JPS58194B2 - GAP - Google Patents

GAP

Info

Publication number
JPS58194B2
JPS58194B2 JP49131180A JP13118074A JPS58194B2 JP S58194 B2 JPS58194 B2 JP S58194B2 JP 49131180 A JP49131180 A JP 49131180A JP 13118074 A JP13118074 A JP 13118074A JP S58194 B2 JPS58194 B2 JP S58194B2
Authority
JP
Japan
Prior art keywords
type
light emitting
junction
gap layer
type gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49131180A
Other languages
Japanese (ja)
Other versions
JPS5157297A (en
Inventor
阿部修
別府達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP49131180A priority Critical patent/JPS58194B2/en
Publication of JPS5157297A publication Critical patent/JPS5157297A/en
Publication of JPS58194B2 publication Critical patent/JPS58194B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 発明の技術分野 この発明は、一枚のGaP基板結晶に赤色発光特性を示
すpn接合と緑色発光特性を示すpn接合とを形成して
なるGaP二色発光素子の製造方法に関する。
Detailed Description of the Invention Technical Field of the Invention The present invention relates to the production of a GaP two-color light emitting device in which a pn junction exhibiting red light emitting characteristics and a pn junction exhibiting green light emitting characteristics are formed on a single GaP substrate crystal. Regarding the method.

発明技術的背景とその問題点 GaPは室温下において高効率の赤色発光ならびに緑色
発光を示す材料としてよく知られている。
Technical background of the invention and its problems GaP is well known as a material that emits red and green light with high efficiency at room temperature.

赤色発光では亜鉛と酸素原子の最近接対が、緑色発光で
は窒素原子が発光中心を形成する。
For red emission, the closest pair of zinc and oxygen atoms form the luminescent center, and for green emission, the nitrogen atom forms the luminescent center.

従ってこれらの発光色を持つ素子を作りわけるためには
、結晶内の発光中心不純物濃度を制御することが必要で
ある。
Therefore, in order to produce devices with these luminescent colors, it is necessary to control the luminescent center impurity concentration within the crystal.

一方、GaPで一般的に用いられる大面積基板結晶とし
ては高圧引上げ単結晶(LEC結晶)がある。
On the other hand, a high-pressure drawn single crystal (LEC crystal) is a large-area substrate crystal commonly used for GaP.

しかし、この結晶の発光特性は良くなく、また不純物濃
度を適宜制御するためにも、直接この結晶をpn接合形
成には用いず、通常二重液相成長法等が用いられている
However, the light emitting properties of this crystal are not good, and in order to appropriately control the impurity concentration, this crystal is not directly used to form a pn junction, but usually a double liquid phase growth method or the like is used.

例えば赤色発光素子ではn型LEC結晶基板上にn型液
相成長結晶(LPE結晶)を成長させ、この層にはドナ
ー不純物の他に酸素原子を添加する。
For example, in a red light emitting device, an n-type liquid phase epitaxy crystal (LPE crystal) is grown on an n-type LEC crystal substrate, and this layer is doped with oxygen atoms in addition to donor impurities.

続いてこの結晶に亜鉛と酸素を含むp型層を成長させて
pn接合を作る。
Next, a p-type layer containing zinc and oxygen is grown on this crystal to form a p-n junction.

また、緑色発光素子ではn型LEC結晶基板上にドナー
不純物と窒素原子を含むn型LPE層を形成し、続いて
アクセプタ不純物と窒素原子を含むp型層を形成してp
n接合を作る。
In addition, in green light emitting devices, an n-type LPE layer containing donor impurities and nitrogen atoms is formed on an n-type LEC crystal substrate, and then a p-type layer containing acceptor impurities and nitrogen atoms is formed.
Make an n-junction.

また、2度目の液相成長によりpn接合を形成する方法
の他に、p型層を拡散法で形成してもよい。
Further, in addition to the method of forming a pn junction by second liquid phase growth, the p-type layer may be formed by a diffusion method.

