JPS58195014A - Helical suction port - Google Patents

Helical suction port

Info

Publication number
JPS58195014A
JPS58195014A JP57077477A JP7747782A JPS58195014A JP S58195014 A JPS58195014 A JP S58195014A JP 57077477 A JP57077477 A JP 57077477A JP 7747782 A JP7747782 A JP 7747782A JP S58195014 A JPS58195014 A JP S58195014A
Authority
JP
Japan
Prior art keywords
valve body
passage
valve
wall surface
branch passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077477A
Other languages
Japanese (ja)
Other versions
JPS6236137B2 (en
Inventor
Kiyoshi Nakanishi
清 中西
Takeshi Okumura
猛 奥村
Mutsumi Kanda
神田 睦美
Takeshi Kotani
武史 小谷
Tokuta Inoue
井上 悳太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57077477A priority Critical patent/JPS58195014A/en
Priority to US06/490,339 priority patent/US4478182A/en
Priority to DE19833316962 priority patent/DE3316962A1/en
Publication of JPS58195014A publication Critical patent/JPS58195014A/en
Publication of JPS6236137B2 publication Critical patent/JPS6236137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide high charging efficiency by preventing gum-like impure substance from depositing on a valve body while preventing the mixture from leaking into a branch passage at a low-speed and low-load run of an engine to aid formation of an intense swirl inside a combustion chamber and by opening and the branch passage to feed an ample flow of mixture into a helical part at a high-speed and high-load run thereof. CONSTITUTION:At a low-speed and low-load run of an engine, a rotary valve 25 is kept closed. Some of mixture sent into an inlet passage flows forward along the upper wall face 19 and 20, and a part of the rest runs against the rotary valve 25 and turns to flow along the side wall face 17. Since a part of the mixture flows against a valve body 31, if clearances between an edge 31a of the valve body 31 and a side wall face 27 and between opposite edge 31b of the valve body 31 and the second side wall face 14b are completely closed, gum-like impurities within mixture are deposited between valve body edges 31a, 31b and between the wall faces 27, 14b. For those purposes of preventing deposition of impurities and leakage from the clearance l1 and l2, annular recess 36 and 37 are formed.

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.

ヘリカル型吸気ポートは通常吸気弁側りに形成された渦
巻部と、この渦巻部に接線状に接続されかつほぼまっす
ぐに延びる入口通路部とKよシ構成される。このような
ヘリカル型吸気、je−)を用いて吸入空気Iの少ない
機関低速低負荷運転時、に機関燃焼室内に強力な旋回流
を発生せしめようとすると吸気テート形状が流れ抵抗の
大きな形状になってしまうので吸入空気量の多い機関高
速高負荷運転時に充填効率が低下するというという問題
を生ずる。このような問題を解決するた給にヘリカル型
吸気I−ト入日通路部から分岐されてヘリカル型吸気ポ
ート渦巻部の渦巻終端部に連通ずる分岐路をシリンダヘ
ッド内に形成し、分岐路内に開閉弁を設けて機関高速高
負荷運転時に開閉弁をに弁するようにしたヘリカル型吸
気ポートが本出願人によシ既に、提案されている。この
ヘリカル型吸気ポートでは機関高速高負荷運転時にヘリ
カル型吸気ポート入口通路部内に送り込まれた吸入空気
の一部が分岐路を介してヘリカル型吸気ポート渦巻部内
に送り込まれるために吸入空気の流路断面積が増大し、
斯くして充填効率を向上することができる。しかしなが
らこのヘリカル型吸気ポートでは分岐路が入口通路部か
ら完全に独立した筒状の通路として形成されているので
分岐路の流れ抵抗が比較的大きく、しかも分岐路を入口
通路部に隣接して形成しなければならないために入口通
路部の断面積が制限を受けるので十分に満足のいく高い
充填効率を得るのが困難となっている。更に、ヘリカル
型吸気ポートはそれ自体の形状が初給であり、しかも入
口通路部から完全に独立した分岐路を併設した場合には
吸気ポートの全体構造が極めて初雑となるので9のよう
な分岐路を具えたヘリカル型吸気ポートをシリンダへ、
部内に形成するのはかなり困難であ、る。
A helical intake port is usually composed of a spiral portion formed on the side of the intake valve, and an inlet passage portion that is tangentially connected to the spiral portion and extends substantially straight. When trying to generate a strong swirling flow in the engine combustion chamber using such a helical type intake (je-) when the engine is operating at low speed and low load with little intake air I, the shape of the intake air intake becomes a shape with large flow resistance. This causes a problem in that the charging efficiency decreases when the engine is operated at high speed and under high load with a large amount of intake air. To solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port entrance passage and communicates with the spiral end of the helical intake port spiral section. The applicant has already proposed a helical intake port in which an on-off valve is provided at the engine speed and the on-off valve is opened during high-speed, high-load operation of the engine. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area increases,
In this way, filling efficiency can be improved. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has an initial shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will be extremely crude, so Helical intake port with branching path to cylinder,
It is quite difficult to form inside the body.

11胃 本発明は機関高速高負荷12転時に高い充填効率を得る
ことができると共に製造の容易な新規形状を有するヘリ
カル型吸気ポートを提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a helical intake port that can obtain high filling efficiency when the engine is running at high speed and high load, and has a new shape that is easy to manufacture.

以下、添附図面を参照1.て本発明の詳細な説明する。Please refer to the attached drawings below.1. The present invention will now be described in detail.

