JPS58194288A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPS58194288A
JPS58194288A JP7684982A JP7684982A JPS58194288A JP S58194288 A JPS58194288 A JP S58194288A JP 7684982 A JP7684982 A JP 7684982A JP 7684982 A JP7684982 A JP 7684982A JP S58194288 A JPS58194288 A JP S58194288A
Authority
JP
Japan
Prior art keywords
heating chamber
frequency
dimension
heating
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7684982A
Other languages
Japanese (ja)
Inventor
等隆 信江
楠木 慈
隆 柏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7684982A priority Critical patent/JPS58194288A/en
Publication of JPS58194288A publication Critical patent/JPS58194288A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は1. S、 M、 (工業、科学、医事)周波
数帯の1つである9 16 MHz帯を発振周波数に有
する高周波加熱装置に関するものであり、さらに詳細に
言え、ば(被加熱物を高効率に高周波加熱すべく)工夫
を凝らした加熱室を有する高周波加熱装置を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of 1. S, M, (industrial, scientific, medical) This relates to a high frequency heating device that has an oscillation frequency in the 916 MHz band, which is one of the frequency bands. The present invention provides a high-frequency heating device having an elaborate heating chamber (for heating).

従来の高周波加熱装置の代表例である電子レン2 べ1
゛ ジは周知のように2460MH2帯を発振周波数に有す
るマグネトロンを高周波加熱熱源に備えている。このた
め民生機器として有用な働きをする容積を有する加熱室
の幅、奥行、高さの各寸法は、加熱室を励振する励振波
長(z12ctn)に対して2〜3倍程度の大きさを有
するため加熱室には数種類の電磁界モードが生じ得、加
熱室内へ収容される被加熱物に対し最適な電磁界モード
の選択をすることが不可能であり、スタラ゛−ファンで
強制的に加熱室内の電磁界分布を乱したり、被加熱物を
回転させたシして効果的に高周波加熱を行なっていた。
Microwave oven 2, which is a typical example of conventional high-frequency heating equipment
As is well known, this system is equipped with a magnetron having an oscillation frequency in the 2460 MH2 band as a high-frequency heating heat source. Therefore, the dimensions of the width, depth, and height of the heating chamber, which has a volume that functions usefully as a consumer device, are about 2 to 3 times larger than the excitation wavelength (z12ctn) that excites the heating chamber. Therefore, several types of electromagnetic field modes can occur in the heating chamber, and it is impossible to select the most suitable electromagnetic field mode for the object to be heated stored in the heating chamber. High-frequency heating was performed effectively by disturbing the electromagnetic field distribution in the room or by rotating the object to be heated.

しかし複雑な付加的機構が必要であった0本発明はこの
ような点に鑑みてなされたものであり、民生機器として
有用な容積を有する加熱室の幅、奥行、高さの各寸法に
対してこの加熱室を励振する励振波長が比肩する9 1
5 MHz帯(波長z33m)を高周波加熱熱源の発振
周波数に選定し加熱室内に生ずる電磁界モードを限定す
るとともに生じ得る電磁界モードとしてTE2o1を選
択し、この電磁界モードに対して加熱室を構成する37
、 各寸法に工夫を凝らし、高効率に被加熱物を高周波加熱
させることを主目的とする高周波加熱装置を提供するも
のである。
However, a complicated additional mechanism was required.The present invention was made in consideration of these points, and the present invention has been made in view of the above-mentioned problems. The excitation wavelength that excites the heating chamber of the lever is comparable9 1
The 5 MHz band (wavelength: 33 m) was selected as the oscillation frequency of the high-frequency heating heat source to limit the electromagnetic field mode generated within the heating chamber, and TE2o1 was selected as the electromagnetic field mode that could occur, and the heating chamber was configured for this electromagnetic field mode. do37
The present invention provides a high-frequency heating device whose main purpose is to heat an object to be heated with high frequency with high efficiency by devising each dimension.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明一実施例を示す高周波加熱装置の一部切
欠外観図、第2図/fi第1図の加熱室に生ずる電界分
布図である。
FIG. 1 is a partially cutaway external view of a high-frequency heating device showing an embodiment of the present invention, and FIG. 2 is a diagram showing the electric field distribution generated in the heating chamber of FIG. 1.