ところで、この種のGaP二色発光素子を製造するに際
しては、次のような問題がある。
However, when manufacturing this type of GaP two-color light emitting device, there are the following problems.

即ち、前述した各種の結晶層の形成に際しては、それぞ
れ熱処理を伴うが、これらの熱処理により結晶層の特性
が劣化する。
That is, the formation of the various crystal layers described above involves heat treatment, but these heat treatments deteriorate the characteristics of the crystal layers.

特に窒素を添加したn型LPE結晶のフォトルミネセン
ス効率は、該結晶を熱処理することにより大きな劣化を
招く。
In particular, the photoluminescence efficiency of an n-type LPE crystal doped with nitrogen is significantly degraded by heat treatment of the crystal.

従来、赤色発光素子を形成するためのn型LPE結晶層
の成長時、或いは赤色及び緑色の発光素子の各pn接合
を形成するための拡散時等における熱処理が、上記窒素
を添加したn型LPE結晶層にも加わり、これにより該
結晶層の特性劣化を避けることはできなかった。
Conventionally, heat treatment during growth of an n-type LPE crystal layer to form a red light-emitting element, or during diffusion to form each pn junction of red and green light-emitting elements, has been applied to the nitrogen-doped n-type LPE. It also added to the crystal layer, and as a result, deterioration of the characteristics of the crystal layer could not be avoided.

このため、窒素を添加したn型LPE結晶のフォトルミ
ネセンス効率の劣化に起因する緑色発光素子の発光効率
の低下を防止することは困難であった。
For this reason, it has been difficult to prevent a decrease in the luminous efficiency of the green light emitting element due to the deterioration in the photoluminescence efficiency of the n-type LPE crystal added with nitrogen.

また、赤色発光素子と緑色発光素子との同一電流レベル
における実効的輝度(人間の目で感じる明るさ)を比較
すると、赤色発光素子の方が高い。
Furthermore, when comparing the effective brightness (brightness perceived by the human eye) of a red light emitting element and a green light emitting element at the same current level, the red light emitting element is higher.

したがって、GaP二色発光素子における同一電流レベ
ルでの赤色および緑色の明るさを揃えることは極めて困
難であった。
Therefore, it has been extremely difficult to equalize the brightness of red and green at the same current level in a GaP two-color light emitting device.

発明の目的 本発明の目的は、緑色発光特性を示すpn接合の窒素を
含むn型LPE結晶が、他の結晶層形成時やpn接合形
成時における熱処理によって特性劣化を招くことを防止
でき、緑色発光素子の発光効率の向上をはかり得て、ひ
いては同一電流レベルにおける赤色および緑色の明るさ
のバランスのとれた高効率のGaP二色発光素子を得る
ことのできるGaP二色発光素子の製造方法を提供する
ことにある。
OBJECTS OF THE INVENTION The purpose of the present invention is to prevent deterioration of the characteristics of a pn junction nitrogen-containing n-type LPE crystal that exhibits green light emission characteristics due to heat treatment during the formation of other crystal layers or during the formation of the pn junction. A method for manufacturing a GaP dichroic light emitting device that can improve the luminous efficiency of the light emitting device and, in turn, provide a highly efficient GaP dichroic light emitting device with well-balanced red and green brightness at the same current level. It is about providing.

発明の概要 本発明の骨子は、n型GaP基板結晶に異なるn型液相
成長層を設け、一方のn型液相成長層に赤色発光特性を
示す第1のpn接合を、他方のn型液相成長層に緑色発
光特性を示す第2のpn接合を設けてなるGaP二色発
光素子を製造するに際し、前記第1のpn接合側の製造
の熱工程を前記第2のpn接合側の製造の熱工程より先
にするようにしたことにある。
Summary of the Invention The gist of the present invention is to provide different n-type liquid phase growth layers on an n-type GaP substrate crystal, and to connect a first pn junction exhibiting red light emitting characteristics to one n-type liquid phase growth layer, and to connect a first pn junction exhibiting red light emitting characteristics to the other n-type liquid phase growth layer. When manufacturing a GaP two-color light emitting device in which a second pn junction exhibiting green light emitting characteristics is provided in the liquid phase growth layer, the thermal process for manufacturing the first pn junction side is replaced by the thermal process for manufacturing the second pn junction side. This is because the process was done before the heat process in manufacturing.