第1図並びに第2図を参照すると、1はシリンダプロツ
ク、2けシリンダブロック1内で往今動するピストン、
3はシリンダプロ、り1上に固締され念シリンダヘッド
、4Fiピストン2とシリンダへ、ド3間に形成さねた
燃焼室、5は吸気弁、6はシリンダヘッド3内に形成さ
れたヘリカル型吸気ポート、7は排気弁、8はシリンダ
ヘッド3内に形成された排気ポート、9は燃焼室4内に
配置された点火栓、1oけ吸気弁5のステム5aを案内
するステムガイドを夫々示す。第1図並びに第2図に示
されるように吸気ポート6の土壁面11上には下方に、
突戸する隔壁12が一体成形され、この隔壁12′vc
よって渦巻部Bと、この渦巻り 部Bに接線状に接、、、すされた入口通路部Aからなる
ヘリカル型吸気ポニ1トロが形成される。この隔壁12
は入口通路部A内から吸気弁5のステムガイド10の周
囲まで延びておシ、第2図かられかるようにこの隔壁1
2の根元部の巾りは入口通路部Aからステムガイド1o
に近づくにつれて除々に広くなる。隔壁12は吸気ポー
ト6の入口開口。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, a piston that moves back and forth within the two-piece cylinder block 1,
3 is the cylinder pro, the cylinder head fixed on Ri 1, the combustion chamber formed between the 4Fi piston 2 and the cylinder, and the cylinder 3, 5 is the intake valve, and 6 is the helical formed in the cylinder head 3. 7 is an exhaust valve, 8 is an exhaust port formed in the cylinder head 3, 9 is an ignition plug disposed in the combustion chamber 4, and a stem guide for guiding the stem 5a of the intake valve 5 is shown. show. As shown in FIGS. 1 and 2, on the soil wall surface 11 of the intake port 6, there are
A partition wall 12 with a projecting door is integrally molded, and this partition wall 12'vc
Therefore, a helical intake valve is formed, which includes a spiral portion B and an inlet passage portion A that is tangentially connected to the spiral portion B. This partition wall 12
extends from inside the inlet passage A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG.
The width of the base of 2 is from the entrance passage A to the stem guide 1o.
It gradually becomes wider as it approaches. The partition wall 12 is an inlet opening of the intake port 6.

6aに最も近い側に位置する先端部13を有し、更に隔
壁】2は第2図においてこの先端部13がら反時計回り
にステムガイド1oまで延びる第1側壁面141と、先
端部13がら時計回りにステムガイド10まで延びる詑
2側壁面14bとを有する。第1側壁面1411は先端
部13からステムガイド10の側方を通って渦巻部Bの
側壁面15の近傍まで延びて渦巻部側壁面15との間に
狭窄部16を形成する。次いで第11111壁面14a
は渦巻部@壁面15から徐々に間隔を隔てるように湾曲
しつつステムガイド10まで延びる。一方、第2@壁面
14bは先端部13からステムがイド10までほぼまっ
すぐに延びる。
In FIG. 2, the partition wall 2 has a first side wall surface 141 extending counterclockwise from the tip 13 to the stem guide 1o, and a partition wall 141 extending counterclockwise from the tip 13 to the stem guide 1o; The stem 2 side wall surface 14b extends around the stem guide 10. The first side wall surface 1411 extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 1411 and the spiral portion side wall surface 15 . Next, the 11111th wall surface 14a
The spiral portion @ extends to the stem guide 10 while being curved so as to be gradually spaced apart from the wall surface 15. On the other hand, in the second@wall surface 14b, the stem extends almost straight from the tip 13 to the id 10.

第1図から第9図を参照すると、入口通路部Aの側壁面
17.18はほぼ垂直配置され、−・方入口通路部Aの
土壁面19は渦巻部BK向けて徐々に下降する。入口通
路部Aの側壁面17は渦巻部Bの側壁面15に滑らかに
接続され、入口通路部Aの土壁面19は渦巻部Bの土壁
面2oに滑らかに接続される。渦巻部Bの土壁面2oは
渦巻部Bと入口通路部Aの接続部から狭窄部16に向け
て下降しつつ徐々に巾を狭め、次りで狭窄部16を通過
すると徐々に巾を広げる。一方、入口通路部6の下壁面
21け第5図に示すように入口開口6aの近傍において
はその全体がほぼ水平をなしており、側壁面17に隣接
する底壁面部分21mは第8図に示すように渦巻部BK
近づくに従って隆起して傾斜面を形成する。この傾斜底
壁面部分211の傾斜角は渦巻部Bに近づくにつれて徐
々に大きくなる。
Referring to FIGS. 1 to 9, the side wall surfaces 17, 18 of the inlet passage section A are arranged substantially vertically, and the earth wall surface 19 of the inlet passage section A gradually descends toward the spiral section BK. The side wall surface 17 of the entrance passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the earth wall surface 19 of the entrance passage section A is smoothly connected to the earth wall surface 2o of the spiral section B. The earthen wall surface 2o of the spiral portion B gradually narrows in width while descending from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowed portion 16, and then gradually widens as it passes through the narrowed portion 16. On the other hand, as shown in FIG. 5, the bottom wall surface 21 of the inlet passage section 6 is almost horizontal in its entirety in the vicinity of the inlet opening 6a, and the bottom wall surface 21m adjacent to the side wall surface 17 is as shown in FIG. As shown, the spiral part BK
As you get closer, it rises and forms an inclined surface. The angle of inclination of this inclined bottom wall surface portion 211 gradually increases as it approaches the spiral portion B.