前記装置は、1. S、 M1周波数帯の1つである9
 15 MHz帯を発振周波数とする高周波加熱熱源1
を固体素子を用いて構成した固体高周波発生部にて構成
しておシ、この固体高周波発生部が発生する高周波パワ
ーは、伝送路2を伝送して加熱室3内へ導かれる。この
加熱室はその内部に生ずる電界分布を第2図に示す様に
e 1a MHz帯において幅方向に2個、奥行方向に
1個の定在波を有するTE2゜1モードが生ずる様に構
成されている。
The device includes: 1. S, M1 frequency band 9
High frequency heating heat source 1 whose oscillation frequency is 15 MHz band
is constituted by a solid-state high-frequency generator constructed using solid-state elements, and the high-frequency power generated by the solid-state high-frequency generator is transmitted through a transmission line 2 and guided into a heating chamber 3. This heating chamber is configured so that the electric field distribution generated inside the chamber is such that a TE2°1 mode having two standing waves in the width direction and one standing wave in the depth direction is generated in the e1a MHz band, as shown in Figure 2. ing.

すなわち高さ方向には電界強度が一様である。加熱室3
へ高周波パワーを給電する給電部4は、このTE2゜1
モードを生じさせるべく加熱室上壁の所定位置に設けら
れている。6は加熱室内へ被加特開昭58−19428
8(2) 熱物を出入れする出入れ扉、6は出入れ扉の把手。
That is, the electric field strength is uniform in the height direction. Heating chamber 3
The power supply unit 4 that supplies high frequency power to this TE2゜1
It is provided at a predetermined position on the upper wall of the heating chamber to generate a mode. 6 is applied to the heating chamber JP-A-58-19428
8 (2) Door for putting in and taking out hot materials, 6 is the handle of the door.

7は操作パネル、8は足ゴムである。7 is an operation panel, and 8 is a leg rubber.

第3図を用いてTE2o1モード選択について言及する
The TE2o1 mode selection will be described using FIG.

第3図は加熱室共振周波数の対水負荷量特性図である。FIG. 3 is a water load characteristic diagram of the heating chamber resonance frequency.

横軸が共振周波数(単位MHz)、縦軸が水負荷量(単
位CC)である。加熱室の幅寸法a1高さ寸法b1奥行
寸法Cと電磁界モードTEmnsの添字m 、 n 、
 sとはマイクロ波工学では周知のように以下に示す関
係がある。
The horizontal axis is the resonance frequency (unit: MHz), and the vertical axis is the water load (unit: CC). Width dimension a1 height dimension b1 depth dimension C of the heating chamber and subscripts m, n of electromagnetic field mode TEmns,
As is well known in microwave engineering, s has the following relationship.

ここでvoは自由空間中の光速(た3X10”mm)。Here, vo is the speed of light in free space (3 x 10" mm).

foは共振周波数、λ。は共振波長(゛無負荷時加熱室
励振波長)である。
fo is the resonant frequency, λ. is the resonance wavelength (heating chamber excitation wavelength at no load).

ところで上式に示したλ。は自由空間言い換えれば加熱
室内に加熱されるべき負荷がない場合に51、 は、はゾ理論に合致するが、加熱室内に負荷(今の場合
水負荷)を収容すると、誘電体である負荷の影響を受け
て、波長圧縮を生ずる。今この圧縮率をa(a(1)と
し、負荷時の加熱室励振波長をλ9とすると、 λq=λ0/α の関係が成立する。すなわちλ9〉λ。である。
By the way, λ shown in the above formula. In other words, when there is no load to be heated in the heating chamber, 51 is in free space. effect, resulting in wavelength compression. Now, if this compression ratio is a(a(1)) and the excitation wavelength of the heating chamber under load is λ9, then the relationship λq=λ0/α holds true, that is, λ9>λ.

故に水負荷を収容することにより加熱室の共振周波数は
低い方へ移動することになる。この特性を示したものが
第3図である。
Therefore, by accommodating the water load, the resonant frequency of the heating chamber will be shifted lower. FIG. 3 shows this characteristic.