特性の異なるpn接合を同一結晶基板に形成するために
は、必ずしも基板の両面を利用しなくてもよい。
In order to form pn junctions with different characteristics on the same crystal substrate, it is not necessarily necessary to use both sides of the substrate.

例えば基板の同一面上に2つのpn接合を順次積層して
形成することも原理的には可能である。
For example, it is also possible in principle to form two pn junctions by sequentially stacking them on the same surface of the substrate.

そして、2つのpn接合を作る熱工程を前述のように選
択することにより、高効率でバランスのとれた二色発光
素子が得られるものである。
By selecting the thermal process for forming the two pn junctions as described above, a highly efficient and well-balanced two-color light emitting device can be obtained.

実施例の説明に先だち、まずこの発明の背景となった基
礎データについて説明する。
Before explaining the embodiments, the basic data that forms the background of this invention will be explained first.

GaP緑色発光素子の外部発光量子効率は一般に0.0
2%(10Acm−2)程度のものが良く得られる。
The external emission quantum efficiency of GaP green light emitting devices is generally 0.0.
About 2% (10 Acm-2) is often obtained.

これに対し、GaP赤色発光素子の外部発光量子効率は
2〜3%(10Acm−2)程度である。
On the other hand, the external emission quantum efficiency of a GaP red light emitting device is about 2 to 3% (10 Acm-2).

GaPのこれらの発光色の間で視感度には30倍の違い
があるため、0.02%の緑色発光効率は0.6%の赤
色発光効率に相当する明るさを示す。
Since there is a 30-fold difference in luminous efficiency between these emission colors of GaP, a green emission efficiency of 0.02% shows brightness equivalent to a red emission efficiency of 0.6%.

即ち、赤色発光素子と緑色発光素子とでは明るさに約4
倍の差がある。
In other words, the brightness of a red light emitting element and a green light emitting element is approximately 4
There is a difference of twice as much.

一方、赤色発光素子では低電流レベルで高めの効率を示
し、緑色発光素子では高電流レベルで高めの効率を示す
On the other hand, red light-emitting devices exhibit higher efficiency at low current levels, and green light-emitting devices exhibit higher efficiency at high current levels.

これらの点を考慮し、赤色発光素子と緑色発光素子につ
いて同一電流レベルでの明るさを揃えるためには、緑色
発光素子をより高効率とすることが望ましい。
Considering these points, in order to equalize the brightness of the red light emitting element and the green light emitting element at the same current level, it is desirable to make the green light emitting element higher in efficiency.

緑色発光素子は前述のようにn型LEC結晶基板上にn
型LPE結晶層を成長させ、続いてp型層を成長させて
作る二重液相成長法が一般に用いられる。
As mentioned above, the green light emitting element is an n-type LEC crystal substrate.
A dual liquid phase growth method is commonly used in which an LPE-type crystal layer is grown followed by a p-type layer.

この場合n型LPE結晶に発光中心である窒素原子を添
加し、またpn接合近傍の不純物濃度の設計を、正孔の
n型層への注入比を高めた形とすることにより高発光効
率の素子が得られる。
In this case, high luminous efficiency can be achieved by adding nitrogen atoms, which are the luminescent center, to the n-type LPE crystal, and by designing the impurity concentration near the p-n junction to increase the injection ratio of holes into the n-type layer. An element is obtained.

また、p型層を拡散法で形成する場合にも発光中心の添
加はn型LPE結晶成長時に行われる。
Further, even when the p-type layer is formed by a diffusion method, the addition of the luminescent center is performed during the growth of the n-type LPE crystal.

