JPS581956A - Flat display unit of electron beam accelerating type - Google Patents

Flat display unit of electron beam accelerating type

Info

Publication number
JPS581956A
JPS581956A JP10093081A JP10093081A JPS581956A JP S581956 A JPS581956 A JP S581956A JP 10093081 A JP10093081 A JP 10093081A JP 10093081 A JP10093081 A JP 10093081A JP S581956 A JPS581956 A JP S581956A
Authority
JP
Japan
Prior art keywords
filament
substrate
insulating layer
tungsten
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10093081A
Other languages
Japanese (ja)
Inventor
Masaru Shinpo
新保 優
Yuhei Muto
武藤 雄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10093081A priority Critical patent/JPS581956A/en
Publication of JPS581956A publication Critical patent/JPS581956A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/126Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using line sources

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To make it easier to handle a display unit while it is being assembled and to ensure its alignment by a construction wherein a plurality of filaments corresponding to fluorescent picture elements and conductive passages for supplying power to the filaments are formed in one body and gaps are provided in the lower portions of the filaments. CONSTITUTION:In the drawing, a substrate 31 is made of alumina-ceramics and the like, and an insulating layer 32 made of glas glaze is formed on the substrate. Then a filament 331 and a conductive passage 332 are formed in one body in a metal layer 33 made of tungsten, tungsten alloy or the like, The resistance of each filament 331 is set so as to cause thermions to be discharged when power is supplied. The lower portion of each filament 331 is constructed in such a way that a portion of the insulating layer 32 is removed to provide a gap 34. Consequently, alignment at the time of assembling can be readily made, whereas highly accurate positioning is made possible.

Description

【発明の詳細な説明】 本夷明は電子線加速型平板状ディスプレイ装置に係)、
畳にその熱電子線源の改良に関する。
[Detailed Description of the Invention] This invention relates to an electron beam accelerated flat display device);
Concerning the improvement of the thermionic source for tatami mats.

平板状ディスプレイ装置としてはエレクトロルイネッセ
ンス方式、ゾッズマ方式、液晶方式を利用しえものが知
られている。しかし、これらO方式の平板状ディスプレ
イ装置は文字表示のような低書度画儂のrイスプレイ装
置としては実用畜れていゐが、高速走査でかつ高書度画
像が必要であるカラーテレビ?wン用表どKは発光効率
に@度があ夛、また大画面用としては実用的ではない。
As flat display devices, devices using an electroluminescence method, a Zodsma method, and a liquid crystal method are known. However, these O-type flat display devices are not practical as display devices with low resolution images such as character display, but are they suitable for color televisions that require high-speed scanning and high resolution images? The light-emitting efficiency of the front panel K is too high, and it is not practical for use on large screens.

この丸めテレビジ、ン用などとしては高真空中で電子流
を変調加速して螢光面に形成され九螢光体画素を発光さ
せるのに充分なエネルギを付加してから螢光体画素に射
突し動的画像を再現させる電子纏加速璽の平板状ディス
プレイ装置が注目されている。
For use in rounded television televisions, etc., an electron stream is modulated and accelerated in a high vacuum to add enough energy to form on a phosphor surface and cause nine phosphor pixels to emit light, and then to irradiate the phosphor pixels. 2. Description of the Related Art Flat display devices using electronic accelerators that reproduce dynamic images are attracting attention.

従来の電子線加速型平板状デースゲレイ装置の一例を第
1図および第2図により説明する。
An example of a conventional electron beam acceleration type flat plate-shaped desugare device will be explained with reference to FIGS. 1 and 2.

第1図は対角長が約1.2畷の平板状ディスプレイ装置
の外観斜読図であプ、全体が真空容器となっていて、内
部に平板状の熱電子線源、変調電極群、加速電極、螢光
体画素が形成された螢光面等が収められている。表示面
には、螢光面が被着形成され九ガラスからなる平板上パ
ネル上に透明な!ラスティ、り板あるいはtラス板など
からなる保護板11が設けられている。
Figure 1 is a perspective view of the appearance of a flat display device with a diagonal length of approximately 1.2 feet. It contains electrodes, a fluorescent surface on which fluorescent pixels are formed, etc. The display surface has a fluorescent surface adhered to it and is transparent on a flat panel made of nine glasses! A protective plate 11 made of a rusty plate, a lath plate, a t-Las plate, or the like is provided.

12はこの保護板110周縁部に設けられた額縁状の支
持体であや、23はこの支持体と一体形成堪れた7ラン
ジ郁である、。
Reference numeral 12 denotes a frame-shaped support provided on the periphery of the protective plate 110, and 23 indicates seven lunges formed integrally with this support.