一方、隔壁12の第1側壁面14mはわずかばかり傾斜
した下向きの傾斜面からなり、第2側壁面14bはほぼ
垂直をなす。隔壁12の底壁面22′け先端部13から
ステムガイド10に向うに従って入口通路部6の土壁面
11との間隔が次第に大きくなるように入口通路部Aか
ら渦巻部Bに向けてわずかばかり湾曲しつつ下降する。
On the other hand, the first side wall surface 14m of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. The bottom wall surface 22' of the partition wall 12 is slightly curved from the entrance passage section A toward the spiral section B so that the distance between the entrance passage section 6 and the soil wall surface 11 gradually increases from the tip end 13 toward the stem guide 10. Go down.

隔壁12の底壁面22上には第4図のハ、チンダで示 
 。
On the bottom wall surface 22 of the partition wall 12, there are marks shown by C and Chinda in FIG.
.

す領域に底壁面22から下方に突出するりプ23が形成
され、このI)f23の底面および底壁面22けわずか
げかシ湾曲した傾斜面を形成する。
A lip 23 protruding downward from the bottom wall surface 22 is formed in the area where the bottom wall surface 22 is located, and the bottom surface of this I)f23 and the bottom wall surface 22 form a slightly curved slope.

一方、シリンダへ、ド3内には渦巻部Bの渦巻終端部C
と入口通路部Aとを連通ずる分岐路24が形成され、こ
の分岐路24の入口部にロータリ弁25が配置される。
On the other hand, the spiral end C of the spiral portion B is inserted into the cylinder and inside the door 3.
A branch passage 24 is formed which communicates the inlet passage A with the inlet passage A, and a rotary valve 25 is disposed at the entrance of the branch passage 24.

この分岐路24は隔IP12によって入口通路部Aから
分離されており、分岐路24の下側空間全体が入口通路
部Am連逆している。分岐路24の上壁面26けほぼ一
様な巾を有し、渦巻終端部Cに向けて徐々に下降して渦
巻部Bの上壁面20に滑らかに接続される。隔壁12の
第2側壁面14bに対面する分岐路24の側壁面27は
ほぼ垂直を々し、更にこのll1l壁面27はほぼ入口
通路部Aの*Il壁面18の延長十に位置する。なお、
第1図かやわかるようK11M壁12上に形成されたリ
ブ2・1:′:に′・:は・−タリ弁25の11:、。
This branch passage 24 is separated from the inlet passage part A by a distance IP12, and the entire lower space of the branch passage 24 is connected to the inlet passage part Am. The upper wall surface 26 of the branch passage 24 has a substantially uniform width, gradually descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral section B. The side wall surface 27 of the branch passage 24 facing the second side wall surface 14b of the partition wall 12 is substantially perpendicular, and furthermore, this ll1l wall surface 27 is located approximately at an extension of the *Il wall surface 18 of the inlet passage section A. In addition,
As can be seen in FIG. 1, the ribs 2.1:':ni'.:ha.--11: of the tarry valve 25 are formed on the K11M wall 12.

近傍から吸気弁5に向けて延びている。It extends from the vicinity toward the intake valve 5.

第10図に示されるようにロータリ弁25はロータリ弁
ホルダ28と、ロータリ弁ホルダ28内において回転用
能に支持された弁軸29とKより構成され、このロータ
リ弁ホルダ28はシリンダへ、ド3に穿設されたねじ孔
30内に螺着される。
As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 and K rotatably supported within the rotary valve holder 28. It is screwed into a screw hole 30 drilled in 3.

弁軸29の下端部には薄板状の弁体31が一体形成され
、第1図に示されるようKこの弁体31は分岐路24の
土壁面26から底壁面21まで延びる。一方、弁軸29
の上端部にはアーム32が固定される。また、弁軸29
の外周面上にはリング溝33が形成され、このリング溝
33内にはE字型位置決めリング34が嵌込まれる。更
にロータリ弁ホルダ28の上端部にはシール部材35が
嵌着され、このシール部材35によって弁軸29のシー
ル作用が行なわれる。一方、第2図並びに第4図に示さ
れるように弁体31の一方の縁部311に対面する分岐
路側壁面27上には部分円筒状の凹溝36がJし成さ豐
、第2図並びに第4図に示されるようにロータ *25
が閉鎖位置にあるとき。
A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. On the other hand, the valve stem 29
An arm 32 is fixed to the upper end of. In addition, the valve shaft 29
A ring groove 33 is formed on the outer peripheral surface of the ring groove 33, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Further, a seal member 35 is fitted to the upper end of the rotary valve holder 28, and the seal member 35 performs a sealing action on the valve shaft 29. On the other hand, as shown in FIGS. 2 and 4, a partially cylindrical groove 36 is formed on the branch road side wall surface 27 facing one edge 311 of the valve body 31. and the rotor as shown in Fig. 4 *25
is in the closed position.