従って、緑色発光素子においては、発光中心窒素原子の
n型LPE結晶への添加は最も重要なプロセスの一つで
、この添加を行った結果どのような発光特性を持った結
晶が得られるかは、最終的素子特性を決定する一つの要
素である。
Therefore, in green light-emitting devices, the addition of the luminescent center nitrogen atom to the n-type LPE crystal is one of the most important processes, and it remains to be seen what kind of luminescent properties the crystal will have as a result of this addition. , is one element that determines the final device characteristics.

そこで発明者らはn型LPE結晶の発光特性の評価方法
として、アルゴンイオンレーザ光(4880人)による
励起で得られる室温下での緑色フォトルミネセンス効率
の測定を採用した。
Therefore, the inventors adopted measurement of the green photoluminescence efficiency at room temperature obtained by excitation with argon ion laser light (4880 people) as a method for evaluating the luminescence characteristics of the n-type LPE crystal.

このフォトルミネセンス効率は発光中心濃度に比例し非
発光中心濃度に逆比例する量である。
This photoluminescence efficiency is proportional to the concentration of luminescent centers and inversely proportional to the concentration of non-luminescent centers.

この測定を用いての結晶評価を行った結果、次の事実が
明らかになった。
As a result of crystal evaluation using this measurement, the following facts were revealed.

即ち、窒素を添加したn型LPE結晶のフォトルミネセ
ンス効率は、結晶を熱処理することにより大きな劣化現
象を示すことである。
That is, the photoluminescence efficiency of the n-type LPE crystal doped with nitrogen shows a significant deterioration phenomenon when the crystal is heat-treated.

この劣化は、しかも、900℃以上の高温処理で顕著に
認められる。
Moreover, this deterioration is noticeable in high-temperature treatments of 900° C. or higher.

従って、窒素を添加したn型LPE結晶を900℃以上
の高温下におくことはできるだけ避けることが望ましい
Therefore, it is desirable to avoid exposing the nitrogen-doped n-type LPE crystal to high temperatures of 900° C. or higher as much as possible.

本発明はこのような点に着目し、GaP結晶基板に、第
1のn型GaP層及び亜鉛、酸素を含む第1のn型Ga
P層からなる赤色発光特性を示す第1のpn接合と、窒
素を含む第2のn型GaP層及び第2のn型GaP層か
らなる緑色発光特性を示す第2のpn接合とを形成して
なるGaP二色発光素子を製造するに際し、上記第1の
n型GaP層を上記第2のn型GaP層より先に形成す
ると共に、上記第2のn型GaP層を上記第2のn型G
aP層の形成温度より低い温度、好ましくは900〔℃
〕より低い温度で形成するようにした方法である。
The present invention focuses on such points, and a GaP crystal substrate is provided with a first n-type GaP layer and a first n-type GaP layer containing zinc and oxygen.
A first pn junction having red light emitting characteristics made of a P layer and a second pn junction having green light emitting characteristics made of a second n type GaP layer containing nitrogen and a second n type GaP layer are formed. When manufacturing a GaP two-color light emitting device, the first n-type GaP layer is formed before the second n-type GaP layer, and the second n-type GaP layer is formed before the second n-type GaP layer. Type G
Temperature lower than the formation temperature of the aP layer, preferably 900 [°C]
] This is a method in which formation is performed at a lower temperature.

発明の効果 本発明によれば、赤色発光特性を示す第1のpn接合を
構成するn型GaP層(第1のn型GaP層)の形成を
、緑色発光特性を示す第2のpn接合を構成する窒素を
含むn型GaP層(第2のn型GaP層)の形成より先
に行っているので、第1のn型GaP層を形成する際の
熱処理が第2のn型GaP層に加わることを未然に防止
することができる。
Effects of the Invention According to the present invention, the formation of the n-type GaP layer (first n-type GaP layer) constituting the first pn junction exhibiting red light emitting characteristics is performed by forming the second pn junction exhibiting green light emitting characteristics. Since the heat treatment is performed before the formation of the constituent nitrogen-containing n-type GaP layer (second n-type GaP layer), the heat treatment when forming the first n-type GaP layer is applied to the second n-type GaP layer. This can be prevented from occurring.

