JPS58194990A - Treatment of coal - Google Patents

Treatment of coal

Info

Publication number
JPS58194990A
JPS58194990A JP7604482A JP7604482A JPS58194990A JP S58194990 A JPS58194990 A JP S58194990A JP 7604482 A JP7604482 A JP 7604482A JP 7604482 A JP7604482 A JP 7604482A JP S58194990 A JPS58194990 A JP S58194990A
Authority
JP
Japan
Prior art keywords
coal
coke
pulverized
blended
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7604482A
Other languages
Japanese (ja)
Inventor
Hiroshi Uematsu
宏志 植松
Tokuji Yamaguchi
山口 徳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7604482A priority Critical patent/JPS58194990A/en
Publication of JPS58194990A publication Critical patent/JPS58194990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To obtain a raw material giving coke of good quality with low cost, by a process wherein coked coal is crushed, dried, and then separated into coarse coal and pulverized coal, which is deashed and thereafter mixed with the coarse coal again. CONSTITUTION:Coking coal from coal yard 1 is ground into pieces at a crushing stage 2 and blended in a blender 3 in a given ratio to produce a blended coal, which is then dried in a dryer 4. Then pulverized coal of a high ash content is separated, extracted out of the blended coal by, e.g., air classification in the dryer 4 and collected by a dust collector 5 to suppress dust scattering. After being deashed in a deashing stage 6, the collected pulverized coal is mixed with coarse coal not collected by the collector 5 again, and the mixture is fed to a coke oven 7 and carbonized to give a coke of good quality.

Description

【発明の詳細な説明】 この発明は高炉用コークス製造用の石炭事前処理工程で
発生する微粉炭部分を選択的に抽出し灰分の高い特徴を
有す□る微粉炭部分の脱灰処理を行うことにより、良質
なコークスを得る方法に関するものである。
[Detailed Description of the Invention] This invention selectively extracts the pulverized coal portion generated in the coal pre-treatment process for producing coke for blast furnaces, and deashes the pulverized coal portion that has a characteristic of high ash content. In particular, it relates to a method for obtaining high quality coke.

コークス業界においては資源対応力の強化及び品質向上
技術に関し、鋭意研究開発が進められている。その方向
の1つとしてコークス品質に大きな影響を与える灰分を
脱灰処理して除去する方法が周知である。石炭中の灰分
は乾留過程でそのまま、コークス中に固定されるがコー
クス中の灰分の存在は内部応力が発生するという点で冷
間コークス強度(ドラムインデックス)Kgel’を与
える。
The coke industry is actively researching and developing technology to strengthen resource handling capabilities and improve quality. As one of these methods, a method is well known in which ash, which has a large effect on coke quality, is removed by deashing. The ash content in the coal is fixed in the coke as it is during the carbonization process, but the presence of the ash content in the coke gives rise to internal stress, which gives rise to cold coke strength (drum index) Kgel'.

又、灰中のアルカリ酸化物(Na□0K20)はコーク
スとCO2の反応に関し、触媒作用をすることが一般的
に知られておシ、灰分の存在は、熱間コークス反応後強
度(C8R)に大きな影響を与える。
Furthermore, it is generally known that alkali oxides (Na□0K20) in the ash act as catalysts in the reaction between coke and CO2, and the presence of ash increases the strength after hot coke reaction (C8R). have a major impact on

従って、石炭中の灰分を除去し、コークス灰分を低下さ
せるとコークス品質は向上するが、現状はいまだ普及す
るKはいたっていない。
Therefore, although coke quality can be improved by removing the ash content in coal and lowering the coke ash content, K has not yet become widespread.

その理由は以下の点にある。The reason is as follows.

脱灰技術としてはO,A、法(all mgglome
ration )を始め多数の方策が提案されているが
、いずれも石炭を微粉砕しないと脱□灰効率が低く、そ
のため微粉化に美大なエネルギーを要していた。
As deashing technology, O, A, method (all mgglome
Many methods have been proposed, including pulverization, but all of them have low deashing efficiency unless the coal is pulverized, and therefore pulverization requires a huge amount of energy.