弁体31の縁部31aは凹溝36の壁面から間隔t1を
隔だてて凹溝36内に侵入する。一方、弁体31の他方
の縁部31bに対面する隔壁12の第2側壁面14b上
にも部分円筒状の凹溝37が形成され、第2図並びに第
4図に示されるようにロータリ弁25が閉鎖位置にある
とき、弁体31の縁部31bは凹溝37の壁面から間隔
t2を隔たてて凹溝37内に侵入する。なお、これらの
凹溝36.37を形成する円筒の中心は弁体31の回転
軸線に一致する・ 第11図を参照すると、ロータリ弁25の上端部に固着
されたアーム32の先端部は負圧ダイアフラム装f40
のダイアフラム41に固着された制御口、ド42に連結
ロッド43を介して連結される。負圧ダイアフラム装置
40はダイアフラム41によって大気から隔離された負
圧室44を有し、この負圧室44内にダイアフラム押圧
用圧縮ばね45が挿入される。シリンダへ、ド3には1
次側気化器46mと2次側気化器46bからなるコンノ
ウンド型気化器46を具えた吸気マニホルド47が取付
けられ、負圧室44は負圧導管48を介して晧気マニホ
ルド47内に連結される。この負圧導管48内には負圧
室44から吸気マニホルド47内に向けてのみ流通可能
な逆止弁49が挿入される。更に、負圧室44は大気導
管5o並ひに大気開放制御弁51を介して大気に連j山
する。
The edge 31a of the valve body 31 enters into the groove 36 at a distance t1 from the wall surface of the groove 36. On the other hand, a partially cylindrical groove 37 is also formed on the second side wall surface 14b of the partition wall 12 facing the other edge 31b of the valve body 31, and as shown in FIGS. 2 and 4, the rotary valve 25 is in the closed position, the edge 31b of the valve body 31 enters the groove 37 at a distance t2 from the wall surface of the groove 37. Note that the center of the cylinder forming these grooves 36 and 37 coincides with the rotation axis of the valve body 31. Referring to FIG. 11, the tip of the arm 32 fixed to the upper end of the rotary valve 25 has a negative pressure diaphragm f40
A control port fixed to a diaphragm 41 is connected to a door 42 via a connecting rod 43. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. To the cylinder, 1 to C3
An intake manifold 47 equipped with a connoun type carburetor 46 consisting of a next side carburetor 46m and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to the inside of the air manifold 47 via a negative pressure conduit 48. . A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Furthermore, the negative pressure chamber 44 is connected to the atmosphere via the atmosphere conduit 5o and the atmosphere release control valve 51.

この本気開放制御弁51けダイアフラム52によって隔
成された負圧室53と大気圧室54とを有し、更に大気
圧室54に隣接して弁室55を有する。この弁室55は
一方では大気導管5oを介して負圧室44内に連逆し、
他方では弁ポート56並ひにエアフィルタ57を介して
大気に連通ずる。
This serious release control valve 51 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 is connected to the negative pressure chamber 44 via the atmospheric conduit 5o on the one hand,
On the other hand, the valve port 56 as well as the air filter 57 communicate with the atmosphere.

弁室55内KII′i央ポート56の開閉制御をする弁
体58が設けられ、この弁体58け弁口、ド59を介し
てダイアフラム52に連結される。負圧室53内にはダ
イアフラム押圧用圧縮ばね6oが挿入され、史に負圧室
53は負圧導管61を介して1次側気化器46aのペン
チ、り部62に連結される。
A valve body 58 is provided for controlling the opening and closing of the KII'i center port 56 within the valve chamber 55, and is connected to the diaphragm 52 via a valve port and a door 59. A compression spring 6o for pressing the diaphragm is inserted into the negative pressure chamber 53, and the negative pressure chamber 53 is connected to the pliers 62 of the primary side carburetor 46a via a negative pressure conduit 61.

気化器46は通常用いられる気化器であって1次側スロ
ットル弁63が所定開度以上1弁したときに2次側スロ
ットル弁64が開弁し、1次側スロットル弁63が全開
すれば2次側スロ、トル弁64も全開する。1次側気化
器461のベンチュリ部62に発生する負圧は機関シリ
ンダ内に供給される吸入空気量が増大するほど大きくな
り、従ってペンチ、υ部621C発生する負圧が所定負
圧よりも大きくなったときに、aち機関高速高負荷運転
時に大気開放制御弁51のダイアフラム52が圧縮ばね
60に抗して右方に移動[7、その結果弁体58が弁ポ
ート56を開弁して負圧ダイアフラム装置40の負圧室
44を大気に開放する。このときダイアフラム41は圧
縮ばね45のけね力により1方に移動し、その結果ロー
タリ弁25が回転せしめられて分岐路24を全一する。
The carburetor 46 is a commonly used carburetor, and when the primary throttle valve 63 opens a predetermined opening or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, it opens 2 times. The next slot and torque valve 64 are also fully opened. The negative pressure generated in the venturi section 62 of the primary side carburetor 461 increases as the amount of intake air supplied into the engine cylinder increases, so the negative pressure generated in the pliers and υ section 621C becomes larger than the predetermined negative pressure. When the engine is operated at high speed and high load, the diaphragm 52 of the atmospheric release control valve 51 moves to the right against the compression spring 60 [7, and as a result, the valve body 58 opens the valve port 56. The negative pressure chamber 44 of the negative pressure diaphragm device 40 is opened to the atmosphere. At this time, the diaphragm 41 is moved in one direction by the biasing force of the compression spring 45, and as a result, the rotary valve 25 is rotated to completely unify the branch passage 24.

