JPS5819511A - Servo-type volume flowmeter - Google Patents

Servo-type volume flowmeter

Info

Publication number
JPS5819511A
JPS5819511A JP11715381A JP11715381A JPS5819511A JP S5819511 A JPS5819511 A JP S5819511A JP 11715381 A JP11715381 A JP 11715381A JP 11715381 A JP11715381 A JP 11715381A JP S5819511 A JPS5819511 A JP S5819511A
Authority
JP
Japan
Prior art keywords
servo
flow rate
pressure difference
rotor
positive displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11715381A
Other languages
Japanese (ja)
Inventor
Harumi Toda
戸田 晴己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Original Assignee
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Kiki Kogyo KK, Oval Engineering Co Ltd filed Critical Oval Kiki Kogyo KK
Priority to JP11715381A priority Critical patent/JPS5819511A/en
Publication of JPS5819511A publication Critical patent/JPS5819511A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/026Compensating or correcting for variations in pressure, density or temperature using means to maintain zero differential pressure across the motor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a flow rate highly accurately by adding the values of pressure difference and temperature difference before and after rotors, the fluid pressure at the inflow side, and the like, and performing compensation. CONSTITUTION:The pressure difference at both ends of the servo type volume flowmeter 1 connected to a pipe 3 is detected by pressure difference detctors 12 and 17 through pipes 10 and 11. The output of the pressure difference detector 12 is inputted to a servomotor 7 which is connected to one rotor 2 in the flowmeter 1 through reduction gears 4 and 6 and a magnetic coupling 5. Thus the rotor 2 is driven so as not to cause the pressure difference. The output of the pressure difference detector 17 is inputted to a leaking amount compensating operator 18 which receives the output of a flow rate oscillator 16 that is connected to the other rotor 2 through a magnetic coupling 15 and gear trains 13 and 14. Since the flow rate value from the oscillator 16 is compensated by the operator 18 and the pressure difference detector 17 based on the temperature T1 and T2 before and after the rotors 2 and the value of an inflow side pressure gage PA, the true flow rate value can be counted with excellent accuracy.

Description

【発明の詳細な説明】 本発明はサーボ型容積式流量計の改良に関する。[Detailed description of the invention] The present invention relates to improvements in servo-type positive displacement flowmeters.

一般に容積式流量計の回転子と内室との間には互いに接
触しないため微小なすき間があり、また1転子が回転す
るためにエネルギーを要し差圧を発生する。このためこ
のすき間から漏洩が生ずる。
Generally, there is a small gap between the rotor and the inner chamber of a positive displacement flowmeter because they do not come into contact with each other, and each trochanter requires energy to rotate and generates a pressure difference. Therefore, leakage occurs from this gap.

この漏洩のため容積式流量計の器差特性が小流量の範囲
において大きく負となり、また流体の粘度や密度の変化
の影豐を受ける。この漏洩量を零にすることにより小流
量特性を改善し、また流体の粘度や密度が変化してもそ
の影智を受けることがない高精度の流量針を具現したも
のとしてサーボ製容積式流量針が知られている。これは
第1図に示すように流量計の前後の圧力差を検出し、そ
の差圧信号を増幅してサーボモータの駆動シャフトに接
続された容積式流量計の回転子をモータの駆動によって
流量計前後の圧力差が零になるように構成したものであ
って、原理的に漏洩の無いサーボ型容積式流量計である
が、サーボ制御系の特性から実際には圧力差を完全に零
に制御することは不可能で、通常は数ミリメートル水柱
程度の圧力差が残留してしまうため、安定した高精度の
サーボ型容積式流量針を構成することは不可能であった
O たとえば、P動作系の制御によった場合は、その誤差増
巾特性により原意が増加するにつれて、回転子前後に残
留する圧力差も増加してしまうし、またPI動作系の制
御によった場合においても、安定的に圧力差を零に制御
することはできず、さらにまた圧力差を微少に制御する
場合には、非常に複雑な制御系を必要とするばかりでな
くその調整なども難かしくなり、経済的にも高価となる
などの不都合がある。
Due to this leakage, the instrumental error characteristics of the positive displacement flowmeter become significantly negative in the small flow rate range, and are also affected by changes in fluid viscosity and density. By reducing this amount of leakage to zero, the small flow rate characteristics are improved, and the servo-made positive displacement flow rate needle embodies a high-precision flow needle that is unaffected by changes in fluid viscosity and density. needles are known. As shown in Figure 1, this system detects the pressure difference before and after the flowmeter, amplifies the differential pressure signal, and controls the rotor of the positive displacement flowmeter connected to the drive shaft of the servo motor to control the flow rate by driving the motor. It is a servo-type positive displacement flowmeter that is constructed so that the pressure difference before and after the meter is zero, and in principle there is no leakage. However, due to the characteristics of the servo control system, in reality, the pressure difference is completely zero. For example, it has been impossible to construct a stable and highly accurate servo-type positive displacement flow needle because it is impossible to control the pressure difference, typically a few millimeters of water column. If the system is controlled, the difference in pressure remaining before and after the rotor will increase as the error amplification characteristic increases, and even if the PI operation system is controlled, stability will increase. It is not possible to control the pressure difference to zero, and furthermore, if the pressure difference is to be controlled minutely, it not only requires a very complicated control system, but also makes its adjustment difficult, making it economically difficult. However, it also has disadvantages such as being expensive.