試料とした加熱室は、幅寸法317sua、高さ寸法2
40111.奥行寸法3171EIIとし無負荷時にs
lsMHzにてTE111モードを生ずる加熱室と、幅
寸法36511.高さ寸法240m、奥行寸法365鵡
とし無負荷時に918.3MHzにてTE2o1モード
を生ずる加熱室を用いた。また水収容容器は市販の10
00CGビーカーとs o o ccヒビ−−を用いた
The heating chamber used as a sample has a width dimension of 317sua and a height dimension of 2
40111. Depth dimension is 3171EII and s when no load is applied.
A heating chamber producing a TE111 mode at lsMHz and a width dimension of 36511. A heating chamber was used that had a height of 240 m and a depth of 365 m and produced a TE2o1 mode at 918.3 MHz under no load. In addition, the water storage container is a commercially available 10
A 00CG beaker and a SOCC crack were used.

第3図の特性から以下のことがわかる。The following can be understood from the characteristics shown in FIG.

加熱室の高さ方向に定在波を有さない加熱室は6ベー、
・ 負荷量が変わった時、その共振周波数の変化量は高さ方
向に定在波を有する加熱室に比して少ない。
The heating chamber without standing waves in the height direction of the heating chamber is 6 bays,
- When the load changes, the amount of change in the resonant frequency is smaller than in a heating chamber that has standing waves in the height direction.

この時の負荷量変化は、その絶対量のみならず、負荷の
底面積の変化および高さ方向の変化に対しても言える。
The change in load amount at this time refers not only to the absolute amount, but also to the change in the base area of the load and the change in the height direction.

第3図に示す特性の共振周波数は、加熱室内の電界強度
を測定し強度が最大となる周波数を共振周波数としたも
のであり、共振周波数にて加熱室を励振すれば、加熱室
は最大の高周波パワーを蓄積することを示唆するもので
ある。
The resonance frequency of the characteristic shown in Figure 3 is the frequency at which the electric field strength in the heating chamber is measured and the strength is maximum. This suggests that high frequency power is accumulated.

ところで1.S、M、周波数帯はその帯域が制限されて
おり、種々な被加熱物に対して1.S、M、周波数帯域
内にて効率的に高周波加熱するためには、この帯域内に
出来る限シ共振周波数を生せしめる様に加熱室内に生ず
る電磁界モー、ドを選択するのがよく、本発明は民生機
器として実用的な形状を作ることのできるTE2゜1モ
ードを選択した。
By the way, 1. The S, M, and frequency bands are limited, and 1. In order to perform high-frequency heating efficiently within the S, M, frequency band, it is best to select the electromagnetic field mode generated in the heating chamber so as to generate as much resonance frequency as possible within this band. For the invention, we selected the TE2°1 mode, which allows us to create a practical shape for consumer equipment.

第4図は、TE2゜1モードを生ずる加熱室の特性図で
ある。
FIG. 4 is a characteristic diagram of a heating chamber that produces the TE2°1 mode.

横軸が2個の定在波を有する方向の寸法(本発71、−
 ・ 明において幅寸法)(単位鵡)、縦軸が1個の定在波を
有する方向の寸法(本発明においては奥行寸法)(単位
m)を示す。なお増分は11mとした。
Dimension in the direction in which the horizontal axis has two standing waves (this invention 71, -
- In the light, the width dimension) (unit: m) is shown, and the vertical axis indicates the dimension in the direction in which one standing wave is present (in the present invention, the depth dimension) (unit: m). Note that the increment was 11 m.

図中破線は等共振周波数線であり、直線Eは幅寸法と奥
行寸法が等しい直線である。ところで加熱室の特性を測
るパラメータの1つとしてQ特性がある。Q値は加熱室
が貯蓄するエネルギWと加熱室が時間的に損失するパワ
ーPおよび無負荷時加熱室励振周波数f。、に関し Q=2πfOr なる関係がある。
The broken lines in the figure are equal resonant frequency lines, and the straight line E is a straight line whose width and depth are equal. By the way, one of the parameters for measuring the characteristics of a heating chamber is the Q characteristic. The Q value is the energy W stored in the heating chamber, the power P lost over time in the heating chamber, and the excitation frequency f of the heating chamber at no-load. , there is a relationship Q=2πfOr.

また、加熱室に生ずる励振モードと加熱室の各寸法に関
してもマイクロ波工学において周知の関係式があり、T
E2o1モードにおいてはなる関係がある。
In addition, there is a well-known relational expression in microwave engineering regarding the excitation mode generated in the heating chamber and each dimension of the heating chamber, and T
In the E2o1 mode, there is a relationship.