一方1次側スロ、トル弁63の開度が小さいときにはベ
ンチ、υ部62に発生する負圧が小さなために大気開放
制御弁51のダイアフラム52は圧縮ばね+1 60のばね力により左方に移動し、弁体58が弁−。
On the other hand, when the opening degree of the primary side slot and torque valve 63 is small, the negative pressure generated in the bench and υ part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring +1 60. However, the valve body 58 is a valve.

ポート56を閉鎖する。9.更にこのように1次側ス、
゛・・( ロワトル弁63の開度が小さいときには吸気マニホルド
4フ内には大きな負圧が発生している。逆止弁49は吸
気マニホルド47内の負圧が負圧ダイアフラム装[40
の負圧室44内の負圧よυも大きくなると開弁じ、吸>
1マニホルド47内の負圧が負圧室44内の負圧よりも
小さくなると閉弁するので大気開放制御弁51が閉弁し
ている限り負圧室44内の負圧は吸気マニホルド47内
に発生した最大負圧に維持される。負圧室44内に負圧
が加わるとダイつ′フラム41は圧縮ばね45に抗して
上千7し、その結果ロータリ弁25が回動せしめられて
分岐路24が閉鎖される。従って機関低速低負荷運転時
1(はロータリ弁25によって分岐路24が閉鎖される
ことになる。なお、高負荷運転時であっても機関回転数
が低い場合、並びに機関I]J転数が高くても低負荷運
転が行なわれている場合にはベンチュリ部62に発生す
る負圧が小さなために大気開放B1弁51は閉鎖され続
けている。従ってこのような低速高負荷運転時並びに高
速低負荷運転時には負圧室44内の負圧が前述′1 の最大負圧に維持されているのでロータリ弁25によっ
て分岐路24が閉鎖されている。
Close port 56. 9. Furthermore, in this way, the primary side
゛...(When the opening degree of the Loitre valve 63 is small, a large negative pressure is generated inside the intake manifold 4.The check valve 49 has a negative pressure diaphragm device [40
When the negative pressure in the negative pressure chamber 44 also increases, the valve opens and suction>
1. When the negative pressure in the manifold 47 becomes smaller than the negative pressure in the negative pressure chamber 44, the valve closes, so as long as the atmospheric release control valve 51 is closed, the negative pressure in the negative pressure chamber 44 flows into the intake manifold 47. The maximum negative pressure generated is maintained. When a negative pressure is applied to the negative pressure chamber 44, the die phragm 41 is upwardly moved against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is running at low speed and with a low load, the branch passage 24 is closed by the rotary valve 25. Even during high load operation, if the engine speed is low, and when the engine I]J rotation speed is Even if the pressure is high, the atmospheric release B1 valve 51 remains closed when low-load operation is being performed because the negative pressure generated in the venturi section 62 is small. During load operation, the branch passage 24 is closed by the rotary valve 25 because the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure '1' mentioned above.

上述したように吸入空気量が少ない機関低速低負荷運転
時にはロータリ弁25が分岐路24を閉鎖している。こ
のとき、入口通路部A内に送り込1れた混合気の一部は
土壁面19.20傾浴って進み、残りの混合気のうちの
一部の混合気はロータリ弁25に衝突して人口通路部A
のflll壁面17の方へ向きを変えた彼に渦巻部Bの
側壁面15に沿って進む。前述したように上屋面19.
20の巾は狭窄部16に近づくに従って次第に狭くなる
ために土壁面19.20に沿って流れる混合気の流路は
次第に狭ばまり、斯くして土壁面19゜20に沿う混合
気流は次第に増速される。更に、前述したように隔壁1
2の第1側壁面14aは渦巻部Bの側壁面150AI傍
まで延びているので一ヒ壁面19.20に活って進む混
合気流は渦@部Bの側壁面15上に押しやられ、次いで
側壁面15に漬って進むために渦巻部B内には強力な旋
回流。
As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, a part of the air-fuel mixture sent into the inlet passage part A tilts toward the earth wall surface 19.20, and part of the remaining air-fuel mixture collides with the rotary valve 25. Population passage section A
He turned toward the full wall surface 17 and proceeded along the side wall surface 15 of the spiral portion B. As mentioned above, the shed surface 19.
The width of 20 gradually narrows as it approaches the narrowed part 16, so the flow path for the mixture flowing along the earth wall surfaces 19 and 20 gradually narrows, and thus the air mixture flow along the earth wall surfaces 19 and 20 gradually increases. be speeded up. Furthermore, as mentioned above, the partition wall 1
Since the first side wall surface 14a of No. 2 extends to the vicinity of the side wall surface 150AI of the vortex section B, the mixed air flow active on the first wall surface 19.20 is pushed onto the side wall surface 15 of the vortex section B, and then A strong swirling flow exists in the spiral portion B because it flows along the wall surface 15.