また、サーボ制御系の検出部である差圧針は、零点ドリ
フト等の安定性が要求され、差圧力が零の時に発生する
電圧出力と制御系の入力電圧との整合をとる必要がある
。このため、制御系に不感帯をもたせたり、差圧検出器
の零出力調整を行う噂の方法が必要であり、より高精度
な計測を具現するためには不都合であった。たとえば、
流体の圧力が緩装に上昇するような時、通常の制御差圧
より大きな差圧が残留する事がありあるいは、また回転
子の不等速回転に基づく脈動等により、その平均的な制
御差圧はやはり異なった値を示すので、実際に圧力差を
零に制御することは不可能である・又、制御系の!ツチ
ンダ条件を変えた場合、1制御すべき圧力差が初期に制
御された圧力差と異なったものとなり、su重量が変化
することとなり、制御系が不安定となってしまう問題点
があった。
Further, the differential pressure needle, which is a detection part of the servo control system, is required to have stability such as zero point drift, and it is necessary to match the voltage output generated when the differential pressure is zero with the input voltage of the control system. For this reason, the rumored method of providing a dead zone in the control system or adjusting the zero output of the differential pressure detector is necessary, which is inconvenient for realizing more accurate measurement. for example,
When the pressure of the fluid increases slowly, a pressure difference larger than the normal control pressure difference may remain, or the average control difference may increase due to pulsation due to non-uniform rotation of the rotor. Since the pressures still show different values, it is impossible to actually control the pressure difference to zero. Also, the control system! When the Tsuchinda conditions are changed, the pressure difference to be controlled becomes different from the initially controlled pressure difference, the su weight changes, and there is a problem that the control system becomes unstable.

ところで、サーボ型容積式流量計において漏洩量と流量
計前後の圧力差との関係を調べてみると、@2図に示す
ように流体が気体の場合には流量Qの大小に関係なく漏
洩量ΔQは圧力差ΔPに比例することが判った。(液体
の場合は漏洩量と粘度が逆比例することを考慮する必要
がある。)したがって、従来のサーが型容積式流量針に
おいて圧力差を零に制御するという補正を行ったとして
も誤差として残る。そこで、上記の関係を利用して残留
圧力差に相当する漏洩量を補正することにより、さらに
高粘度のサーボ型流量計を実現することができる。また
、ΔQとΔPは1次関係であるので、サーボ制御系にお
いても簡易な系の構成が可能である。
By the way, when we examine the relationship between the amount of leakage and the pressure difference before and after the flowmeter in a servo-type positive displacement flowmeter, we find that when the fluid is a gas, the amount of leakage is independent of the magnitude of the flow rate Q, as shown in Figure @2. It was found that ΔQ is proportional to the pressure difference ΔP. (In the case of liquids, it is necessary to take into account that the amount of leakage and viscosity are inversely proportional.) Therefore, even if the conventional sensor performs a correction to control the pressure difference to zero in a positive displacement flow needle, it will still be an error. remain. Therefore, by correcting the leakage amount corresponding to the residual pressure difference using the above relationship, it is possible to realize a servo type flowmeter with even higher viscosity. Furthermore, since ΔQ and ΔP have a linear relationship, a simple system configuration is possible in the servo control system.