さらに、緑色発光特性を示す第2のpn接合を構成する
n型GaP層(第2のn型GaP層)の形成を第2のn
型GaP層の形成温度より低い温度で行っているので、
第2のn型GaP層を形成する際の熱処理により第2の
n型GaP層の特性が劣化することを防止できる。
Furthermore, the formation of an n-type GaP layer (second n-type GaP layer) constituting a second p-n junction exhibiting green light-emitting characteristics is performed using a second n-type GaP layer.
Since it is performed at a temperature lower than the formation temperature of the type GaP layer,
It is possible to prevent the characteristics of the second n-type GaP layer from deteriorating due to heat treatment when forming the second n-type GaP layer.

このため、緑色発光素子の発光効率の大幅な向上をはか
り得ると云う効果を奏する。
Therefore, it is possible to significantly improve the luminous efficiency of the green light emitting element.

発明の実施例 第1図a〜dは本発明の一実施例に係わるGaP二色発
光素子製造工程を示す断面図である。
Embodiment of the Invention FIGS. 1A to 1D are cross-sectional views showing the manufacturing process of a GaP two-color light emitting device according to an embodiment of the invention.

まず、第1図aに示す如くn型GaP −L E C結
晶基板1の(100)面の一方にドナーおよび酸素をド
ープしたn型LPE結晶層2を成長させる。
First, as shown in FIG. 1a, an n-type LPE crystal layer 2 doped with donors and oxygen is grown on one of the (100) planes of an n-type GaP-LEC crystal substrate 1.

成長条件はGa 20 g、 GaP 1.5 g 、
Ga2O30,1g、Te8mgで、成長開始温度は
1050℃、冷却速度10℃/分である。
The growth conditions were Ga 20 g, GaP 1.5 g,
Ga2O30.1g, Te8mg, the growth start temperature is 1050°C, and the cooling rate is 10°C/min.

この結果、5×1017cm−3程度のドナー濃度〔N
D−NA〕を持つLPE結晶面が得られる。
As a result, the donor concentration [N
D-NA] is obtained.

次に、第1図すに示す如くもう一方の(100)面上に
窒素原子を添加したn型LPE結晶層3を形成する。
Next, as shown in FIG. 1, an n-type LPE crystal layer 3 doped with nitrogen atoms is formed on the other (100) plane.

成長条件はGa20g、GaP1g、GaN5mgでド
ナー不純物は故意には添加せず、成長開始温度は100
0℃、冷却速度は4℃/分とした。
The growth conditions were 20 g of Ga, 1 g of GaP, and 5 mg of GaN, no donor impurities were intentionally added, and the growth starting temperature was 100 g.
The temperature was 0°C, and the cooling rate was 4°C/min.

この結果、2〜3×1017cm−3程度のドナー濃度
をもつLPE結晶面が得られる。
As a result, an LPE crystal plane having a donor concentration of about 2 to 3×10 17 cm −3 is obtained.

次に、このようにして基板1の表裏面に作られた異なる
n型LPE結晶層2,3に、亜鉛を拡散して、第1図C
に示す如くp型層4,5を形成する。
Next, zinc is diffused into the different n-type LPE crystal layers 2 and 3 formed on the front and back surfaces of the substrate 1 in this way, and as shown in FIG.
P-type layers 4 and 5 are formed as shown in FIG.

拡散温度は740℃、亜鉛圧は1mg/15m1゜燐圧
は0.2mg/15m1、拡散時間5時間とした。
The diffusion temperature was 740°C, the zinc pressure was 1 mg/15 ml, the phosphorus pressure was 0.2 mg/15 ml, and the diffusion time was 5 hours.

最後に、第1図dに示す如く緑色発光ダイオード側をメ
サエッチングしてn型LPE層3を露出させ、電極6,
7.8をつけてペレットした。
Finally, as shown in FIG. 1d, mesa etching is performed on the green light emitting diode side to expose the n-type LPE layer 3,
7.8 and pelleted.

