
(Fig. 3 d) On the other hand, the composite transistor Q3 becomes non-conductive (Fig. 3 e), and the field current IF in the field winding 5 decreases (Fig. 2 h). As a result, the output of the generator 1 decreases. , the terminal voltage of the storage battery 3 also decreases due to load power supply, etc., and the Zener voltage increases again at time t2.
When it goes below Vz, contrary to the above, transistor Q1
is non-conductive, and the composite transistor Q3 becomes conductive, increasing the AC output and increasing the terminal voltage of the storage battery 3.
Let VB rise again. By detecting the terminal voltage of the storage battery 3 in this way, the current in the field winding 5 is increased or decreased depending on the magnitude of the voltage, and the generator 1
Adjust the output voltage to a certain value. Next, the operation of the limiter circuit 7 will be explained. First, generator 1
An AC voltage proportional to the rotation speed (Fig. 3a) is generated in each phase (UVW) of the rectifier 2, but a storage battery 3 is connected between one end of the AC input and one end of the DC output of the rectifier 2 as shown in Fig. 2b. A clamped, substantially square wave output voltage is thus generated. (Note that this voltage is a voltage waveform with a frequency proportional to the rotation speed of the generator 1.) Then, this output voltage is input as a rotation speed detection signal to the differential circuit DC of the resistor R8 and the capacitor C5, as shown in FIG. As shown in f, time t2-t
3, a component current flows. On the other hand, transistor Q2
becomes conductive as shown in FIG. 3g while the component current flows through the base. When the transistor Q2 is conductive, regardless of the non-conductive state of the transistor Q1,
In order to short-circuit (shunt) the base current of the composite transistor Q3 through the resistor R5, the composite transistor Q3 during this period is charged at a time t2 as shown by the dotted line in FIG. 3e.
It becomes non-conductive for ~t3, and the field current commutates to diode D7 and decreases. (Fig. 3h) Therefore, if the limiter circuit 7 is ignored as described above, the storage battery 3
reaches the Zener voltage Vz of the voltage regulator diode DZ at time t4 after time t2, but due to the insertion of the limiter circuit 7, the rise of the terminal voltage of the storage battery 3 is delayed, and at time t5, the Zener voltage decreases.
As a result, the composite transistor Q3 remains conductive until time t5 (the third
Figure e) Because the field current IF flows (Figure 3 h), the output voltage of the generator 1 can be adjusted to a certain constant value in the same way as above.

<動作2 (最大定格運転)> 車載用機器等の使用電力が増加し、又発電機1
が第2図点pに示す最大電流状態に達すると、該
出力電流は飽和状態に達し、最早回転数の増加に
係わらず増加できない。
<Operation 2 (Maximum rated operation)> The power consumption of in-vehicle equipment, etc. increases, and the generator 1
When reaches the maximum current state shown at point p in Figure 2, the output current reaches a saturation state and can no longer be increased despite an increase in the rotational speed.