この発明は、叙上の点に着目して威されたもので、まず
第一に、容積式流量計の本来の特徴である処の計量室に
より計測される鰍を基準とする理想的な流量計測を具現
し、回転子と筐体との間よりの漏洩量が回転子前後の圧
力差に比例するように構成しかつ、その漏洩量を計測し
て漏洩量補正演算機構を持つサーボ型容積式流量計を提
供することにありまた第二には、サーボ制御系を簡単に
し、差圧検出器よりの出力とサーボ系との整合金谷易に
し、圧力減少機構であるサーボ制御系と、高精度具現の
ための前記補正演算機構を独立系と成したサーボ型容積
式fstl!に計を提供することにあるO 以下に、この発明の実施例を図面について説明する。
This invention was developed by focusing on the points mentioned above, and first of all, it focuses on the ideal flow rate based on the gills measured by the measuring chamber, which is the original feature of positive displacement flowmeters. A servo-type volumetric system that implements measurement, is configured so that the amount of leakage between the rotor and the casing is proportional to the pressure difference before and after the rotor, and has a mechanism to measure the amount of leakage and calculate leakage amount correction. The second objective is to simplify the servo control system, make it easier to match the output from the differential pressure detector with the servo system, and to provide a servo control system that is a pressure reduction mechanism and a high-performance flowmeter. A servo-type positive displacement fstl with an independent system for the correction calculation mechanism to realize accuracy! Embodiments of the present invention will be described below with reference to the drawings.

各図において、1はサーボ型容積式流量計本体で、所望
の回転子2を回転自在に備えて所望の管路3に接続され
ている。そして、一方の回転子2の回転軸には順次と、
減速歯車列4.磁気接手5および減速歯車列6を介して
サーボモータ7が接続されかつ、該サーボモータ7はフ
ィードバック用タコゼネレータ8が附設されて、それぞ
れサーボ増巾器Sと電気的に接続されている・このサー
が増巾器9に対しては、流蓋計本体1の回転子2の前後
の圧力を検出するための管10゜11を管路3に接続す
ると共に両管1G、11の中間に微差圧検出器12を介
在させ、この微差圧検出器12で検出される差圧電気信
号を加えることができるようにしである。
In each figure, 1 is a servo-type positive displacement flowmeter main body, which is rotatably equipped with a desired rotor 2 and connected to a desired pipe line 3. Then, on the rotation axis of one rotor 2,
Reduction gear train 4. A servo motor 7 is connected via a magnetic joint 5 and a reduction gear train 6, and a feedback tacho generator 8 is attached to the servo motor 7, which is electrically connected to a servo amplifier S. However, for the amplifier 9, the tubes 10 and 11 for detecting the pressure before and after the rotor 2 of the flowmeter body 1 are connected to the conduit 3, and a slight difference is established between the two tubes 1G and 11. A pressure detector 12 is interposed so that a differential pressure electrical signal detected by the slight differential pressure detector 12 can be applied.

したがって、微差圧検出器12で検出された差圧に相当
する信号を、サーボ増巾器9に加えてサーボモータTを
−かせることにより回転子2に対して差圧を無くすため
の駆動操作を与えることとなり、回転子2の前後の差圧
を減少させることができる。
Therefore, by adding a signal corresponding to the differential pressure detected by the slight differential pressure detector 12 to the servo amplifier 9 and driving the servo motor T, a driving operation is performed to eliminate the differential pressure on the rotor 2. Therefore, the differential pressure before and after the rotor 2 can be reduced.

また、他方の回転子2には前記した回転子2と同じよう
にその回転軸には減速歯車列13.Mli歯車列14お
よび磁気接手15が接続され、その最終端から流量に比
例したパルスを発信できる流量発信器16が設けられて
いる。
In addition, the other rotor 2 has a reduction gear train 13 on its rotating shaft, similar to the rotor 2 described above. A flow rate transmitter 16 is provided to which the Mli gear train 14 and the magnetic coupling 15 are connected, and can emit a pulse proportional to the flow rate from its final end.

