JPS58194304A - Oxide permanent magnet - Google Patents

Oxide permanent magnet

Info

Publication number
JPS58194304A
JPS58194304A JP57076673A JP7667382A JPS58194304A JP S58194304 A JPS58194304 A JP S58194304A JP 57076673 A JP57076673 A JP 57076673A JP 7667382 A JP7667382 A JP 7667382A JP S58194304 A JPS58194304 A JP S58194304A
Authority
JP
Japan
Prior art keywords
sintered
magnet
coercive force
composite
sintered part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57076673A
Other languages
Japanese (ja)
Inventor
Muneyoshi Sakaeno
栄野 宗義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57076673A priority Critical patent/JPS58194304A/en
Priority to GB08306781A priority patent/GB2112578B/en
Priority to US06/743,274 priority patent/US4687608A/en
Priority to PCT/JP1982/000265 priority patent/WO1983000264A1/en
Priority to DE823248846T priority patent/DE3248846T1/en
Publication of JPS58194304A publication Critical patent/JPS58194304A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0286Trimming
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a composite and integral oxide permanent magnet consisting of parts different in magnetic properties from each other, by specifying the sintering density difference between the sintered part of the magnet having a high coercive force and the sintered part thereof having a high residual magnetic flux density. CONSTITUTION:In a composite and integral sintered magnet including at least two kinds of parts different in magnetic properties from each other, the sintering density difference between the sintered part havig a high coercive force and the sintered part having a high residual magnetic flux density is selected to be not larger than 0.5g/cc. The selection of the sintering density difference to be not larger than 0.5g/cc, preferably about 0.3g/cc, makes it possible to obtain a balance of properties between the high-coercive force side and the high residual magnetic flux density side. On the other hand, a sintering density difference in excess of 0.5g/cc increases the divergence between the properties to lower the magnetic properties.

Description

【発明の詳細な説明】 本発明は複合一体の焼結磁石に関するものである。[Detailed description of the invention] The present invention relates to a composite integral sintered magnet.

従来フェライト焼結磁石は、その焼結体各部分における
磁気特性が全体的にほぼ等しい、いわば単一成分によシ
成る焼結磁石が大部分であった0しかしながら、自動車
用のスタータモータを始めとする条種のモータ等にフェ
ライト磁石が多く採用されフェライト磁石の応用範囲が
広がるに従って、単一成分より成るフェライト磁石では
、!!求される磁気特性を十分に満足することが本質的
に一一となってきた。そこでスタータモータ用等では2
種類の単一成分磁石を焼結後貼り合わせて複合化を図る
方法が採用されている。この磁石の一例を第1図に示す
。図において1は接着面であシ、2は高保磁力(高xH
o)[であシ、5は高残留磁束密度(高Br)側である
。特に高保磁力が要求されるのは1回転機の用途によっ
て、その使用中の磁石自身の減磁に対する抵抗を増すた
め、即ち減磁耐力を向上させるためである。そしてこの
ようなことから第1図に示す複合磁石が要求される。図
に示す如く減磁耐力が要求される高保持力側2は、1個
のアークセグメント状焼結体の約50〜50%に相当す
る部分であり1図の5に相当する部分は、高出力を得る
ため高Brが望まれる部分である。しかしながら第1図
に示す接着法による複合磁石の製作には、接合面の鏡面
研摩0位置合せ。
Conventionally, most sintered ferrite magnets have been made of a single component, in which the magnetic properties of each part of the sintered body are almost the same as a whole. As ferrite magnets are increasingly used in motors and other types of motors, and as the range of applications for ferrite magnets expands, ferrite magnets made of a single component... ! It has become essential to fully satisfy the required magnetic properties. Therefore, for starter motors etc.
A method has been adopted in which different types of single-component magnets are bonded together after sintering to create a composite. An example of this magnet is shown in FIG. In the figure, 1 is the adhesive surface, 2 is a high coercive force (high xH
o) [Yes, 5 is the high residual magnetic flux density (high Br) side. In particular, a high coercive force is required in order to increase the resistance to demagnetization of the magnet itself during use, that is, to improve the demagnetization resistance depending on the use of the one-rotation machine. For this reason, a composite magnet as shown in FIG. 1 is required. As shown in the figure, the high coercive force side 2 where demagnetization proof stress is required corresponds to about 50 to 50% of one arc segment-shaped sintered body, and the part corresponding to 5 in Fig. This is a part where high Br is desired in order to obtain output. However, in order to manufacture a composite magnet using the bonding method shown in FIG. 1, the bonding surfaces must be mirror-polished and zero-aligned.