112図はその内部構造の要部の分解斜視図である。2
1は平板状ディスプレイ装置の裏面外囲器を構成する金
属板などか□らなる背面基板であり、この上にスペーV
ZXが固定されており、このス(−サ22上に金属支持
板2Jを介して平板状の熱電子線源24が設けらにてい
る。こO熱電子線@j4は、各画素に対応する位置に孔
があけられ九基板241に導電路24瀧を形成し、例え
ばタングステン線をコイル状に形成したフィラメント2
41を各画素位置に配設して構成され友ものである。
FIG. 112 is an exploded perspective view of the main parts of the internal structure. 2
Reference numeral 1 denotes a back substrate made of a metal plate or the like that constitutes the back envelope of the flat display device, and a space V is placed on top of this.
ZX is fixed, and a flat thermionic beam source 24 is provided on this spacer 22 via a metal support plate 2J. A conductive path 24 is formed on the substrate 241 by opening a hole at a position where the filament 2 is made of, for example, a coiled tungsten wire.
41 is arranged at each pixel position.

仁の熱電子線源z4上には、第1の変調電極群25、第
2の変調電極群26が重ねられている 第1の変調電極
群2Jは、熱電子線源24の有効部に対応する位置に孔
があけられ九絶縁性基板りJl上に1デイスlレイ装置
の垂直軸(Y)方向に多数のりIン状の電極片jisを
配設し丸もので、電極片21.には基板251の孔に対
応して、これよシ径O小さい孔が設けられている7、第
2の変調電極群2#は熱電子線源24の有効部に対応す
る位置に孔があけられ九絶縁性基板2#1上にディスプ
レイ装置の水平軸(X)方向に多数のりdン状の電極片
21雪を配設したもので、電極片xa諺には第1の変調
電極群の孔に対応して同様な孔が設けられている。即ち
、第1の変調電極群25のり一ン状の電極片2J重と第
2の変調電極群26のり一ン状の電極片26嘗とは平板
状ディスプレイ装置の水平軸(X)方向及び垂直軸(Y
)方向にマトリ、クスを形成するように配設されている
A first modulating electrode group 25 and a second modulating electrode group 26 are stacked on the thermionic source z4. The first modulating electrode group 2J corresponds to the effective part of the thermionic source 24. A large number of circular electrode pieces are arranged in the vertical axis (Y) direction of the 1-day array device on an insulating substrate with holes drilled at the positions shown in FIG. A hole with a smaller diameter O is provided in the substrate 251 to correspond to the hole in the substrate 251 . A large number of glue-shaped electrode pieces 21 are arranged on the insulating substrate 2 #1 in the horizontal axis (X) direction of the display device. Similar holes are provided corresponding to the holes. That is, the linear electrode pieces 2J of the first modulation electrode group 25 and the linear electrode pieces 26 of the second modulation electrode group 26 are arranged in the horizontal axis (X) direction and vertical direction of the flat display device. Axis (Y
) direction to form a matrix and a box.

第2の変調電極群26上には多数の孔が穿設された絶縁
ス(−サ21を介して第1.第2の変調電極群xs、z
ttの孔に対応する位fK孔を有する平板状の加速電極
2aが設けられている。
The first and second modulation electrode groups
A flat accelerating electrode 2a having holes fK corresponding to holes tt is provided.

この加速電極2B上には絶縁無機質からなる断面形状が
#1ぼ円形のスペーサ29を介して内1會光面が被着形
成された平板状・譬ネル30が設けられている。螢光面
は例えば螢光体画素を形成する赤、緑、青各色に発光す
る帯状螢光体層J ox  l 30鵞+ J OBが
平板状ディスプレイ装部の垂直軸(Y)方向に長手方向
が平行になるように規則的に配列形成場れたものでこの
平板状・譬ネル30か表面外囲器を形成するようになっ
ている。螢光体画素数はカラーの場合約75X1G個と
なっている。
On this accelerating electrode 2B, there is provided a planar mirror 30 having one of its optical surfaces adhered thereto via a spacer 29 made of an insulating inorganic material and having a substantially circular cross section. The phosphor surface is, for example, a band-shaped phosphor layer that emits red, green, and blue colors forming a phosphor pixel. These are formed by regularly arranging them parallel to each other to form a surface envelope. The number of phosphor pixels is approximately 75×1G in the case of color.

この様な構造の平板状ディスグレイ装置の特徴〇一つは
、一つの螢光体画素に対し、一つの熱陰極、一対の変調
電極の孔部、一つの加速電極の孔部を対応させて最も単
純な構造になっていることである。
Features of the flat disk gray device with this structure: One phosphor pixel is associated with one hot cathode, a pair of modulating electrode holes, and one accelerating electrode hole. It has the simplest structure.