が発生せしめられる。次いで混合気は旋回し一部つ吸気
弁5とその弁座間に形成される間隙を通って燃焼室4内
に流入1.て燃焼室4内に強力な旋回流を発生せしめる
。このように機関低速低負荷運転時には混合気の一部が
弁体31に衝突するために弁体31の縁部31&と11
in壁面27との間、および弁体31の縁部31bと@
2側壁面14bとの間を完全に閉鎖した場合には混合気
中に含まれるガム質等の不純物が弁体縁部31m+31
bと側壁面27.14b間に堆積し、その結果弁体31
が側壁面27.14bに固着してしまうという間組を生
ずる。従ってこのような問題を回避するために本発明で
は弁体縁部31mと側壁面27間、および弁体縁部31
bと第2側壁面14b間に間隙を設けてガム質等の不純
物が堆積するのを阻止するようにしている。しかしなが
らこのような間隙を単に設けただけではこれらの間隙を
通して漏れる混合気の量が多くなるために渦巻部Bに発
生する旋回流が臂められてしまり。特に、弁体縁部31
1と側壁面27間から漏れた混合気は側壁面27に沿っ
て進むために渦巻部Bの旋回流に正面から衝突し、旋回
流を極度に弱めてしまう。そこで本発明では第2図およ
び第4図に示すように側壁面27,14bに夫々凹溝3
6.37を形成し。
is caused to occur. The mixture then swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat. This generates a strong swirling flow within the combustion chamber 4. In this way, when the engine is operated at low speed and under low load, a part of the air-fuel mixture collides with the valve body 31, so that the edges 31 and 11 of the valve body 31 are
between the in wall surface 27 and the edge 31b of the valve body 31 @
When the space between the two side wall surfaces 14b is completely closed, impurities such as gum contained in the air-fuel mixture will be removed from the valve body edge 31m+31.
b and the side wall surface 27.14b, as a result of which the valve body 31
This results in a gap in which the material becomes stuck to the side wall surface 27.14b. Therefore, in order to avoid such problems, in the present invention, between the valve body edge 31m and the side wall surface 27, and between the valve body edge 31
A gap is provided between the second side wall surface 14b and the second side wall surface 14b to prevent impurities such as gum from accumulating. However, if such gaps are simply provided, the amount of air-fuel mixture leaking through these gaps will increase, and the swirling flow generated in the swirl portion B will be weakened. In particular, the valve body edge 31
The air-fuel mixture leaking from between 1 and the side wall surface 27 travels along the side wall surface 27 and collides head-on with the swirling flow of the swirl portion B, extremely weakening the swirling flow. Therefore, in the present invention, as shown in FIGS. 2 and 4, grooves 3 are formed in the side wall surfaces 27 and 14b, respectively.
6.37 was formed.

これらの凹溝36.37内において弁体縁部311゜3
1bに間N1tlll−2を形成するようにして混合気
の漏れ甘が少なくなるようにしている。枯」ち、第12
図(a)に示すように平坦な側壁面27 、14bと弁
体縁部31m、31b間に夫々間r’JL1+ltを形
成した場合には混合気がこれらの間H’1 st2内を
通過しやすく、従って混合気の5t1tは多くなる。こ
れに対して第12図(b)に示すように各側壁面27.
14b上に夫々凹溝36.37を形成してこれらの凹溝
36.37の壁面と弁体締部31m、31b間に第12
図(&)と同じ寸法の間@ l 1  e ’ !を形
成した場合には混合気流路が矢印で示すように屈曲せし
められるために混合気流に対する流れ抵抗が大きくなり
、斯くして混合もの漏れ飯が少なくなる。第13図はこ
れらのjl+削t・ 、t・と旋回流の強1′さとの関
係を示す。第13図においてれ軸S tt:ll蔓位時
間当りの旋口流の旋回回数を示し、横軸は間H1++’
雪を示す。
Within these grooves 36 and 37, the valve body edge 311°3
A gap N1tll-2 is formed between 1b and 1b to reduce leakage of the air-fuel mixture. ``Karae''chi, 12th
As shown in Figure (a), when a space r'JL1+lt is formed between the flat side wall surfaces 27, 14b and the valve body edges 31m, 31b, the air-fuel mixture passes through H'1 st2 between them. Therefore, the amount of 5t1t of the air-fuel mixture increases. On the other hand, as shown in FIG. 12(b), each side wall surface 27.
Recessed grooves 36.37 are formed on each of the recessed grooves 36.37, and a 12th
Between the same dimensions as the figure (&) @l 1 e'! In the case where the air-fuel mixture flow path is bent as shown by the arrow, the flow resistance to the air-mixture flow increases, and thus the amount of leakage of the mixture is reduced. FIG. 13 shows the relationship between these jl + cutting t・, t・ and the strength 1′ of the swirling flow. In Fig. 13, the horizontal axis shows the number of turns of the whirlpool flow per rotation time, and the horizontal axis shows the number of turns of the whirlpool flow per rotation time.
Showing snow.

また、第13図において実線は第2図および第12図(
b)に示すように側壁面27.14b上に夫々凹溝36
.37を形成した場合を示し、破線は第12図(a)に
示すように凹溝36.37を形成しない場合を示す。第
13図から凹溝36.37を形成しない場合には間隙1
1.1gを増大させると旋回流の旋回回数Sがそれに伴
なって大巾に低下してしまうことがわかる。これに対し
て凹溝36を形成した場合には間隙1..1gを増大さ
せても旋仲1流の旋回回転psがさほど低下しないこと
がわかる。なお、第13図からこれらの間隙t1.t@
け0.6 W以下にすることが望ましいことがわかる。
In addition, in Fig. 13, the solid lines are shown in Fig. 2 and Fig. 12 (
As shown in b), grooves 36 are formed on the side wall surfaces 27 and 14b, respectively.
.. 37 is formed, and the broken line shows the case where grooves 36 and 37 are not formed as shown in FIG. 12(a). From Fig. 13, if the grooves 36 and 37 are not formed, the gap 1
It can be seen that when increasing 1.1g, the number of turns S of the swirling flow decreases accordingly. On the other hand, when the groove 36 is formed, the gap 1. .. It can be seen that the swirling rotation ps of the first flow of the swirling medium does not decrease significantly even when the amount of the swirling medium is increased by 1 g. In addition, from FIG. 13, these gaps t1. t@
It can be seen that it is desirable to reduce the power to 0.6 W or less.