本発明は上艷の如き欠点を解消し、装入炭中に含まれる
微粉炭部分を分離し、微粉炭部分に濃縮された灰分を選
択的に脱灰処理するもので、処理エネルギーの大巾な低
減とコークス品質の向上を目的とするものであシ、その
要旨とするととろけコークス用石炭を粉砕して乾燥した
のち微粉炭と粗粒炭に選別し、っ込で前記微粉炭に脱灰
処理を施したのち再び前記粗粒炭と混合してコークス製
造用原料とすることを特tさする石炭の処理方法である
The present invention eliminates the drawbacks such as overburden, separates the pulverized coal contained in the charged coal, and selectively deashes the ash concentrated in the pulverized coal, reducing the processing energy. The purpose of this project is to reduce carbon dioxide emissions and improve coke quality.The gist of the project is to pulverize melted coke coal, dry it, sort it into pulverized coal and coarse granulated coal, and then demineralize it into the pulverized coal. This is a method for treating coal which, after being treated, is mixed with the coarse coal again to use as a raw material for coke production.

以下本発明を実施例に基づき詳細に説明する。The present invention will be described in detail below based on examples.

高炉用コークスを製造する場合、一般的には、複数種類
の原料炭を配合して粉砕するか、銘柄毎に粉砕したのち
配合することにょシ例えば3■径以下の粒子径割合が約
87−の配合炭を得てコークス炉拠供給する方法がとら
れている。っまシ複数種類の原料炭を配合する場合、そ
の混合度をあげ、均質で結果的に塊強度の大きいコーク
スを製造するため番で粉砕する。この場合、更に微視的
に配合炭の粒度構成をみると、、通常の配合粉砕法及び
粉砕配合法では3m以下約、87−の中に1例えば20
0メツシユ以下の超・、flt)粉部分が約81tもの
、。□LJ67?6゜  ゛(:・ そこでこのような装入炭中の微粉炭部分と残部の粗粒炭
部分の性状を調査したところ以下の様な結果が得られた
When producing coke for blast furnaces, generally, multiple types of coking coal are blended and pulverized, or each brand is pulverized and then blended. The method used is to obtain a coal blend and supply it to a coke oven. When blending multiple types of coking coal, the degree of mixing is increased and the coke is crushed in batches to produce homogeneous coke with high lump strength. In this case, if we look at the particle size structure of the blended coal more microscopically, it is found that in the normal blending and pulverizing method and the pulverizing and blending method, it is about 3 m or less, for example, 1 in 87
Approximately 81 tons of powder (flt) with less than 0 mesh. □LJ67?6゜゛(:・ Therefore, when we investigated the properties of the pulverized coal portion and the remaining coarse granulated coal portion in the charged coal, we obtained the following results.

まず第1図の如<200メツシエを超える粗粒炭B(9
2重量%)とそれ以下の微粉炭A(8重[1を分離した
場合、及び分離しなり従来法(A十B)につき石炭性状
を調査した結果を第1表釦示す。
First, as shown in Figure 1, coarse grain coal B (9
Table 1 shows the results of investigating the properties of coal when pulverized coal A (2% by weight) and less than pulverized coal A (8-weight [1] was separated, and the conventional separation method (A + B)).

tiEx表 上表の如く、微粉炭部分AK灰分、硫黄分が濃縮されて
いる。′・i 一方、脱灰$帯と石炭粒度の関係については一:・・1 般的に知られ工、、裔ソ、粒度が小さいほど脱灰動車は
高い。    ゛ 本発明の特徴は、装入炭中の灰分の濃縮されている微粉
炭部分を脱灰対象とすることにょ力脱灰効率を高めると
ともに低コスト脱灰で良質なコークスを得ることにある
As shown in the tiEx table above, the pulverized coal part AK has concentrated ash and sulfur content. On the other hand, regarding the relationship between the deashing zone and the coal particle size, it is generally known that the smaller the particle size, the higher the deashing capacity.゛The feature of the present invention is that by deashing the pulverized coal portion where the ash content in the charged coal is concentrated, the power deashing efficiency is increased and high quality coke is obtained with low cost deashing.

次に上記と同じ分級粒度のもとに、電気炉夾鹸でコーク
スを製造し、Aを脱灰処理した場合と処理しなかった場
合の比較を行なった。Aを脱灰処理したものをA′と記
す。
Next, under the same classification particle size as above, coke was produced by electric furnace soaking, and a comparison was made between the case where A was deashed and the case where it was not treated. A obtained by decalcification is referred to as A'.

結果を第2表゛に記す。The results are shown in Table 2.