特開昭58−194288 (3) ここでδは加熱室を構成する素材の表皮の深さく素材の
表面に入射する高周波の振幅が−に減衰する長さ)であ
る。
JP-A-58-194288 (3) Here, δ is the depth of the skin of the material constituting the heating chamber (the length at which the amplitude of the high frequency wave incident on the surface of the material is attenuated to -).

加熱室の高さ寸法すを24013とし、8を常数とした
時、a=372111.c=374111の時Qは最大
値QMをとる。この0M値に対し、無負荷時共振周波数
が900 MHz 乃至930 MHzにおける等Q値
線を図中一点破線で示す。
When the height of the heating chamber is 24013 and 8 is a constant, a=372111. When c=374111, Q takes the maximum value QM. For this 0M value, the equal Q value line when the no-load resonance frequency is 900 MHz to 930 MHz is shown by a dotted line in the figure.

Q値が大きいほど加熱室を構成する壁面において無駄に
消費される高周波パワーが少ないことを示唆する。
It is suggested that the larger the Q value, the less high frequency power is wasted on the wall surface constituting the heating chamber.

ところで、第3図に示したTE   モードなる01 加熱室共振周波数の負荷特性よp、1.S、M、周波数
帯域内に負荷時加熱室共振周波数を出来る限り多く存在
させるためには、無負荷時加熱室共振周波数が1.S、
M、周波数帯域の上限近くにあるのがよい。
By the way, according to the load characteristics of the 01 heating chamber resonance frequency in the TE mode shown in FIG. 3, p, 1. In order to have as many resonant frequencies of the heating chamber under load as possible within the S, M frequency bands, the resonant frequency of the heating chamber under no load must be 1. S,
M, preferably near the upper limit of the frequency band.

しかしながら第4図に示すように無負荷時加熱室共振周
波数と加熱室Q値との関係は周波数が高くなるにつれて
Q値が減少する傾向にあり、不発9べ、 明はこの2つのパラメータ及び以下に示す事象を考慮し
て加熱室寸法を限定したところが特長である0 事象の第1は、装置全体の安定度である。
However, as shown in Figure 4, the relationship between the resonant frequency of the heating chamber under no load and the Q value of the heating chamber shows that as the frequency increases, the Q value tends to decrease. The feature is that the dimensions of the heating chamber are limited in consideration of the phenomena shown in 0. The first phenomenon is the stability of the entire device.

加熱室の出入れ扉は電波漏洩防止機構などを含んでいる
ため少なからず重量物であるため、加熱室幅方向を小さ
くすると、出入れ扉の形状を小形化し軽量化をはかれる
。また幅方向を狭くするとTE2゜1を生ぜしめるには
必然的に奥行方向が長くなるから、装置全体の重心が後
方へ移動することになり安定度が助長される。
Since the door to the heating chamber includes a radio wave leakage prevention mechanism and is quite heavy, by reducing the width of the heating chamber, the shape of the door can be made smaller and the weight can be reduced. Furthermore, if the width direction is narrowed, the depth direction will inevitably become longer in order to produce TE2°1, so the center of gravity of the entire device will move rearward, which will improve stability.

第2は使い勝手の向上である。The second is improved usability.

被加熱物の大きさは根本的には加熱室内に収容可能なも
のであれば伺でもよく、一般にこの被加熱物は加熱室底
壁の略中央部に置かれる。ところでTE2o1モードは
第2図にその電界分布を示したように電界が非常に強い
所が2カ所ありその間隔は、2個の定在波を有する方向
の加熱室寸法の約iである。このため、2個の定在波を
有する方向の加熱室寸法を出来る限り小さくすると、加
熱10 、、−1・ 室の中央付近がより高電界場になり得るため、小さな被
加熱物に対しても十分高効率に高周波加熱を行なうこと
ができる。
Basically, the size of the object to be heated may be any size as long as it can be accommodated in the heating chamber, and the object to be heated is generally placed approximately at the center of the bottom wall of the heating chamber. By the way, in the TE2o1 mode, as the electric field distribution is shown in FIG. 2, there are two places where the electric field is very strong, and the interval between them is about i of the heating chamber dimension in the direction having two standing waves. For this reason, if the dimensions of the heating chamber in the direction of the two standing waves are made as small as possible, the electric field near the center of the heating chamber will be higher than that of 10, -1. High-frequency heating can also be performed with sufficiently high efficiency.