ここで、緑色発光側をメサエッチングしたのは、先に述
べたように、緑色発光と赤色発光の場合の発光効率の電
流密度依存性の違いから、緑色発光を示す第2のpn接
合J2の面積を赤色発光を示す第1のpn接合J1の面
積より小さくした方が望ましいという理由による。
Here, the reason why the green light emitting side was mesa-etched was because of the difference in current density dependence of luminous efficiency between green light emission and red light emission, as mentioned earlier. This is because it is desirable that the area be smaller than the area of the first pn junction J1 that emits red light.

この結果、第2のpn接合J2では緑色発光効率0.0
2%(10Acm−2)、第1のpn接合J1では赤色
発光効率0.8%(10Acm−2)を示した。
As a result, the green luminous efficiency is 0.0 in the second pn junction J2.
2% (10 Acm-2), and the first pn junction J1 showed a red luminous efficiency of 0.8% (10 Acm-2).

緑色発光効率0.02%は赤色発光効率0.6%の明る
さに相当するから、二つの接合は同一電流に対してほぼ
等しい輝度を示す。
Since the green luminous efficiency of 0.02% corresponds to the brightness of the red luminous efficiency of 0.6%, the two junctions exhibit approximately equal luminance for the same current.

なお、本発明は上述した実施例に限定されるものではな
く、その要旨を逸脱しない範囲で、種々変形して実施す
ることができる。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof.

例えば、第2図に示すように、緑色発光側のp型層5′
を選択拡散により形成し、メサエッチングを施すことな
くn型LPE層3からの電極取出しを行うようにしても
、同様であった。
For example, as shown in FIG. 2, the p-type layer 5' on the green light emitting side
The same result was obtained even when the electrode was formed by selective diffusion and the electrode was taken out from the n-type LPE layer 3 without performing mesa etching.

また、前記p型層4,5を拡散でなく、双方を液相成長
により形成する二重液相成長法を用いてもよいのは勿論
のことである。
Moreover, it goes without saying that a double liquid phase growth method may be used in which the p-type layers 4 and 5 are formed not by diffusion but by liquid phase growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a 〜dは本発明の一実施例に係わるGaP二色
発光素子製造工程を示す断面図、第2図は他の実施例に
おけるペレット構造を示す断面図である。 1・・・・・・n型GaP−LEC結晶基板、2,3・
・・・・・n型LPE結晶層、4,5・・・・・・p型
層、Jl・・・・・・第1のpn接合(赤色発光)、J
2・・・・・・第2のpn接合(緑色発光)。
1A to 1D are cross-sectional views showing the manufacturing process of a GaP two-color light emitting device according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a pellet structure in another embodiment. 1... n-type GaP-LEC crystal substrate, 2, 3...
......n-type LPE crystal layer, 4,5...p-type layer, Jl...first pn junction (red light emission), J
2...Second pn junction (green light emission).

Claims (1)