および接着等多大の工数と時間を要する欠点がある。Also, there are disadvantages in that it requires a large amount of man-hours and time such as adhesion.

従って最近では、第2図に示す複合一体焼結磁石が要求
されるようになった。図中5は高保磁力側、6は高残留
磁束密度側であシ、4は境界部である。このような複合
一体焼結磁石を得る方法としては、(イ)境界に仕切シ
を入れ友金型内に2種類の異なる原料を注入後、仕切を
除去して成形、焼成する方法仲)高Brが実現できる1
種類の原料により成形した後、高XHOとする部分K 
Al”、  Or’+等の焼結を阻害するイオンを含浸
後焼成を行う方法がある。いづれの方法も本発明者等が
発明し特許出願中であるが、複合一体焼結磁石を上記い
づれの方法で製造する場合においても、高!Hoを実現
させる必要があるためその検討を行った。特に大型二輪
車用ないし四輪車用スタータモータ等に要求される高x
Ho特性として≧asoooeの複合一体焼結磁石につ
いて9種々検討を行った結果1本発明に至ったものであ
る。
Therefore, recently, a composite integrally sintered magnet as shown in FIG. 2 has been required. In the figure, 5 is the high coercive force side, 6 is the high residual magnetic flux density side, and 4 is the boundary. Methods for obtaining such a composite integral sintered magnet include (a) a method in which a partition is placed at the boundary, two different raw materials are injected into a mold, the partition is removed, the molding is performed, and firing is performed. Br can be achieved1
Part K to be made into high XHO after molding with different kinds of raw materials
There is a method of impregnating ions that inhibit sintering, such as Al'' and Or'+, and then sintering them. Both methods were invented by the present inventors and patent applications are pending. Even when manufacturing using this method, we conducted a study because it is necessary to achieve a high !Ho.In particular, the high x
The present invention was developed as a result of conducting nine various studies on composite integrally sintered magnets with Ho characteristics of ≧asoooe.

本発明は、上記の点を解決すると同時に、磁石の高lH
aを有する焼結部分と高13rを有する焼結部分との焼
結密度差を規定することにより相方が異なる磁気特性の
部分より成る複合一体の酸化物永久磁石を得ることを目
的とするものである。
The present invention solves the above-mentioned problems and at the same time improves the magnet's high lH.
The purpose is to obtain a composite integrated oxide permanent magnet consisting of parts with different magnetic properties by specifying the difference in sintering density between the sintered part with a and the sintered part with a high 13r. be.

李発明の酸化物永久磁石は、少なくとも2種類の磁気特
性の異なる部分を含む複合一体の焼結磁石において、高
保磁力を有する焼結部分と高残留磁束密度を有する焼結
部分との焼結密度差がnsg/CC以下であることを特
徴とするものである。
The oxide permanent magnet invented by Li is a composite integrated sintered magnet that includes at least two types of parts with different magnetic properties, and the sintered part has a high coercive force and a sintered part has a high residual magnetic flux density. It is characterized in that the difference is less than nsg/CC.

なお前記焼結密度差をαSa/aO以下としたのは。Note that the sintered density difference is set to be equal to or less than αSa/aO.

高Br側と高IHo側との間で特性のバランスが取れる
ようにしたものであり、望ましくは(15g7’Q O
程度が良い。しかしαSg/’Q 0以上になると各特
性の開きが大きくなり2%性低下ともなる。
It is designed to balance the characteristics between the high Br side and the high IHo side, and preferably (15g7'Q O
Good condition. However, when αSg/'Q exceeds 0, the difference in each characteristic becomes large and the properties decrease by 2%.

以下、実施例に基づき本発明の説明をする。The present invention will be explained below based on Examples.

実施例1 8rOβ・、O,=i2〜五8(モル比)の仮焼粉を用
い。
Example 1 A calcined powder of 8rOβ·,O,=i2 to 58 (molar ratio) was used.

高Br1l添加物としてはcaco、(18〜1.2w
t% 、  Sin。
As a high Br1l additive, caco, (18~1.2w
t%, Sin.