このように、TE2゜1モードを生ずる加熱室が固有に
有する物理特性と使い勝手を向上させる手段とを兼ねた
加熱室形状として、本発明は、加熱室幅方向に2個、奥
行方向に1個の定在波を有するとともに奥行方向の寸法
を幅方向の寸法と等しいか長い寸法構成としたものであ
る。
As described above, the present invention provides a heating chamber shape that combines the inherent physical characteristics of the heating chamber that produces the TE2゜1 mode and a means for improving usability, with two heating chambers in the width direction and one in the depth direction. It has a standing wave of 1, and has a dimension configuration in which the dimension in the depth direction is equal to or longer than the dimension in the width direction.

第4図を用いると21個の定在波を有する方向の寸法が
第1図に示す加熱室幅方向寸法となシa’1m+個の定
在波を有する方向の寸法が奥行方向寸法であり、図中斜
線を施こした領域が本発明の特長、効果に有益性を発揮
する領域である。
Using Fig. 4, the dimension in the direction with 21 standing waves is the width direction dimension of the heating chamber shown in Fig. 1, and the dimension in the direction with 1m+ standing waves is the depth direction dimension. The shaded area in the figure is the area where the features and effects of the present invention are beneficial.

なお、第4図は幅方向の寸法、奥行方向の寸法を夫々3
60IaIlから3801111とした場合を示してい
るが、幅方向寸法が3501EIB以下または奥行方向
寸法が380鵡以上の領域でも本発明の主旨に沿うもの
であればその阪椅+苧いることができることは明らかで
ある。
In addition, in Figure 4, the width direction dimension and depth direction dimension are each 3.
Although the case where the chair is changed from 60IaIl to 3801111 is shown, it is clear that even in an area where the width direction dimension is 3501EIB or less or the depth direction dimension is 380cm or more, it is possible to use the chair + ramie if it meets the spirit of the present invention. It is.

以上、本発明は1.S、M、周波数帯の1つである91
5MHz帯を発振周波数に有する高周波加熱熱源とこの
周波数帯においてTE   モードなる励2φ1 振モードを生ずる加熱室を具備した高周波加熱装置にお
いて、加熱室の幅方向に2個、奥行方向に1個の定在波
モードを有させるとともに、奥行方向の寸法を幅方向の
寸法と等しいか長い寸法構成とした高周波加熱装置を提
供するものであり、(1)加熱室壁面での損失を減少さ
せるとともにあらゆる負荷に対する加熱室共振周波数を
出来る限り多(915MHz帯域内に存在させ被加熱物
を高効率に高周波加熱することができる0 (2)加熱室高さ方向に定在波を有さないTE2φ1モ
ードを用いることにより加熱室高さ方向の寸法精度が粗
くてよく製造管理が容易である。
As described above, the present invention has 1. S, M, 91 which is one of the frequency bands
In a high-frequency heating device equipped with a high-frequency heating heat source having an oscillation frequency in the 5 MHz band and a heating chamber that generates an excitation 2φ1 oscillation mode, which is the TE mode, in this frequency band, there are two The present invention provides a high-frequency heating device that has a wave mode and has a dimension in the depth direction that is equal to or longer than the dimension in the width direction. (2) Use the TE2φ1 mode that does not have standing waves in the height direction of the heating chamber. As a result, the dimensional accuracy in the height direction of the heating chamber is low, and manufacturing control is easy.

(3)奥行方向寸法を長くとることにより装置本体の安
定度が増し使い勝手がよい。
(3) By increasing the depth dimension, the stability of the main body of the device is increased and it is easy to use.

(4)2個の定在波を有する幅方向の寸法を小さくする
ことにより、強電界部が加熱室中央部を境いとして接近
するため、小さな被加熱物に対しても効率よく高周波加
熱できる。
(4) By reducing the width dimension with two standing waves, the strong electric field approaches the center of the heating chamber, allowing efficient high-frequency heating even for small objects. .

(5)  ターンテーブルを装備した時に幅方向の寸法
が実行方向の寸法以下であることから加熱室に収容し回
転加熱できる被加熱物の大きさをユーザーが規定しやす
い。
(5) When equipped with a turntable, the dimension in the width direction is less than the dimension in the execution direction, making it easy for the user to specify the size of the object to be heated that can be housed in the heating chamber and heated by rotation.