さらに、前記微差圧検出器12に対し、これと並列に両
管10,11間に漏洩量補正用微差圧変圧器11を設け
である。
Further, in parallel with the differential pressure detector 12, a differential pressure transformer 11 for correcting the amount of leakage is provided between the tubes 10 and 11.

ところで、第1FXJに示す実施例では、漏洩量補正演
算器18を設けて、前記微差圧変圧器12゜11よりの
出力信号を受信すると共にさらに、回転子2の前後に設
けた温度針TI 、T、および流入側の流体計Pムの値
をそれぞれ電気量に変換して前記演算器18に加えて真
髄流量を演算することができるようになっている。
By the way, in the embodiment shown in the first FXJ, a leakage correction calculator 18 is provided to receive the output signal from the differential pressure transformer 12゜11, and also to receive the output signal from the temperature needle TI provided before and after the rotor 2. .

第2図に示す実1施例は、前記実施例と演算方式を僅か
に異にしたもので、温度針Tu、’Lmおよび圧力計P
ムによる物理的補正量を微差圧検出器12の値と共に漏
洩量演算器18&を介して漏洩量のみを演算し、他方、
パルt−16と接続される計測量演算器19により回転
子2の回転操作で得られる流量値を演算し、両者を加算
器20によって加算することにより求める真髄流量を得
るようにしたものである。
The first embodiment shown in FIG. 2 has a calculation method slightly different from that of the previous embodiment, including temperature needles Tu, 'Lm and pressure gauge P.
Only the leakage amount is calculated through the leakage amount calculator 18 &, together with the physical correction amount by the micro differential pressure detector 12, and on the other hand,
A flow rate value obtained by rotating the rotor 2 is calculated by a measured quantity calculator 19 connected to a pulse t-16, and the obtained essence flow rate is obtained by adding both values by an adder 20. .

叙上のIw成に基づいて作用を説明する。The action will be explained based on the above Iw formation.

被計測流体が管路3内を流れるとその流体の移送により
回転子2が1合回転され、流量に比例した回転数が計数
されて流量を得ることができる。
When the fluid to be measured flows through the conduit 3, the rotor 2 is rotated by one rotation due to the transfer of the fluid, and the number of revolutions proportional to the flow rate is counted to obtain the flow rate.

この場合、前述したように回転子2の一方にはサーボモ
ータTが接続されて同転子2前後の差圧を零にするよう
に回転子2に駆動力を与えているので回転子2と本体1
のケーシングとの間の漏洩量を逓減させて測定精度を向
上できる。
In this case, as mentioned above, the servo motor T is connected to one side of the rotor 2 and applies driving force to the rotor 2 so as to reduce the differential pressure across the rotor 2 to zero. Main body 1
The measurement accuracy can be improved by gradually reducing the amount of leakage between the casing and the casing.

この発明においては漏洩蓋と差圧との関係を比例関係に
保持できるので、微差圧検出器11により常時−転子2
m後差圧を検出することにより、その漏洩量を、漏洩量
補正演算器18で温度圧力の補正要因と共に演算計数し
、流量発信器16より得られる同転子2の流量に比例し
た回転数と演算(加算又は減算)することにより、きわ
めて簡単に真値流量を計数できる。
In this invention, since the relationship between the leakage lid and the differential pressure can be maintained in a proportional relationship, the slight differential pressure detector 11 constantly
By detecting the differential pressure after m, the leakage amount is calculated and counted together with the temperature and pressure correction factor by the leakage amount correction calculator 18, and the rotation speed proportional to the flow rate of the trochanter 2 obtained from the flow rate transmitter 16 is calculated. By calculating (addition or subtraction), the true value flow rate can be counted very easily.

この発明によれば、この檎サーボ型流量計においてサー
ボ−構と別−に差圧を検知して回転子前後の漏洩量を計
測しこの漏洩量を演算することにより真値流量を得るよ
うにしたので、サーボ制御系と高精度具現の演算系を独
立と成し得、計測精度を向上できると共に糸の安定化が
図れる効果を有する。
According to this invention, in this servo type flowmeter, the differential pressure is detected separately from the servo mechanism, the amount of leakage before and after the rotor is measured, and the true flow rate is obtained by calculating the amount of leakage. Therefore, the servo control system and the high-accuracy calculation system can be made independent, which has the effect of improving measurement accuracy and stabilizing the yarn.