一方、吸入空気量が多い機関高速高負荷運転時にはロー
タリ弁25が開弁するので入口通路部A内に送り込まれ
た混合気は大別すると3コの流れに分流される。即ち、
第1の流れは隔壁12の第1側壁面14mと入口通路部
Aの側壁面17間に:1:1: 流入し、次いで、JF部Aの上壁面20に?t=iって
旋回しつつ流れる温容気流であり、第2の流れは分岐路
24を介して渦巻部B内に流入する混合気流であり、第
3の流れは入口通路部Aの底壁面21に沿って渦巻部B
内に流入する混合気流である。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 is opened, so that the air-fuel mixture sent into the inlet passage A is roughly divided into three streams. That is,
The first flow flows between the first side wall surface 14m of the partition wall 12 and the side wall surface 17 of the inlet passage section A (1:1), and then flows into the upper wall surface 20 of the JF section A. t=i is a hot air flow that flows while swirling, the second flow is a mixed air flow that flows into the swirl part B via the branch passage 24, and the third flow is a hot air flow that flows through the bottom wall surface of the inlet passage part A. 21 along spiral part B
This is the mixed airflow flowing into the air.

分岐路24の流れ抵抗は第1側壁面14mと側壁面17
間の流れ抵抗に比べて小さく、従って第2の混合気流の
方が第1の混合気流よりも多くなる。
The flow resistance of the branch path 24 is between the first side wall surface 14m and the side wall surface 17.
Therefore, the second mixed air flow is larger than the first mixed air flow.

更に、渦巻部B内を旋回しつつ流れる第1混合気流の流
れ方向は第2混合気流によって下向きに偏向され、斯く
して第1混合気流の旋回力が弱められることになる。こ
のように流れ抵抗の小さな分岐路24かもの混合気流が
増大し、更に第1混合気流の流れ方向が下向きに偏向さ
れるので高い充填効率が得られることKなる。また、紡
述したように隔!!21の底壁面は下向きの傾斜面から
形成されているので第3の混合気流はこの傾斜面に案内
されて流れ方向が下向きに偏向され、斯くして更に高い
充填効率が得られることになる。
Furthermore, the flow direction of the first air mixture flowing while swirling in the swirl portion B is deflected downward by the second air mixture, thus weakening the swirling force of the first air mixture. In this way, the mixed air flow in the branch passages 24 with low flow resistance is increased, and the flow direction of the first mixed air flow is further deflected downward, so that a high filling efficiency can be obtained. Also, as mentioned, there is a gap! ! Since the bottom wall surface of 21 is formed from a downwardly inclined surface, the third air mixture flow is guided by this inclined surface and the flow direction is deflected downward, thus achieving even higher filling efficiency.

また、本発明によるヘリカル型吸気ポートは吸気ポート
6の土壁面上に隔1112を一体成形すればよいのでヘ
リカル型吸気/−)を容易に製造することができる。
Further, in the helical type intake port according to the present invention, the partition 1112 can be integrally formed on the earthen wall surface of the intake port 6, so that the helical type intake port (-) can be easily manufactured.

以上述べたように本発明によれば機関低速低負荷運転時
には弁体にガム質等の不純物が堆積するのを阻止しつつ
分岐路内に混合気が漏洩するのを阻止できるので燃焼室
内に強力な旋回流を発生せしめることができる。一方、
機関高速高負荷運転時には分岐路を開口することにより
多量の混合気が流れ抵抗の小さな分岐路を介して渦巻部
内に送り込まれるので高い充填効率を得ることができる
As described above, according to the present invention, when the engine is operated at low speed and under low load, it is possible to prevent impurities such as gum from accumulating on the valve body and to prevent the air-fuel mixture from leaking into the branch passage. It is possible to generate a swirling flow. on the other hand,
When the engine is operating at high speed and high load, by opening the branch passage, a large amount of air-fuel mixture flows through the branch passage with low resistance and is sent into the volute, resulting in high filling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図の!−1線に沿ってみた本発明に係る内
燃機関の側面断面図、第2図は第1図の1− It #
Kjiってみた平面断面図、第3図は本発明によるヘリ
カル型吸気ポートの形状を図解的に示す側面図、第4図
はヘリカル型吸気ポートの形状を図解的に示す平面図、
第5図は第3図および第4し:の■−■線に沿ってみた
断面図、第6図は第3図および竺4図のVl−Vl糾に
沿ってみた断面図、第7図は第3図および第4図の■−
■線に沿ってみた断面図、第8図は第3図および第4図
の■−■線に泪ってみた断面図、第9図は第3図および
第4図の114線に沿ってみた断面図、第10図はロー
タリ弁の側面断面図、第11図はロータリ弁の駆動制御
装置を示す図、第12図は弁体縁部に形成された間隙内
の混合気の流れを説明するための図、第13図は旋回流
の強さを示すグラフである。 4・・・燃焼室、6・・・ヘリカル型吸気/−)、12
・・・隔壁、24・・・分岐路、25・・・ロータリ弁
、31・・・弁体、36.37・・・凹溝。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士 青 木   朗 弁理士 砂 舘 和 之 弁理士 中 市 恭 介 弁理士 山 1″(昭 之 第1図 第2図 −73− 第12図 (a)            (b)第13図
Figure 1 is like Figure 2! 2 is a side sectional view of the internal combustion engine according to the present invention taken along line 1-1 of FIG. 1.
3 is a side view schematically showing the shape of the helical intake port according to the present invention; FIG. 4 is a plan view schematically showing the shape of the helical intake port;
Figure 5 is a sectional view taken along the line ■-■ in Figures 3 and 4, Figure 6 is a sectional view taken along the line Vl--Vl in Figures 3 and 4, and Figure 7. ■- in Figures 3 and 4
Figure 8 is a cross-sectional view taken along line ■--■ in Figures 3 and 4, Figure 9 is a cross-sectional view taken along line 114 in Figures 3 and 4. Fig. 10 is a side sectional view of the rotary valve, Fig. 11 is a diagram showing the drive control device of the rotary valve, and Fig. 12 explains the flow of air-fuel mixture in the gap formed at the edge of the valve body. Figure 13 is a graph showing the strength of the swirling flow. 4... Combustion chamber, 6... Helical intake/-), 12
...Partition wall, 24... Branch passage, 25... Rotary valve, 31... Valve body, 36.37... Concave groove. Patent Applicant Toyota Motor Corporation Patent Attorney Akira Aoki Patent Attorney Kazuyuki Sunatate Patent Attorney Kyosuke Nakaichi a) (b) Figure 13