この状態に至ると(第3図t6)蓄電池3の端
子電圧VBは最早定電圧ダイオードDZのツエナー
電圧Vzに達せず、トランジスタQ1は非導通状
態を維持する。(第3図d)そこでリミツタ回路
7を無視するとこの間複合トランジスタQ3は導
通状態を継続する。(第3図e)このため界磁巻
線5は第3図hの如く時間t6以降電流を流し続
け、発電機1の最大定格運転を維持せしめる。つ
まり発電機1は回転数の増加に係わらず出力電流
はほゞ一定であり、又蓄電池3の端子電圧も増加
できないため開閉回路6は閉回路のみを形成する
結果、図示しないエンジン等を介し、発電機1の
温度が上昇し、これにより該発電機1或は整流器
等の回路部品が熱的破壊を惹起する危険に晒され
る。そこでリミツタ回路7は前述のように発電機
1の回転数に応じて一定時間トランジスタQ2を
導通せしめて複合トランジスタQ3を非導通にす
る(第2図e)ためこの間(時間t7〜t8、t
9〜t10、t11〜t12)電源からの界磁電
流IFが遮断されて発電機1の出力電流は垂下さ
れることになる。(第2図点線ロ)そこで今リミ
ツタ回路7の回路定数を設定し、発電機1の回転
数に係わりなくトランジスタQ2の導通時間(第
2図時間t2〜t3、t7〜t8etc)を一定に
なる如く設定すると換言すれば、回転数の増加に
伴う発電機1の出力周波数の増加に係わらず各サ
イクル時のトランジスタQ2の導通時間、即ち複
合トランジスタQ3の非導通時間を一定に設定す
ると高速回転に比例して、上記複合トランジスタ
Q3の非導通時間の割合が増加し、本案装置の特
性曲線(第2図ロ)に示す如く出力電流の垂下量
は該発電機1の回転数の増加に比例して大きくな
る。因みに第2図において発電機1の回転数N=
8000rpmにおいて1回転に要する時間Tは7.5ms
(8000/60sec)であり、この状態において界磁電
流IFを27%遮断する。即ち出力電流を27%垂下
運転する如く設定すれば4000rpm時においては約
13%(7.5×0.27/4000/60)垂下する。このよ
うに最大定格出力運転時は、発電機の回転数に応
じて出力電流の垂下量を調整できるので、発電機
の発熱を抑制した安全運転を可能にする。なおリ
ミツタ回路7の定数を調整すれば垂下量を任意に
制御できることは明白である。ただこの場合徴分
回路DCにおいてコンデンサC1は交流端子及
び直流端子間が負の反サイクル時に抵抗R8、
R7等を介して放電が完了する如く設定すること
が必要である。以上の説明から明らかなように、
本考案によれば発電機が最大定格出力運転時に
は、回転数の増加に応じて出力電流の垂下量を調
整できるので、発熱量を抑制した運転が可能であ
り、又最大定格運転に達するまでは、出力電圧或
は蓄電池の端子電圧を一定値に調整できる等、特
に車載用発電機の制御用として好適である等、実
用上の効果は極めて大なるものである。
When this state is reached (t6 in FIG. 3), the terminal voltage VB of the storage battery 3 no longer reaches the Zener voltage Vz of the constant voltage diode DZ, and the transistor Q1 maintains a non-conducting state (d in FIG. 3). If the limiter circuit 7 is ignored, the composite transistor Q3 continues to conduct during this time (e in FIG. 3). As a result, the field winding 5 continues to pass current after time t6 as shown in h in FIG. 3, and the maximum rated operation of the generator 1 is maintained. In other words, the output current of the generator 1 remains almost constant regardless of the increase in the rotation speed, and since the terminal voltage of the storage battery 3 cannot be increased, the switching circuit 6 forms only a closed circuit, and as a result, the temperature of the generator 1 rises through the engine (not shown), and as a result, the generator 1 or circuit components such as the rectifier are exposed to the risk of thermal destruction. Therefore, the limiter circuit 7 turns on the transistor Q2 for a certain period of time in response to the number of revolutions of the generator 1, and turns off the composite transistor Q3 (FIG. 2e).
(t9-t10, t11-t12) The field current IF from the power source is cut off, and the output current of the generator 1 drops (dotted line B in Fig. 2). Now, if the circuit constants of the limiter circuit 7 are set so that the conductive time of the transistor Q2 (times t2-t3, t7-t8, etc. in Fig. 2) is constant regardless of the rotation speed of the generator 1, in other words, if the conductive time of the transistor Q2 in each cycle, i.e., the non-conductive time of the composite transistor Q3, is set constant regardless of the increase in the output frequency of the generator 1 that accompanies the increase in the rotation speed, the proportion of the non-conductive time of the composite transistor Q3 increases in proportion to the high speed rotation, and the amount of drop in the output current increases in proportion to the increase in the rotation speed of the generator 1, as shown in the characteristic curve of the device of this invention (B in Fig. 2). Incidentally, in Fig. 2, when the rotation speed N of the generator 1 is
At 8000 rpm, the time required for one rotation is 7.5 ms.
(8000/60sec), and in this state, the field current IF is cut off by 27%. In other words, if the output current is set to operate at a 27% drop, at 4000 rpm, the
The droop is 13% (7.5 x 0.27/4000/60). In this way, when operating at maximum rated output, the amount of output current droop can be adjusted according to the generator's rotation speed, allowing for safe operation with reduced heat generation in the generator. It is clear that the amount of droop can be freely controlled by adjusting the constant of the limiter circuit 7. However, in this case, in the differential circuit DC, the capacitor C1 is connected to the resistor R8 and
It is necessary to set it so that the discharge is completed via R7 etc. As is clear from the above explanation,
According to this invention, when the generator is operating at its maximum rated output, the amount of output current drop can be adjusted in accordance with the increase in rotation speed, making it possible to operate the generator with reduced heat generation. Furthermore, until the generator reaches its maximum rated operation, the output voltage or terminal voltage of the storage battery can be adjusted to a constant value, making this device particularly suitable for controlling on-board generators, and providing extremely significant practical benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本考案の一実施例回路図及び
その各部動作波形図、第2図は本考案装置と比較
した発電機の最大出力特性図である。図において
は1は三相交流発電機、5はその界磁巻線、2は
三相全波整流器、はその交流入力端子及び直
流出力端子、3は蓄電池、4は始動スイツチ、6
は開閉回路、R1,R2,R3,R5,R7は抵
抗、DZは定電圧ダイオード、Q1はトランジス
タ、Q3は複合トランジスタ、7はリミツタ回
路、DCは徴分回路、Q2はトランジスタである。
FIGS. 1 and 3 are circuit diagrams of an embodiment of the present invention and operation waveform diagrams of each part thereof, and FIG. 2 is a maximum output characteristic diagram of a generator compared with the apparatus of the present invention. In the figure, 1 is a three-phase alternating current generator, 5 is its field winding, 2 is a three-phase full-wave rectifier, is its AC input terminal and DC output terminal, 3 is a storage battery, 4 is a starting switch, and 6
is a switching circuit, R1, R2, R3, R5, and R7 are resistors, DZ is a constant voltage diode, Q1 is a transistor, Q3 is a composite transistor, 7 is a limiter circuit, DC is a differential circuit, and Q2 is a transistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 交流発電機の出力電圧により整流器を通して充
電される蓄電池と、前記交流発電機の界磁電流制
御用の主トランジスタ及び前記出力電圧もしくは
蓄電池電圧の検出出力により前記主トランジスタ
を制御する制御用トランジスタより成る開閉回路
と、抵抗及びコンデンサより成り、前記交流発電
機の出力波形を徴分する徴分回路及び前記徴分回
路の出力パルスにより導通するトランジスタを含
むリミツタ回路を備え前記リミツタ回路により前
記開閉回路の主トランジスタを制御するようにし
たことを特徴とする交流発電機の界磁制御装置。
It consists of a storage battery that is charged through a rectifier by the output voltage of the alternating current generator, a main transistor for controlling the field current of the alternator, and a control transistor that controls the main transistor based on the detected output of the output voltage or the storage battery voltage. a limiter circuit comprising a switching circuit, a resistor and a capacitor, and a distinguishing circuit for distinguishing the output waveform of the alternator, and a transistor that is made conductive by the output pulse of the distinguishing circuit; A field control device for an alternator, characterized in that it controls a main transistor.
JP1980142439U 1980-10-06 1980-10-06 Expired JPS635408Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980142439U JPS635408Y2 (en) 1980-10-06 1980-10-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980142439U JPS635408Y2 (en) 1980-10-06 1980-10-06