また、そのメンテナンス上においても、優位が認められ
常に安定した精度を維持し得る効果を有する。
Furthermore, it is advantageous in terms of maintenance, and has the effect of always maintaining stable accuracy.

また、この発明によれば回転子前後の差圧は回転子と筐
体との間を通過する流体の漏洩蓋と比例関係に保つよう
に構成したので差圧検出による漏洩蓋の補正演算がきわ
めて簡易になし得られる特徴を有する。
Furthermore, according to this invention, the differential pressure before and after the rotor is maintained in a proportional relationship with the leakage cap of the fluid passing between the rotor and the casing, so the leakage cap correction calculation based on differential pressure detection is extremely easy. It has features that can be obtained easily.

また、この発明によれば、被11′i11!IfIIL
体が大流量てあっても漏洩量が差圧にのみ比例関係を有
することから、低流量域において音速ノズル等の基準流
量を基に定数を求めれば、大流量との関係をその″11
利用して、高粘度の真値流量を求めることができる。
Further, according to the present invention, the target 11'i11! IfIIL
Even if the body has a large flow rate, the amount of leakage is proportional only to the differential pressure. Therefore, if a constant is determined based on the reference flow rate of a sonic nozzle, etc. in a low flow rate range, the relationship with a large flow rate can be expressed as ``11''.
Using this method, the true flow rate of high viscosity can be determined.

さらに、差圧と漏洩量との関係が判っていれば、回転子
−回転当りの吐出量を回転子形状及び筐体。
Furthermore, if the relationship between differential pressure and leakage amount is known, the discharge amount per rotor rotation can be calculated based on the rotor shape and housing.

形状の寸法測定のみによって真髄流量を求めることがで
きる効果も有する。
It also has the effect of being able to determine the quintessence flow rate only by measuring the dimensions of the shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサーボ型容積式流量計の構成図、第2図
は本発明における差圧と漏洩量との関係を示す図、第3
Wiおよび第4図は、この発明に係るサー111容積式
流量針の二実跪例を示す説明図である。 1−−−−−−・・・−容檀式流に針本体2−−−−−
−−同転子 3−−−−−−−−、管路 7−−−−−−−、サーボモータ 9−m−・・−一・−サーボ増巾器 12.17−−−微差圧検出器 16−−−−−−−−−一流量発信器
Figure 1 is a configuration diagram of a conventional servo-type positive displacement flowmeter, Figure 2 is a diagram showing the relationship between differential pressure and leakage amount in the present invention, and Figure 3 is a diagram showing the relationship between differential pressure and leakage amount in the present invention.
Wi and FIG. 4 are explanatory diagrams showing two examples of the sir 111 positive displacement flow needle according to the present invention. 1----------- Needle body 2--------
---Same trochanter 3-----, conduit 7--, servo motor 9-m...--1,--servo amplifier 12.17---minor difference Pressure detector 16---------Flow rate transmitter

Claims (1)