第2表 Aを脱灰処理した結果コークス用石炭&(Aah)は下
がりコークス冷間強度(DI、、 )及び熱間強度(C
8R)Id、向上している。特にCAHの向上が大きい
As a result of deashing Table 2 A, the coking coal & (Aah) decreases and the coke cold strength (DI, ) and hot strength (C
8R) Id has improved. In particular, the improvement in CAH is large.

なお上記試験実施例において微粉炭の好オしい分離限界
を200メツシ孤としたが、石炭の性状、石炭乾燥機の
運転状況等に応じ最適分級点が200メツシエよシ若干
上下し得ることは勿論である。
In the above test examples, the preferred separation limit for pulverized coal was set at 200 meshes, but it goes without saying that the optimal classification point may be slightly higher or lower than 200 meshes depending on the properties of the coal, the operating conditions of the coal dryer, etc. It is.

次に本発明の実施例を第2図00.A法と組み合わせた
適用例に基づき説明する。
Next, an embodiment of the present invention is shown in FIG. This will be explained based on an application example in combination with method A.

ti/c2図において石炭ヤード1から取シ出した石炭
は粉砕工程2で粉砕され、配合槽3に貯槽し、ここから
コンスタントフィードウェアを使用して、所定割合の配
合炭を作る。配合炭は乾燥機4によシ例えば平均9チの
含有率を2〜5チ程度まで乾燥する。上記乾燥機4では
、配合炭のうち、微粉炭部分を風力分級等の方法で選別
抽出し、初産放散防止用の集塵機5に補集する。補集さ
れた微粉炭は脱灰工程6で1部重油の添加等を行い、脱
灰処理されて乾燥工程で集塵機5に補集されなかった粗
粒炭部分と混合後コークス炉7に運ばれ乾留される。又
、本発明を第2図のO,A、法を用いて脱灰処理した後
、残部の粗粒炭部分と混合後、コークス製造用原料とす
る方法について説明し九が、脱灰処理された微粉炭部分
を高炉用補助燃料として羽口から吹き込むことも有効な
方法である。仁の場合、コークス製造用原料としては乾
燥工程4の残部、粗粒炭部分Bとなるが、#c1表に示
した様に粗粒炭部分Bは灰分が低く粘結性が高いため良
質なコークスが得られる。電気炉実験で得られた結果を
第3表に示す。
In the ti/c2 diagram, coal taken out from a coal yard 1 is crushed in a crushing step 2 and stored in a blending tank 3, from which a constant feedware is used to make blended coal of a predetermined ratio. The blended coal is dried in a dryer 4, for example, from an average content of 9 g to about 2 to 5 g. In the dryer 4, the pulverized coal portion of the blended coal is selected and extracted by a method such as wind classification, and collected in a dust collector 5 for preventing initial production release. The collected pulverized coal is partially added with heavy oil in the deashing process 6, and after being deashed and mixed with the coarse coal part that was not collected in the dust collector 5 in the drying process, it is conveyed to the coke oven 7. It is carbonized. In addition, we will explain the method of the present invention, which is deashed using methods O and A in Fig. 2, mixed with the remaining coarse granulated coal, and then used as a raw material for coke production. It is also an effective method to inject the pulverized coal portion from the tuyeres as auxiliary fuel for the blast furnace. In the case of kernels, the raw material for coke production is the remainder from drying step 4, coarse coal part B, but as shown in Table #c1, coarse coal part B has low ash content and high caking properties, so it is of good quality. Coke is obtained. Table 3 shows the results obtained in the electric furnace experiment.

第  3  表 一方、脱灰処理された微粉炭部分は、高炉用補助燃料と
して用いられるが、灰分が低いため高い燃焼効率が得ら
れ、又、羽口先端部への灰分の付着も少なく、極めて高
い燥業性が確められ、ている。
Table 3 On the other hand, the deashed pulverized coal part is used as auxiliary fuel for blast furnaces, and because it has a low ash content, high combustion efficiency can be obtained, and there is also little ash adhesion to the tip of the tuyere, making it extremely It has been confirmed that it has high drying properties.