を九このような構造により大画面のものを形成する場合
、内部電極、即ち平面状の熱電子線□源、第1及び第2
の変調電極、加速電極を加工、組立に害鳥゛な寸法に分
割したものを組合せる必要がある。例えば平面状の熱電
子線源のフィラメントを75 x 101!Am度にし
、これを全部並列にすると供給電流は1 kAにも達す
ることになり、その供給方法には特別の工夫が必要であ
シ、実用供給電流単位にブ70.り分割し九電流供給端
子を取抄出し、直並列にすることが望ましい。
(9) When forming a large screen with such a structure, the internal electrodes, that is, the planar thermionic beam sources, the first and second
It is necessary to combine modulation electrodes and acceleration electrodes that are divided into harmful dimensions for processing and assembly. For example, the filament of a flat thermionic beam source is 75 x 101! Am degrees, and if they were all connected in parallel, the supply current would reach as much as 1 kA, and the supply method required special measures, and the practical supply current unit was 70. It is desirable to separate the terminals, remove nine current supply terminals, and connect them in series and parallel.

このような平板状ディスプレイ装置において、特に熱電
子線源の構成は全体の機能や高精度を必要とする組立工
@に大きな影響を及ぼす、電子線源の構成法の一例とし
て、数μのタングステン線をコイル状に成形し、電極金
属にウェルド固着する方法がある。このようにして作成
された熱電子線源は、もちろん所望の機能を果たすこと
が確められ九が、■上記のとと〈75X10’個のフィ
ラメント群を作成するKは多大な時間を必要とするζ■
微細な構成体であるが故に作成又は組立中に変形や切断
を生じ易く、取扱いがきわめてむづかしい、■位置精度
が出し難いなどの欠点がある。
In such a flat display device, the structure of the thermionic beam source in particular has a great impact on the overall function and the assembly process, which requires high precision. There is a method of forming the wire into a coil shape and welding it to the electrode metal. Of course, it has been confirmed that the thermionic beam source created in this way fulfills the desired function. However, the process described above and the process of creating 75 x 10' filament groups requires a large amount of time. Do ζ■
Because it is a minute structure, it is easily deformed or cut during fabrication or assembly, making it extremely difficult to handle, and (2) having difficulty achieving positional accuracy.

本発明の目的は、上記の如き難点を解消した熱電子線源
をもつ電子線加速型平板状ディスグレイ装置を提供する
にある、。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electron beam acceleration type plate-shaped display gray device having a thermionic beam source that eliminates the above-mentioned difficulties.

本発明における熱電子線源は、所定基板上に絶縁層を介
して設けた金属層により、螢光体画素に対応した複数の
フィラメント部とこれに通電する導電路部とを一体的に
形成し、かつ各フィラメント部の下部絶縁層を一部除去
してフィラメント部の下部に間隙を設けた構造とする。
In the thermionic beam source of the present invention, a plurality of filament portions corresponding to phosphor pixels and a conductive path portion for supplying current to the filament portions are integrally formed by a metal layer provided on a predetermined substrate with an insulating layer interposed therebetween. , and a structure in which a portion of the lower insulating layer of each filament portion is removed to provide a gap below the filament portion.

このような熱電子線源構造を用いるととKより、ディス
プレイ装置組立て時の散扱いは容、IKな抄、アライメ
ントも確実になる。またこのような熱電子線源構造は、
個々のフィラメントをタングステン線の成型によシ独立
に作る従来の4のに比べ、蒸着、工、チング等の工程で
容易に調造することができる。
When such a thermionic beam source structure is used, handling during assembly of the display device becomes easier, and accurate processing and alignment can be ensured. In addition, such a thermionic source structure is
Compared to the conventional method 4, in which each filament is made independently by molding a tungsten wire, it can be easily prepared through processes such as vapor deposition, processing, and etching.

本発明の一実施例の熱電子線源を第3図を用いて説明す
る。11はたとえばアルンナセラミックスなどの基板で
あり、この上にガラスグレーズなどの絶縁層32が形成
され、その上にタングステン又はタングステン合金など
で作られた金属層IJによ!Jフィラメント部is、 
と導電路部jJ、が一体的に形成されている。各フィラ
メント部is、は、通電により熱電子が放出されるよう
その抵抗値が設定されている。また各フィラメント部j
31の下部は絶縁層32の少なくとも一部が除去されて
間Hs4を有する構造となっている。第3図伽)は(&
)のA −A’断面図を示している。
A thermionic beam source according to an embodiment of the present invention will be explained using FIG. Reference numeral 11 denotes a substrate made of Aluna ceramics or the like, on which an insulating layer 32 such as glass glaze is formed, and on top of that is a metal layer IJ made of tungsten or tungsten alloy! J filament part is,
and a conductive path portion jJ are integrally formed. The resistance value of each filament portion is set so that thermoelectrons are emitted when energized. Also, each filament part j
At least a portion of the insulating layer 32 is removed from the lower part of the insulating layer 31, resulting in a structure having a gap Hs4. Figure 3) is (&
) is shown.