【特許請求の範囲】 ill  容積式流量計の回転子前後に生ずる圧力差に
より回転子と筐体間に生ずるa重量に相当する計蓋誤差
を小さくするため、該差圧を検出して電気敏に変換増巾
し、サーボモータを駆動し、該サーボモータの回転力を
前記回転子に伝達することにより、前記圧力差を減少さ
せ、流量信号をサーボモータの回転に比例したパルス信
号として積算するようにしたサーボ型容積式流量計にお
いて、該サーボ型容積式流量計の精度を更に高めるため
に、nu記サーボ系の偏差圧に比例する容積を補正信号
として前記流量信号に加算することを特徴としたサーボ
型容積式流量計。 (21サーボ系の圧力差検出用の差圧検出器と並列に演
算用差圧検出器を配設した特許請求の範囲第1項記載の
サーボ型容権式流皺計。 (3)  差圧検出信号及びサーボ型容積式流量計の流
量信号に対し流入側圧力及び流入流出口側の温度等の測
定値を入力演算することにより基準流量を算出する演算
器を備えた特許請求の範囲第1項または第2項記載のサ
ーボ型容積式流量計@
[Scope of Claims] ill In order to reduce the meter lid error, which is equivalent to the weight a, that occurs between the rotor and the casing due to the pressure difference that occurs before and after the rotor of a positive displacement flowmeter, the differential pressure is detected and an electric sensor is used. The pressure difference is reduced by converting and amplifying the servo motor, driving the servo motor, and transmitting the rotational force of the servo motor to the rotor, and integrating the flow signal as a pulse signal proportional to the rotation of the servo motor. In the servo-type positive displacement flowmeter, in order to further improve the accuracy of the servo-type positive displacement flowmeter, a volume proportional to the deviation pressure of the servo system is added to the flow rate signal as a correction signal. A servo-type positive displacement flowmeter. (21) The servo type fluid flow meter according to claim 1, wherein a differential pressure detector for calculation is arranged in parallel with a differential pressure detector for detecting a pressure difference in a servo system. (3) Differential pressure Claim 1, comprising a calculator that calculates a reference flow rate by inputting and calculating measured values such as inflow side pressure and inflow/outlet side temperature with respect to the detection signal and the flow rate signal of the servo-type positive displacement flowmeter. Servo-type positive displacement flowmeter described in Section 2 or Section 2 @
JP11715381A 1981-07-28 1981-07-28 Servo-type volume flowmeter Pending JPS5819511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11715381A JPS5819511A (en) 1981-07-28 1981-07-28 Servo-type volume flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11715381A JPS5819511A (en) 1981-07-28 1981-07-28 Servo-type volume flowmeter

Publications (1)

Publication Number Publication Date
JPS5819511A true JPS5819511A (en) 1983-02-04

Family

ID=14704762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11715381A Pending JPS5819511A (en) 1981-07-28 1981-07-28 Servo-type volume flowmeter

Country Status (1)

Country Link
JP (1) JPS5819511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124430A (en) * 1988-11-02 1990-05-11 Ono Sokki Co Ltd Pressure difference compensation type flow rate measuring equipment
JP2007309727A (en) * 2006-05-17 2007-11-29 Oval Corp Servo-type volumetric flowmeter using secondary flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124430A (en) * 1988-11-02 1990-05-11 Ono Sokki Co Ltd Pressure difference compensation type flow rate measuring equipment
JP2007309727A (en) * 2006-05-17 2007-11-29 Oval Corp Servo-type volumetric flowmeter using secondary flowmeter

Similar Documents

Publication Publication Date Title
US3633420A (en) Continuous flow metering and control apparatus
US5796012A (en) Error correcting Coriolis flowmeter
US6651512B1 (en) Ancillary process outputs of a vortex flowmeter
US3550426A (en) Fluid meter field checking method and apparatus
CN104165661B (en) A kind of low pressure loss differential pressure flowmeter and its scaling method and flow metering method
JPS5819511A (en) Servo-type volume flowmeter
SE441961B (en) PROCEDURE FOR DETERMINING THE ACCURACY FOR RESP FOR RENEWED CALIBRATION OF A PROPELLER OR TURBIN METERS AND THE ACCURACY FOR MONITORING THE ACCURACY OF SUCH METAR
US3240061A (en) Mass flowmeter
US3583220A (en) Flowmeter
EP1403626B1 (en) Servo type volumetric flowmeter
CN112964323B (en) Saturated wet steam mass flow and dryness measuring device and measuring method
JP3331212B2 (en) Servo displacement meter
RU2279640C2 (en) Method and device for measuring mass flow rate
JP4254967B2 (en) Servo type volumetric flow meter
JPS6370119A (en) Flow rate measuring apparatus
JPH10104040A (en) Mass flowmeter converter
CN210108449U (en) Servo type waist wheel flowmeter
CN100538286C (en) Serro type volumetric flowmeter
JP3494634B2 (en) Servo type positive displacement flowmeter
SU900117A1 (en) Flowmeter
JPS6326735Y2 (en)
JPS6293633A (en) Capillary viscometer
JPS59155740A (en) Viscosity measuring apparatus
RU1775608C (en) Turbine flowmeter
JPH0136091Y2 (en)