上記の如く本発明は、脱灰対象を装入炭中の微粉炭部分
に限って行うことによ:・ル高す脱灰効率と低コスト脱
灰が可能となり、石、j−の価値を極めて高いレベルに
押し上げることが可能で、本発明法の採用により多大な
経済効果を得ることができる。
As described above, the present invention limits the target of deashing to the pulverized coal portion of the charged coal, thereby making it possible to achieve high deashing efficiency and low cost deashing, and to reduce the value of stones and stones. It is possible to raise the level to an extremely high level, and by adopting the method of the present invention, great economic effects can be obtained.

第1図はコークス製造用石炭を粉砕した後の粒度と割合
を示す図、第2図は本発明の一実施例を示す系統図であ
る。
FIG. 1 is a diagram showing the particle size and ratio after pulverizing coal for coke production, and FIG. 2 is a system diagram showing an embodiment of the present invention.

l・・・石炭ヤード    2用粉砕機3・・・配合槽
      4・・・乾燥機5・・・集塵機     
 6・・・脱灰設備7・・・コークス炉
l...Crusher for coal yard 2 3...Blending tank 4...Dryer 5...Dust collector
6... Deashing equipment 7... Coke oven

Claims (1)

【特許請求の範囲】[Claims] コークス用石炭を粉砕して乾燥したのち微粉炭と粗粒炭
に選別し、ついで前記微粉炭に脱灰処理を施したのち再
び前記粗粒炭と混合してコークス製造用原料とすること
を特徴とする石炭の処理方法。
Coal for coking is pulverized and dried, then sorted into pulverized coal and coarse granulated coal, and then the pulverized coal is subjected to deashing treatment and then mixed with the coarse granulated coal again to be used as a raw material for coke production. coal treatment method.
JP7604482A 1982-05-07 1982-05-07 Treatment of coal Pending JPS58194990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7604482A JPS58194990A (en) 1982-05-07 1982-05-07 Treatment of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7604482A JPS58194990A (en) 1982-05-07 1982-05-07 Treatment of coal

Publications (1)

Publication Number Publication Date
JPS58194990A true JPS58194990A (en) 1983-11-14

Family

ID=13593791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7604482A Pending JPS58194990A (en) 1982-05-07 1982-05-07 Treatment of coal

Country Status (1)

Country Link
JP (1) JPS58194990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183143A (en) * 2014-03-26 2015-10-22 コスモ石油株式会社 Low sulfur solid carbon body production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109901A (en) * 1975-03-25 1976-09-29 Nippon Kokan Kk Datsupaiotomonau sekitanruinoseikeihoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109901A (en) * 1975-03-25 1976-09-29 Nippon Kokan Kk Datsupaiotomonau sekitanruinoseikeihoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183143A (en) * 2014-03-26 2015-10-22 コスモ石油株式会社 Low sulfur solid carbon body production process

Similar Documents

Publication Publication Date Title
JP3953420B2 (en) Method for producing metallized briquette
JP4278521B2 (en) Metallurgical coke production
US2512076A (en) Method of carbonizing coal with iron oxide
JPS6223944A (en) Refining method for nickel oxide or the like
CA1109818A (en) Coke oven system and agglomerating carryover fines therein
CN107964411B (en) Method for recycling coking coal from dry quenching coke breeze
JPS58194990A (en) Treatment of coal
JP2910641B2 (en) Waste tire treatment method
CN113154431A (en) Powder preparation system and method for high-proportion mixed-burning bituminous coal of steel ball coal mill
JP2005053986A (en) Method for producing ferrocoke for blast furnace
US2782147A (en) Process for preparing coking blends
US3684483A (en) Directly reducing iron oxide in a rotary kiln with pellitized carbonaceous material
RU2151738C1 (en) Charge for production of silicon and method of preparing molding material for production of silicon
CN111778048B (en) Method for regulating and controlling granularity of matched coal
JPH04335093A (en) Method for treating coal
JPH0259196B2 (en)
CN112161485B (en) Method for recycling waste heat of sintering flue gas
JP2004263279A (en) Method for operating blast furnace by blowing waste wood
JPH06330052A (en) Production of formed coal
JPH10265788A (en) Production of coal briquette containing iron mill dust
FI67225C (en) FOERFARANDE FOER FRAMSTAELLNING AV KOKS
KR20240068685A (en) Solid agglomerates for use in steel reduction furnaces
JPS61126199A (en) Preparation of powder coke for sintered fuel
CN116377213A (en) Method for reducing burning up of sintered solid by adding pre-granulated carbon-containing solid waste
JPH04239093A (en) Manufacture of blast furnace coke