本構造の熱電子線源は上記のように基板の上に導電路と
フィラメントが同じ金属層を用いて構成されている一体
化構造であるから、組立時のアライメントが容易になり
、高精度の位置出しが可能であり、また取扱いや組立作
業も簡単になる。またフィラメント部は基板と接触して
いないから、通電時の・熱損失が小さく、加熱時に基板
や絶縁層を形成している物質で汚染される事も少ない。
As mentioned above, the thermionic beam source of this structure has an integrated structure in which the conductive path and the filament are constructed using the same metal layer on the substrate, so alignment during assembly is easy and high precision can be achieved. Positioning is possible, and handling and assembly work are also simplified. Furthermore, since the filament part is not in contact with the substrate, there is less heat loss when electricity is applied, and there is less chance of contamination with substances forming the substrate or insulating layer during heating.

第3図は導電路部33鵞とフィラメント部331が平行
で、かつフィラメント部33.がすべて並列に接続され
ている一例であるが、導電路部とフィラメント部の配置
はさまざまなデデインが可能である。他の配置例を第4
図に示す。第4図(1)はフィラメント部JJ1の長手
方向を導電路部33.と直交させた並列配置である。ま
た第4図6)K示すように三つの電子銃からなる一画素
に対応させて三個のフィラメント部331を直列にした
並列配置も可能である。
In FIG. 3, the conductive path portion 33 and the filament portion 331 are parallel, and the filament portion 33. In this example, all of the conductive path sections and filament sections are connected in parallel, but various arrangements are possible for the conductive path section and the filament section. Another arrangement example is the 4th
As shown in the figure. FIG. 4(1) shows that the longitudinal direction of the filament portion JJ1 is connected to the conductive path portion 33. This is a parallel arrangement orthogonal to the Further, as shown in FIG. 4, 6)K, it is also possible to arrange three filament sections 331 in series in parallel, corresponding to one pixel consisting of three electron guns.

このようなフィラメント結線を行なえば、電極への印加
電圧が高くなり、従って少ない電流でフィラメントが点
火できる利点がある。このようなフィラメントの直列結
線は必要に応じて増加でき、第4図(@)のようにすべ
てを直列結線することもできる。
This type of filament connection has the advantage that the voltage applied to the electrodes can be increased, and therefore the filament can be ignited with a small amount of current. The number of such filaments connected in series can be increased as required, and all the filaments can be connected in series as shown in FIG. 4 (@).

次に上記実施例のような熱電子線源の製造法について第
5図を用いて説明する。まず第5図(a) K示すよう
に1基板JIKガラス質絶縁シ2及び金属層IJがたと
えばスクリーン印刷とスノ童ツタリング蒸着法などで形
成された積層板を用意する1次にその上に感光性樹脂J
5を九とえばスピンナー法などで塗布しマスクを用いて
第5図伽)のように導電路部及びフィラメント部の形状
に露光、*像する。次いで金属層JJをたとえばタング
ステンの場合78リシアン化カリのアルカリ溶液などで
工、チングして、第5図(、)のようにフィラメント部
33烏 と導電路部J1■を形成し、感光性樹脂を除去
する。次に再び感光性樹脂36を塗布し、露光、現像し
て第sa!1l(d)のようにフィラメント部331及
びその周辺を露出させる。その後たとえばフッ素−7ツ
化アンモン混液などを用いて第5図(・)のようにフイ
ツメン)IIJJ*の周辺及び下部のガラス質絶縁層3
2を除去する。この場合、通常の溶液工、チングでは深
さ方向と同程度に横方向にエツチングが進行するいわゆ
るサイドエ。
Next, a method of manufacturing the thermionic beam source as in the above embodiment will be explained with reference to FIG. First, as shown in FIG. 5(a), a laminate is prepared in which a substrate JIK glass insulating film 2 and a metal layer IJ are formed by, for example, screen printing and the Suno-do tsuttering vapor deposition method. Resin J
5 is coated using a spinner method, for example, and exposed and imaged using a mask in the shape of the conductive path portion and filament portion as shown in Fig. 5). Next, in the case of tungsten, the metal layer JJ is etched with an alkaline solution of potassium 78 lysyanide to form a filament part 33 and a conductive path part J1, as shown in FIG. remove. Next, the photosensitive resin 36 is applied again, exposed, and developed. The filament portion 331 and its surroundings are exposed as shown in 1l(d). After that, using a mixture of fluorine and ammonium heptadide, for example, the vitreous insulating layer 3 is formed around and under the fluorine IIJJ* as shown in FIG.
Remove 2. In this case, in normal solution etching, etching progresses horizontally to the same extent as in the depth direction, so-called side etching.