Publications (2)

Publication Number Publication Date
JPS5765534U JPS5765534U (en) 1982-04-19
JPS635408Y2 true JPS635408Y2 (en) 1988-02-15

Family

ID=29502236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980142439U Expired JPS635408Y2 (en) 1980-10-06 1980-10-06

Country Status (1)

Country Link
JP (1) JPS635408Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101151U (en) * 1979-12-29 1981-08-08

Also Published As

Publication number Publication date
JPS5765534U (en) 1982-04-19

Similar Documents

Publication Publication Date Title
US5497071A (en) Output power control device for automotive AC generator
US6842353B2 (en) Switching power supply, and a method of driving the same
JP3537833B2 (en) Control device for vehicle alternator
US6664767B2 (en) Voltage regulator of vehicle AC generator having variable bypass circuit resistance
US4937514A (en) AC generator control apparatus for vehicles
US4760323A (en) Voltage regulator for generator
JP2837687B2 (en) Charging device
US5493202A (en) Voltage regulator device for vehicular AC generator
US5563497A (en) Control device for AC generator
US4914374A (en) Voltage regulator for AC generator with constant interruption frequency
US4222005A (en) Testing device for generator output voltage regulators
US3548288A (en) Control apparatus for electric alternators having means for initial excitation build-up
US4197492A (en) Current generating system with output winding switching device
JPS635408Y2 (en)
US4642548A (en) Control apparatus for charging generator
KR100216015B1 (en) Output voltage control device of ac generator
US4612493A (en) Control device for charging generator
JPH0132741B2 (en)
JP3303014B2 (en) Voltage control device for magnet generator
JPH03173324A (en) Ac generator controller for vehicle
JPH034160Y2 (en)
SU1363398A1 (en) Arrangement for controlling thyristors of pulsed regulator
JPS6031439Y2 (en) Automatic voltage regulator for excited alternator
JPS6011725Y2 (en) AC generator voltage control device
JPH058800Y2 (en)