15〜(L6wt慢を添加し、平均粒度α6〜1.1μ
m程度に粉砕して粉砕粉を得、−刃高IHO側添加物と
してはaaoo、 llLa〜t6wt% 、 810
.α4〜1.0wt% 、 Al、0.1.ト4.Ov
t%を添加し、平均粒度a6〜t1μm程度に粉砕して
粉砕粉を得た。上記添加物の添加量は、粉砕粒度所望の
磁気特性の範囲、焼結温度等によシ当然異なるものであ
る。従って上記の範囲はその一例に過ぎず、添加量が上
記範囲以外でも本発明を逸脱するものではない。しかし
て得られた粉砕粉をそれぞれpvムを0〜lft−を含
む磁性粉50〜7(1vt−含有のスラリーとし、中央
部に厚さ1■の仕切を設け7j100X50の金型中に
区分して材料を注入し。
15~(Add L6wt, average particle size α6~1.1μ
The additives on the blade height IHO side are aaoo, llLa~t6wt%, 810.
.. α4~1.0wt%, Al, 0.1. G4. Ov
t% was added thereto, and the mixture was ground to an average particle size of about a6 to t1 μm to obtain a ground powder. The amount of the above-mentioned additives to be added naturally varies depending on the pulverized particle size, desired range of magnetic properties, sintering temperature, etc. Therefore, the above range is only an example, and the amount added does not deviate from the scope of the present invention even if the amount added is outside the above range. The thus obtained pulverized powder was made into a slurry of magnetic powder 50 to 7 (containing 1 vt) containing pvm of 0 to lft-, and divided into a 7j100×50 mold with a partition of 1 inch thick in the center. and inject the material.

仕切板を除去した後s、ooo〜1α000o・の磁場
中にて湿式成形を行い100X!10X1Gの成形体を
得た。次いで1120〜1200℃の範囲で焼結を行職
った。
After removing the partition plate, wet molding was performed in a magnetic field of s, ooo to 1α000°. A 10×1G molded body was obtained. Then, sintering was carried out in the range of 1120 to 1200°C.

以上によ〕得られた酸化物磁石を測定し代表的な測定結
果を第1表に示す。
The oxide magnets obtained above were measured and typical measurement results are shown in Table 1.

第   1   表 また同様に処理をしたBrフェライト磁石の場合4第1
表と類似の傾向を示す結果が得られた。
Table 1 In the case of a Br ferrite magnet treated in the same manner, Table 4
Results showing similar trends to those in the table were obtained.

実施例2 実施例1で示した高Br側粉砕粉を含むスラリーを、磁
場印加a000〜HLOOOOe中で成形後、実施例1
と同寸法の単一成分の成形体を得1次に9()−j[T
Example 2 After molding the slurry containing the high Br side pulverized powder shown in Example 1 in a magnetic field applied from a000 to HLOOOOe, Example 1
A single-component compact having the same dimensions as 9()-j[T
.

’Cにおいて、水分含有率が4wt %以下になるまで
乾燥後20〜25wt1の酢酸アルミニウム水溶液中に
室温で所定位置まで浸漬し、該溶液を成形体中に含浸さ
せた。なおムl″+を含む水溶液を塗布または噴霧して
も浸漬と同様の効果がある。得られた成形体は乾燥後、
  1100〜1200℃の範囲内で焼結し。
In 'C, after drying until the water content became 4 wt % or less, the molded body was immersed in a 20 to 25 wt 1 aqueous aluminum acetate solution at room temperature to a predetermined position, and the solution was impregnated into the molded body. Furthermore, applying or spraying an aqueous solution containing mulch''+ has the same effect as dipping.After drying, the obtained molded product is
Sintered within the range of 1100-1200°C.

第2表に示す結果を得た。The results shown in Table 2 were obtained.

第   2   表 #!2表中高I Ha部はム1s+を含浸させた部分で
ある。第2表から明らかなように、含浸法の場合におい
ても実施例1に示すプレス法と同様の傾向を示し、高w
Ho値を実現させるためには、高IHO側と高Br側の
焼結密度差を一定限定内に制御する必要があった。
Table 2 #! The high IHa portion in Table 2 is the portion impregnated with Mu 1s+. As is clear from Table 2, the impregnation method also showed the same tendency as the pressing method shown in Example 1, and
In order to achieve the Ho value, it was necessary to control the difference in sintering density between the high IHO side and the high Br side within a certain limit.

このようにして得られ九2部分的に高い保磁力を有する
磁石は、大きな減磁耐力が要求される各種回転機用とし
て、極めて有用であると言える。
It can be said that the magnet obtained in this manner and having a partially high coercive force is extremely useful for various rotating machines that require a large demagnetization resistance.