チが起るから、フィラメント部331の幅よりも深く絶
縁層3・2を工、チングすればフィラメント部33鳳の
下部に間隙34が形成されフィラメント部331が浮い
た状態が得られる。
If the insulating layers 3 and 2 are etched to a depth greater than the width of the filament portion 331, a gap 34 will be formed below the filament portion 33, and the filament portion 331 will be in a floating state.

その後第5図(f)のように感光性樹脂36を除1去す
れば、目的の構造が得られる。
Thereafter, as shown in FIG. 5(f), the photosensitive resin 36 is removed to obtain the desired structure.

より簡便な製造法4可能である。即ち、第5図(c) 
tでは上記工程と同様であるが、この場合、予め導電路
部33鵞の幅を工、チングすべき絶縁層32の深さの2
倍より大きくしておく。そして第5図(d)の工程を省
略してそのまま絶縁層12の工、チンダ液たとえば弗硫
酸混液に浸す。
A simpler manufacturing method 4 is possible. That is, FIG. 5(c)
Step t is the same as the above step, but in this case, the width of the conductive path portion 33 is pre-machined and the width of the insulating layer 32 to be etched is twice the depth of the insulating layer 32.
Make it larger than twice. Then, the process of FIG. 5(d) is omitted and the insulating layer 12 is directly immersed in a tinda solution, for example, a fluorinated sulfuric acid mixture.

これにより金属層33がマスクになって工、チングが進
行し、幅の狭いフィラメント部311の下部の絶縁層3
2はサイドエッチで除去されるが、導電路部33!の下
部には絶縁層32が残り、目的とする第5図(f)と同
様の構造を形赦することができる。
As a result, the metal layer 33 acts as a mask and etching progresses, and the insulating layer 3 under the narrow filament portion 311
2 is removed by side etching, but the conductive path portion 33! An insulating layer 32 remains under the structure, and the desired structure as shown in FIG. 5(f) can be achieved.

第6図はフィラメント部33凰 と絶縁層320間の関
1111J4の寸法を自由に制御できるように工夫され
九工租の例である。まず第6図(、)のように基板J1
の上にガラスなどの・絶縁層32を形威し、その上K 
11102膜(又はリンシリケート膜)31をCVD法
などで形成する。次に第6図伽)のようにフィラメント
の形成されるべき部分を残して他の部分の8102膜3
1をフォトエツチングの技術で除去する。次に金属層3
3、たとえばタングステンを第6図(c)のようにスノ
4 yクリング法で形成させ、その金属層33をエツチ
ングして第6図(d)のように導電路部33.とフィラ
メント部33通を形成する。次にガラスエツチング液に
浸漬する前に第6図(・)のようにフッ化アンモンの溶
液などでフィラメント下部の810.層31をm−する
。この液はガラス層をほとんど溶解しないから、この処
理でフィラメント部jarを絶縁層32から遊離させる
ことができる。次いで絶縁層J2の工、チンダ液で処理
すれば、サイドエッチの配慮を殆んど必要とせず、第6
図(f)のように任意の深さに絶縁層32を工、チング
することができる。
FIG. 6 shows an example of a nine-layer structure in which the dimensions of the barrier 1111J4 between the filament portion 33 and the insulating layer 320 can be freely controlled. First, as shown in Figure 6 (,), board J1
An insulating layer 32 such as glass is formed on top of the K
A 11102 film (or phosphosilicate film) 31 is formed by a CVD method or the like. Next, as shown in Figure 6), leaving the part where the filament is to be formed, the 8102 film 3
1 is removed using photo-etching technology. Next, metal layer 3
3. For example, tungsten is formed by the snow ring method as shown in FIG. 6(c), and the metal layer 33 is etched to form a conductive path portion 33 as shown in FIG. 6(d). 33 filament portions are formed. Next, before immersing the filament in the glass etching solution, the lower part of the filament 810. Layer 31 is m-. Since this liquid hardly dissolves the glass layer, the filament jar can be released from the insulating layer 32 by this treatment. Next, if the insulating layer J2 is processed with a tincture solution, there is almost no need to consider side etching, and the sixth
As shown in Figure (f), the insulating layer 32 can be etched to any depth.