【特許請求の範囲】 1 GaP結晶基板に、n型GaP層及び亜鉛、酸素
を含むn型GaP層からなる赤色発光特性を示す第1の
’pnpn接合窒素を含むn型GaP層及びp型G a
P層からなる緑色発光特性を示す第2のpn接合とを
形成してなるGaP二色発光素子を製造するに際し、前
記第1のpn接合を構成するn型GaP層を、前記第2
のpn接合を構成するn型GaP層より先に形成すると
共に、前記第2のpn接合を構成するn型GaP層を、
窒素を含むn型GaP層の形成温度より低い温度で形成
することを特徴とするGaP二色発光素子の製造方法。 2 GaP結晶基板に、n型GaP層及び亜鉛、酸素
を含むn型GaP層からなる赤色発光特性を示す第1の
pn接合と、窒素を含むn型GaP層及びn型GaP層
からなる緑色発光特性を示す第2のpn接合とを形成し
てなるGaP二色発光素子を製造するに際し、前記第1
のpn接合を構成するn型GaP層を、前記第2のpn
接合を構成するn型GaP層より先に形成すると共に、
前記第2のpn接合を構成するn型GaP層の形成を9
00℃より低い温度で行うことを特徴とするGaP二色
発光素子の製造方法。
[Scope of Claims] 1. A first 'pnpn junction exhibiting red light emitting characteristics consisting of an n-type GaP layer and an n-type GaP layer containing zinc and oxygen on a GaP crystal substrate. a
When manufacturing a GaP two-color light emitting device formed by forming a second pn junction consisting of a P layer exhibiting green light emitting characteristics, the n-type GaP layer constituting the first pn junction is
The n-type GaP layer forming the second pn junction is formed before the n-type GaP layer forming the second pn junction,
A method for manufacturing a GaP two-color light emitting device, characterized in that the device is formed at a temperature lower than the formation temperature of an n-type GaP layer containing nitrogen. 2. A first pn junction exhibiting red light emitting characteristics consisting of an n-type GaP layer and an n-type GaP layer containing zinc and oxygen on a GaP crystal substrate, and a green light-emitting layer consisting of an n-type GaP layer containing nitrogen and an n-type GaP layer. When manufacturing a GaP two-color light emitting device formed by forming a second pn junction exhibiting characteristics, the first
The n-type GaP layer constituting the pn junction of the second pn
Formed before the n-type GaP layer constituting the junction,
Formation of the n-type GaP layer constituting the second pn junction
A method for manufacturing a GaP two-color light emitting device, characterized in that the manufacturing method is carried out at a temperature lower than 00°C.
JP49131180A 1974-11-15 1974-11-15 GAP Expired JPS58194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49131180A JPS58194B2 (en) 1974-11-15 1974-11-15 GAP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49131180A JPS58194B2 (en) 1974-11-15 1974-11-15 GAP

Publications (2)

Publication Number Publication Date
JPS5157297A JPS5157297A (en) 1976-05-19
JPS58194B2 true JPS58194B2 (en) 1983-01-05

Family

ID=15051869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49131180A Expired JPS58194B2 (en) 1974-11-15 1974-11-15 GAP

Country Status (1)

Country Link
JP (1) JPS58194B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892749U (en) * 1981-12-15 1983-06-23 三洋電機株式会社 light emitting diode element
CN102117771B (en) * 2009-12-31 2013-05-08 比亚迪股份有限公司 LED epitaxial wafer and LED chip as well as manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057592A (en) * 1973-09-20 1975-05-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057592A (en) * 1973-09-20 1975-05-20

Also Published As

Publication number Publication date
JPS5157297A (en) 1976-05-19

Similar Documents

Publication Publication Date Title
JP3543498B2 (en) Group III nitride semiconductor light emitting device
JP5011699B2 (en) Nitride semiconductor light emitting device
JPH04321280A (en) Blue color light-emitting diode
JP2008516456A (en) High efficiency light emitting diode
JP3341492B2 (en) Group III nitride semiconductor light emitting device
JPH0897468A (en) Semiconductor light emitting device
JP6222684B2 (en) Red light emitting semiconductor device and method for manufacturing the same
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JPH10256601A (en) Light emitting device
KR20070122078A (en) Nitride based compound semiconductor light emitting device
JP3458007B2 (en) Semiconductor light emitting device
JPH02264483A (en) Semiconductor light emitting element and manufacture thereof
JPS58194B2 (en) GAP
JP3324102B2 (en) Manufacturing method of epitaxial wafer
JPH055191B2 (en)
JP2817577B2 (en) GaP pure green light emitting element substrate
JP2001291900A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2000349334A (en) Light emitting diode and manufacture thereof
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP2545212B2 (en) Blue light emitting element
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JPS62154789A (en) Semiconductor light emitting element
US20240194821A1 (en) Light emitting element
JP3349406B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS63213378A (en) Manufacture of semiconductor light emitting element