Claims (1)

【特許請求の範囲】[Claims] 吸気弁側シに形成された渦巻部と、該渦巻部に接線状に
接続されかつ#1ぼまっすぐに延びる入口通路部とによ
シ構成されたヘリカル型吸気ポートにおいて、上記入口
通路部から分岐されて上記渦巻部の渦巻終端部に連通す
る分岐路を上記入口連路部に併設し、吸気ポート上壁面
から下方に突出しかつ入口通路部から吸気弁ステム周り
まで延びる隔壁によって核分岐路が入口通路部から分離
され、該分岐路の下側空間全体が横断面内において上記
入口通路部に連通すると共に核入口通路部と分岐路との
通路壁を一体的に連結形成し、該分岐路内に回転形弁体
を設けて該弁体により分岐路内を流れる吸入空気流を制
御し、更に該弁体回転軸に平行な弁体縁部に対面する分
岐路内壁面上に部分円筒状の凹溝を形成して上記弁体縁
部が該凹溝内に侵入可能であるヘリカル型吸気ポート。
In a helical intake port configured with a spiral portion formed on the intake valve side and an inlet passage portion connected tangentially to the spiral portion and extending approximately straight, the intake port branches from the inlet passage portion. A branch passage communicating with the spiral terminal end of the spiral part is provided in the inlet communication passage part, and the core branch passage is connected to the entrance by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage part to around the intake valve stem. It is separated from the passage part, and the entire lower space of the branch passage communicates with the entrance passage part in the cross section, and the passage walls of the nucleus entrance passage part and the branch passage are integrally connected, and the inside of the branch passage is A rotary valve body is provided in the valve body to control the intake air flow flowing through the branch passage, and a partially cylindrical valve is provided on the inner wall surface of the branch passage facing the valve body edge parallel to the rotation axis of the valve body. A helical intake port that forms a groove so that the edge of the valve body can enter into the groove.
JP57077477A 1982-05-11 1982-05-11 Helical suction port Granted JPS58195014A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57077477A JPS58195014A (en) 1982-05-11 1982-05-11 Helical suction port
US06/490,339 US4478182A (en) 1982-05-11 1983-05-02 Helically-shaped intake port of an internal combustion engine
DE19833316962 DE3316962A1 (en) 1982-05-11 1983-05-09 SCREW-INLET INLET OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077477A JPS58195014A (en) 1982-05-11 1982-05-11 Helical suction port

Publications (2)

Publication Number Publication Date
JPS58195014A true JPS58195014A (en) 1983-11-14
JPS6236137B2 JPS6236137B2 (en) 1987-08-05

Family

ID=13635060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077477A Granted JPS58195014A (en) 1982-05-11 1982-05-11 Helical suction port

Country Status (1)

Country Link
JP (1) JPS58195014A (en)

Also Published As

Publication number Publication date
JPS6236137B2 (en) 1987-08-05

Similar Documents

Publication Publication Date Title
JPS5823224A (en) Helical type suction port
JPS58204924A (en) Helical intake port
JPS6238537B2 (en)
JPS58195014A (en) Helical suction port
US4478182A (en) Helically-shaped intake port of an internal combustion engine
JPS58195016A (en) Helical suction port
JPS58222917A (en) Intake port of helical type
EP0102453B1 (en) A helically-shaped intake port of an internal-combustion engine
JPS6335166Y2 (en)
JPS5939928A (en) Helical type suction port
JPS58204927A (en) Helical intake port
JPS6238541B2 (en)
JPS6238531B2 (en)
JPS6238529B2 (en)
JPS58204934A (en) Helical intake port
JPS6236136B2 (en)
JPS58204930A (en) Helical intake port
JPS6236138B2 (en)
JPS6021470Y2 (en) Helical intake port
JPS6229624Y2 (en)
JPS6232327B2 (en)
JPS6238540B2 (en)
JPS6238528B2 (en)
JPS6238530B2 (en)
JPS6238534B2 (en)