なお、使用される基板はアルミナの他にスピネルやコー
ジライトなどの篭ラミ、クス、更にはモリブデン、タン
グステン、鉄などの金属などをも用いることができる。
In addition to alumina, the substrate to be used may also be made of a laminated glass material such as spinel or cordierite, or a metal such as molybdenum, tungsten, or iron.

この他ガラス質のグレーズで被覆できる平板状のもので
あれば使用可能である。また絶縁層は強酸又は強ア峯カ
リに安定で、フッ酸系めエツチング液で加工できるガラ
ス質のグレーズが好ましい。前述のようにStO,膜な
どとの多層構造も使用できる。ただ基板の材質によって
熱膨張の整合をとり、クラ、りなどの問題を避ける必要
がある。基板の材質がアル建すなど酸やアルカリに強い
場合は一面のみの被覆で良いが、タンゲス乎ンなどの場
合は全面を被覆し、工、チンダ液から基板を保護する必
要がある。基板がアルミナの場合の絶縁層の例としてカ
ルシ、−ムアルオノシリケート系ガラス、ホウ酸鉛シリ
ケート系ガラスなどかあり、また基板がタングステンの
場合はホウケイ酸ガラスなどがある1 フィラメントや電導路となる金属層は耐熱性があり、7
ツ酸系のエツチング液に安定で、強酸又は強アルカリ質
の工、チンダ液で工、チングできる金属が好ましい。例
えばタングステン、T I −W &どのタングステン
合金、タンタルなどが使用できるが、フィラメント材料
としての実績が高く、エツチングの比較的容易なタング
ステン又はタングステン合金が好ましい 次にフィラメント部と導電路部の構造仕様について述べ
る。−例として、第4図(b)のノ々ターンを有し、フ
ィラメント部として厚さ1.0μ、幅5μのタングステ
ンがピッチ20声、横幅30μでlO回蛇行した場合に
ついて考える。
In addition, any flat plate that can be coated with a glassy glaze can be used. The insulating layer is preferably a glassy glaze that is stable against strong acids or strong alkali and can be processed with a hydrofluoric acid etching solution. As mentioned above, a multilayer structure with StO, films, etc. can also be used. However, it is necessary to match the thermal expansion depending on the substrate material to avoid problems such as cracking and cracking. If the substrate material is resistant to acid or alkali, such as aluminum, it is sufficient to coat only one side, but if the substrate is made of tungsten, the entire surface must be coated to protect the substrate from the chemical and tinda liquid. Examples of insulating layers when the substrate is alumina include calci, -mualonosilicate glass, and lead borate silicate glass, and when the substrate is tungsten, there are borosilicate glasses.1 Filaments and conductive paths The metal layer is heat resistant and has 7
Preferred are metals that are stable in trous acid-based etching solutions and can be etched with strong acid or strong alkaline etching solutions. For example, tungsten, TI-W & any tungsten alloy, tantalum, etc. can be used, but tungsten or tungsten alloy, which has a good track record as a filament material and is relatively easy to etch, is preferable. Next, the structural specifications of the filament part and conductive path part. Let's talk about. - As an example, consider a case in which a tungsten filament having a number of turns as shown in FIG. 4(b) and having a thickness of 1.0 .mu.m and a width of 5 .mu.m meanderes 10 times with a pitch of 20 tones and a width of 30 .mu.m.