等の効果を奏する。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明一実施例を示す高周波加熱装置の一部
切欠外観図、第2図は第1図の加熱室に生ずる電界分布
図、第3図は、加熱室共振周波数の対水負荷量特性図、
第4図は本発明のTE2゜1モードを生ずる加熱室の特
性図である。 1・・・・・・91 f5MHz帯を発振周波数に有す
る高周波加熱装置、3・・・・・・TE2φ1を生ずる
加熱室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 3y!A 0
Fig. 1 is a partially cutaway external view of a high-frequency heating device showing an embodiment of the present invention, Fig. 2 is an electric field distribution diagram generated in the heating chamber of Fig. 1, and Fig. 3 is a diagram of the resonant frequency of the heating chamber versus water. Load amount characteristic diagram,
FIG. 4 is a characteristic diagram of a heating chamber that produces the TE2°1 mode of the present invention. 1...91 High frequency heating device having an oscillation frequency in the f5MHz band, 3...Heating chamber that produces TE2φ1. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3y! A 0

Claims (1)

【特許請求の範囲】[Claims] 1、 S、 M、周波数帯の1つである915MH!帯
を発振周波数に有する高周波加熱熱源と、前記周波数帯
においてTE2φ1なる励振モードを生ずる加熱室とを
具備し            、前記加熱室は、幅方
向に2個、奥行方向に1個の定在波モードを有するとと
もに前記奥行方向の寸法を前記幅方向の寸法以上にて構
成した高周波加熱装置。
1, S, M, 915MH, one of the frequency bands! The heating chamber includes a high-frequency heating heat source having an oscillation frequency of TE2φ1 in the frequency band, and the heating chamber has two standing wave modes in the width direction and one standing wave mode in the depth direction. and wherein the dimension in the depth direction is greater than or equal to the dimension in the width direction.
JP7684982A 1982-05-08 1982-05-08 High frequency heater Pending JPS58194288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7684982A JPS58194288A (en) 1982-05-08 1982-05-08 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7684982A JPS58194288A (en) 1982-05-08 1982-05-08 High frequency heater

Publications (1)

Publication Number Publication Date
JPS58194288A true JPS58194288A (en) 1983-11-12

Family

ID=13617100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7684982A Pending JPS58194288A (en) 1982-05-08 1982-05-08 High frequency heater

Country Status (1)

Country Link
JP (1) JPS58194288A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845267A (en) * 1974-01-04 1974-10-29 Gen Electric Microwave oven with waveguide feed
JPS50100638A (en) * 1973-12-18 1975-08-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100638A (en) * 1973-12-18 1975-08-09
US3845267A (en) * 1974-01-04 1974-10-29 Gen Electric Microwave oven with waveguide feed

Similar Documents

Publication Publication Date Title
US4276462A (en) Microwave heating apparatus
RU2253193C2 (en) Microwave oven and method for optimizing its design characteristics
Gurevich et al. Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification
US5828040A (en) Rectangular microwave heating applicator with hybrid modes
JPS58194288A (en) High frequency heater
Risman Confined modes between a lossy slab load and a metal plane as determined by a waveguide trough model
JP2851118B2 (en) High frequency heating equipment
Krishnamurthy et al. Raman spectra of CdF2 and PbF2
JPH0349195B2 (en)
WO1982003743A1 (en) A microwave oven
JPH07142165A (en) High-frequency heating device
SU1764190A1 (en) S h f furnace
Mizuno et al. Hot-electron production due to the ion acoustic decay instability in a long underdense plasma
CA1188749A (en) High frequency heating appliance
JPS5991693A (en) High frequency heater
JPS5971291A (en) High frequency heater
JPS60225393A (en) High frequency heater
JPS58221329A (en) High frequency heating device
KNOX Phase measurements of fast wave toroidal eigenmodes(resonant frequencies)[Ph. D. Thesis]
JPS58203322A (en) High frequency heating device
JPS6110954B2 (en)
OTT et al. The cavity Q for ergodic eigenmodes[Interim Report]
JPS5973885A (en) High frequency heater
JPS58175283A (en) High frequency heater
JPS5829589B2 (en) High frequency heating device