なお、前記実施例では、板状磁石を形成し喪がこれはB
rとtl(oおよび焼結密度を精度良く測定するためで
ある。一般に回転機に用いられる複合一体磁石は、第2
図に示すアークセグメント型形状の磁石であシ、この形
状でも上記板状磁石と同様の結果が得られている。
In addition, in the above embodiment, a plate-shaped magnet is formed, and this is B.
This is to accurately measure r and tl (o and sintered density. Generally, composite magnets used in rotating machines are
A magnet with an arc segment type shape as shown in the figure was used, and the same results as with the above-mentioned plate magnet were obtained with this shape.

以上説明した以外にも焼結密度を調節した本発明の焼結
磁石は、小型軽量化、省エネルギーの向上等においても
優れた効果を有し、工業的価値が大である。
In addition to what has been explained above, the sintered magnet of the present invention in which the sintered density is adjusted has excellent effects in reducing size and weight, improving energy saving, etc., and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモータ用複合磁石の一例を示す断面図、
第2図は本発明の一実施例を示す複合一体焼結磁石の断
面図である。 4:境界部、5:高保磁力側、6:高残留磁束密度側代
理人弁珊士  本  間     崇? 第
Figure 1 is a cross-sectional view showing an example of a conventional composite magnet for motors.
FIG. 2 is a sectional view of a composite integrally sintered magnet showing one embodiment of the present invention. 4: Boundary part, 5: High coercive force side, 6: High residual magnetic flux density side Attorney lawyer Takashi Honma? No.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2種類の磁気特性の異なる部分を含む複合一
体の焼結磁石において、高保磁力を有する焼結部分と高
残留磁束密度を有する焼結部分との焼結密度差がa穐h
O以下であることを特徴とする酸化物永久磁石。
In a composite integrated sintered magnet that includes at least two types of parts with different magnetic properties, the difference in sintering density between the sintered part with a high coercive force and the sintered part with a high residual magnetic flux density is a
An oxide permanent magnet characterized in that the magnetism is O or less.
JP57076673A 1981-07-14 1982-05-10 Oxide permanent magnet Pending JPS58194304A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57076673A JPS58194304A (en) 1982-05-10 1982-05-10 Oxide permanent magnet
GB08306781A GB2112578B (en) 1981-07-14 1982-07-14 Field composite permanent magnet and method of producing the same
US06/743,274 US4687608A (en) 1981-07-14 1982-07-14 Composite permanent magnet for magnetic excitation and method of producing the same
PCT/JP1982/000265 WO1983000264A1 (en) 1981-07-14 1982-07-14 Field composite permanent magnet and method of producing the same
DE823248846T DE3248846T1 (en) 1981-07-14 1982-07-14 COMPOSITE PERSONAL MAGNET FOR MAGNETIC EXCITATION AND METHOD FOR ITS MANUFACTURING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076673A JPS58194304A (en) 1982-05-10 1982-05-10 Oxide permanent magnet

Publications (1)

Publication Number Publication Date
JPS58194304A true JPS58194304A (en) 1983-11-12

Family

ID=13611939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076673A Pending JPS58194304A (en) 1981-07-14 1982-05-10 Oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS58194304A (en)

Similar Documents

Publication Publication Date Title
US4320080A (en) Method to manufacture soft magnetic pressed bodies
US4687608A (en) Composite permanent magnet for magnetic excitation and method of producing the same
US2985939A (en) Process of making a ferromagnetic core having a predetermined permeability
US4879055A (en) Soft magnetic material composition and molding process therefor
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
US2858462A (en) Slot wedge arrangement for use in dynamoelectric machine core members
JPS58194304A (en) Oxide permanent magnet
JPH01283900A (en) Composite material for molding sheath and sheathed electronic component
JPH0341965B2 (en)
JPH04338613A (en) Magnetic shielding resin
JPH01150304A (en) Composite magnetic molding material
JPS60235412A (en) Manufacture of high-strength dust core
JPH0684648A (en) Inductance element and production thereof
JP2573168B2 (en) Molding method of soft magnetic material composition
JPH0450725B2 (en)
JPS59162239A (en) Manufacture of resin-bonded rare earth element-cobalt magnet
US3527706A (en) Method of manufacturing binder-containing permanent magnets on a ferrite basis
JP2633891B2 (en) Dust core
JPS599416Y2 (en) magnetic head
JPS6064411A (en) Oxide permanent magnet
JP2709068B2 (en) Dust core
JPH0465627B2 (en)
JPS6064410A (en) Oxide permanent magnet
JPS6255385B2 (en)
SU493810A1 (en) The method of obtaining magnetodielectric material in the form of sheets and plates