この部分の抵抗は室温で約6.40.1000℃で38
.8OKな、6゜熱電子放射のためrtc awycn
?の電流書度が必要とすると、−素子sbの電流は3m
A、電圧は0.12VKなる。3フイラメント(1画素
)を直列にして100i1i素を水平方向く並べたとす
れば一列当シ電流300 mA、電圧0.63Vが必要
に&る。導電路の幅を500μとすれば、最も電流密度
の高い部分でも0.’ni/ex2程fKなる。また導
電路の温度を100℃と仮定すると、フィラメント部と
の抵抗比は#1ぼ1300対IKなる。フィラメント間
にある導電路のパッドの大きさを100μ×100声と
すると、フィラメントの横方向及び縦方向のビ、チはそ
れぞれ300μ及び700声となり、平板状ディスプレ
イとして要求される画素の密  4゜度を充分溝し、ま
た上記試算のようlIC74ラメントの昇温と、導電路
部の機能も充分発揮できることがわかる。また室温から
1000℃までの昇温に伴うタングステンの熱膨張はO
,S*以下、その他の金属でもその2倍程度であるから
上記の構造でのフィラメントの下垂はタングステンの場
合で10μ程度である。従ってフィラメント部の下の間
隙は高々30μ程離しておけば接触の恐れはない。また
30μ程度の絶縁層の工、チングでは、上記デメンジ、
ンの場合、導電路の下部のすイドエiチングも30μ以
下にな)、その部分が基板から離れることはない。
The resistance of this part is about 6.40.38 at 1000℃ at room temperature.
.. 8 OK, rtc awycn due to 6° thermionic emission
? If the current rating of - element sb is required, then the current of element sb is 3 m
A. The voltage will be 0.12VK. If three filaments (one pixel) are connected in series and 100 i1i elements are arranged horizontally, a current of 300 mA and a voltage of 0.63 V are required per column. If the width of the conductive path is 500μ, even the part with the highest current density will have a width of 0. 'ni/ex2 becomes fK. Further, assuming that the temperature of the conductive path is 100° C., the resistance ratio with the filament portion is approximately 1300 to IK. If the size of the pad of the conductive path between the filaments is 100 μ x 100, the horizontal and vertical widths of the filament are 300 μ and 700, respectively, which is the pixel density required for a flat display of 4°. It can be seen that the temperature is sufficiently adjusted, and the temperature of the IC74 lament can be increased as well as the function of the conductive path portion can be sufficiently exerted as shown in the above estimation. Furthermore, the thermal expansion of tungsten as the temperature rises from room temperature to 1000°C is O
, S* or less, and it is about twice that for other metals, so the droop of the filament in the above structure is about 10 μm in the case of tungsten. Therefore, if the gap under the filament part is kept at a distance of at most 30 microns, there is no risk of contact. In addition, when processing and chipping an insulating layer of about 30μ, the above-mentioned Demenzi,
In this case, the width etching at the bottom of the conductive path is also less than 30μ), and that part does not separate from the substrate.

以上説明したように本発明によれば、多数のフィラメン
ト部とこれに通電する導電路部を一体形成した熱電子線
源を用いることにより、電子纏加速型の平板状ディスプ
レイ装置の組立工 )程が容易でアライメントも確実に
なり、高性能の平板状ディスグレイ装置を実現すること
ができる。
As explained above, according to the present invention, by using a thermionic beam source integrally formed with a large number of filament portions and a conductive path portion for supplying electricity to the filament portions, an assembly process of an electron bundle acceleration type flat display device is performed. This makes it possible to easily perform alignment, ensure alignment, and realize a high-performance flat disk gray device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子線加速型平板状ディスグレイ装置の外観斜
視図、@2図はその内部構造を示す分解斜視図、第3図
は本発明の一実施例の熱電子線源の構成を示す図、第4
図(a)〜(、)は他の実施例のフィラメント部と導電
路部の配置を示す□平ai#!J、第5図(a)〜(f
)は上記実施例の熱電子線源の製造ニーを示す断面略図
、第6図(、)〜(f)は他の製造工鵬を示す断面略図
である。 31・・一基板、J2・・・絶縁層、33・・・金属層
、131・・・フィラメント部、332・・・導電路部
、34−・間隙。
Figure 1 is an external perspective view of an electron beam acceleration type flat disk array device, Figure 2 is an exploded perspective view showing its internal structure, and Figure 3 is a configuration of a thermionic source according to an embodiment of the present invention. Figure, 4th
Figures (a) to (,) show the arrangement of the filament part and the conductive path part in other embodiments. J, Figure 5(a)-(f
) is a schematic cross-sectional view showing the manufacturing process of the thermionic beam source of the above embodiment, and FIGS. 6(a) to (f) are schematic cross-sectional views showing other manufacturing processes. 31... One substrate, J2... Insulating layer, 33... Metal layer, 131... Filament part, 332... Conductive path part, 34-... Gap.

Claims (2)

【特許請求の範囲】[Claims] (1)  真空容器内−に、各螢光体画素に対応して熱
電子線を発すゐ熱電子線源と、仁の熱電子線源からの電
子流を情報信号に応じて変調して取出す複数の変調電極
群と、この変調電極群により取出された電子流を加速す
る加速電極と、この加速電極によシ加速された前記電子
流の射突によ)発光する前記螢光体画素の形成され九螢
光面とを具備する電子線加速型平板状ディスプレイ装置
に於て、前記熱電子線源社、基板上に絶縁層を介して形
成され丸金属層によ)前記各螢光体画素に対応し九複数
のフィラメント部とこれに通電する導電路Sが一体形成
されてお9、かつ前記フィラメント部の下部絶縁層の少
なくとも一部が除去されてフィラメント部の下部に間隙
を有すゐ構造とじ九ことを特徴とする電子線加速部平板
状f4ス!レイ装置。
(1) Inside the vacuum container, there is a thermionic source that emits a thermionic beam corresponding to each phosphor pixel, and the electron flow from the thermionic source is modulated according to an information signal and extracted. a plurality of modulation electrode groups, an acceleration electrode that accelerates the electron flow taken out by the modulation electrode group, and the phosphor pixel that emits light due to the collision of the electron flow accelerated by the acceleration electrode. In an electron beam accelerated flat display device comprising nine phosphor surfaces, each of the phosphors is formed on a substrate with an insulating layer interposed therebetween, and a round metal layer is formed on the substrate. A plurality of filament parts corresponding to the pixels and a conductive path S for supplying current to the filament parts are integrally formed, and at least a part of the lower insulating layer of the filament parts is removed to form a gap below the filament parts.ゐThe electron beam accelerator part has a flat plate shape F4, which is characterized by a closed structure! Ray device.
(2)基板がアルミナ質セラ建、クス、絶縁層がガラス
、金属層が゛タングステンまたはタングステン合金から
なる脣許請求の@s第1項記載の電子線加速型平板状デ
ィスプレイ装置。
(2) The electron beam accelerated type flat display device according to claim 1, wherein the substrate is made of alumina ceramic, the insulating layer is made of glass, and the metal layer is made of tungsten or a tungsten alloy.
JP10093081A 1981-06-29 1981-06-29 Flat display unit of electron beam accelerating type Pending JPS581956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10093081A JPS581956A (en) 1981-06-29 1981-06-29 Flat display unit of electron beam accelerating type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10093081A JPS581956A (en) 1981-06-29 1981-06-29 Flat display unit of electron beam accelerating type

Publications (1)

Publication Number Publication Date
JPS581956A true JPS581956A (en) 1983-01-07

Family

ID=14287062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10093081A Pending JPS581956A (en) 1981-06-29 1981-06-29 Flat display unit of electron beam accelerating type

Country Status (1)

Country Link
JP (1) JPS581956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455597A (en) * 1992-12-29 1995-10-03 Canon Kabushiki Kaisha Image-forming apparatus, and designation of electron beam diameter at image-forming member in image-forming apparatus
WO1997007524A1 (en) * 1995-08-14 1997-02-27 E.I. Du Pont De Nemours And Company Display panels using fibrous field emitters
EP0802562A2 (en) * 1996-04-16 1997-10-22 Smiths Industries Public Limited Company Light-emitting assemblies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455597A (en) * 1992-12-29 1995-10-03 Canon Kabushiki Kaisha Image-forming apparatus, and designation of electron beam diameter at image-forming member in image-forming apparatus
WO1997007524A1 (en) * 1995-08-14 1997-02-27 E.I. Du Pont De Nemours And Company Display panels using fibrous field emitters
US6097140A (en) * 1995-08-14 2000-08-01 E. I. Du Pont De Nemours And Company Display panels using fibrous field emitters
EP0802562A2 (en) * 1996-04-16 1997-10-22 Smiths Industries Public Limited Company Light-emitting assemblies
EP0802562A3 (en) * 1996-04-16 1997-12-17 Smiths Industries Public Limited Company Light-emitting assemblies

Similar Documents

Publication Publication Date Title
US5477105A (en) Structure of light-emitting device with raised black matrix for use in optical devices such as flat-panel cathode-ray tubes
US5589731A (en) Internal support structure for flat panel device
US5723052A (en) Soft luminescence of field emission display
US7095169B2 (en) Flat panel display device
US6509687B1 (en) Metal/dielectric laminate with electrodes and process thereof
JPS581956A (en) Flat display unit of electron beam accelerating type
JP2004214203A (en) Field emission element
US6974358B2 (en) Discrete magnets in dielectric forming metal/ceramic laminate and process thereof
JPS6229046A (en) Plane image display device
JP2532970B2 (en) Plasma display panel using perforated metal plate as partition wall and method of manufacturing the same
KR20050104643A (en) Cathode substrate for electron emission display device, electron emission display devce, and manufacturing method of the display device
KR100194052B1 (en) FED spacer and its manufacturing method
US6494758B1 (en) Process of forming metal/ferrite laminated magnet
JPS5994343A (en) Plate type cathode-ray tube
JP3063651B2 (en) Fluorescent display tube and method of manufacturing the same
JPH09306395A (en) Plane type display device and manufacture therefor
KR20050008770A (en) Image display device
JP2006059728A (en) Flat surface type display device
KR940009192B1 (en) Manufacturing method of display pattern for fluorescent display
JPH1064458A (en) Flat panel display device
US7108575B2 (en) Method for fabricating mesh of tetraode field-emission display
JPS60160549A (en) Fluorescent character display tube
JP2002203475A (en) Electron source substrate, its manufacturing method and image display device provided with it
JPS62208531A (en) Image display device
JPH02257540A (en) Source of hot electron beam and its manufacture