JPS58194257A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPS58194257A
JPS58194257A JP57078917A JP7891782A JPS58194257A JP S58194257 A JPS58194257 A JP S58194257A JP 57078917 A JP57078917 A JP 57078917A JP 7891782 A JP7891782 A JP 7891782A JP S58194257 A JPS58194257 A JP S58194257A
Authority
JP
Japan
Prior art keywords
discharge
positive electrode
electrolytic battery
organic electrolytic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57078917A
Other languages
Japanese (ja)
Inventor
Takafumi Fujii
隆文 藤井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57078917A priority Critical patent/JPS58194257A/en
Publication of JPS58194257A publication Critical patent/JPS58194257A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the voltage drop of an organic electrolytic battery at the beginning of discharge and increase discharge capacity by using a mixture of cubric oxide and nickel sulfide as the positive electrode active material. CONSTITUTION:Cupric oxide and nickel sulfide are mixed together at a proper ratio and a conductive material such as acetylene black and a bonding agent are mixed therewith. A sheet-type electrode is manufactured by pressurizing and supplying this mixture into an expanded net such as Ni and a positive electrode is obtained by punching the electrode in specified dimensions. The button-type organic electrolytic battery assembled by using this positive electrode has the voltage drop reduced at the beginning of discharge and the discharge capacity increased.

Description

【発明の詳細な説明】 本発明は、有機電解質電池に係り、特にその正極活物質
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to organic electrolyte batteries, and particularly to improvements in positive electrode active materials thereof.

酸化第二銅(Cub)を正極活物質とする有機電解質電
池は、酸化第二銅の単位体積当りの理論電気容量が4.
26Ah/ccと非常に大きく、またリチウム負極と組
合わせたときの放電電圧が1.3〜1.6Vで、従来の
酸化銀電池などと互換性があるなどの特長を有している
。したがって電子ウォッチ用々どの電源として注目され
ている。
An organic electrolyte battery using cupric oxide (Cub) as a positive electrode active material has a theoretical electric capacity per unit volume of cupric oxide of 4.
It has a very high discharge voltage of 26Ah/cc, and when combined with a lithium negative electrode, the discharge voltage is 1.3 to 1.6V, making it compatible with conventional silver oxide batteries. Therefore, it is attracting attention as a power source for electronic watches.

しかし、この種の電池は、その放電特性、特に放電初期
における電圧特性に問題がある。すなわち、第1図のよ
うに、放電を開始し−Cから電圧が安定化するまでに電
圧の落ち込み現象がみられる。
However, this type of battery has problems with its discharge characteristics, particularly its voltage characteristics at the initial stage of discharge. That is, as shown in FIG. 1, a voltage drop phenomenon is observed from when discharge starts until the voltage stabilizes from -C.

従って電池の電圧が重要視される電子ウォッチ用電源と
しては、特に−10’Cというようなきびしい条件下で
電子ウォッチの精度などに悪影響を及ぼすおそれがある
Therefore, as a power source for an electronic watch where battery voltage is important, there is a risk that the accuracy of the electronic watch may be adversely affected, especially under severe conditions such as -10'C.

本発明は、正極活物質として酸化第二銅と硫化ニッケル
との混合物を用いることにより、前述の欠点を除去した
ものである。
The present invention eliminates the above-mentioned drawbacks by using a mixture of cupric oxide and nickel sulfide as the positive electrode active material.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

次表のように、酸化第二銅と硫化ニッケルを各種の割合
で混合し、さらに導電材のアセチレンブランクと結着剤
のポリ4フツ化エチ゛レンを混合し、この混合物をニッ
ケルからなるエキスパンデッドネットに連続的に加圧、
充てんし、厚さ0.35m+nのシート状電極を作り、
これを直径68聰に打ち抜いて正極とする。
As shown in the table below, cupric oxide and nickel sulfide are mixed in various proportions, an acetylene blank as a conductive material and polyethylene tetrafluoride as a binder are mixed, and this mixture is made into an expanded material made of nickel. Continuously pressurizes the net,
Fill it and make a sheet electrode with a thickness of 0.35m+n.
This is punched out to a diameter of 68 mm to form a positive electrode.

以   下  余   白 (単位二重置部) これらの正極を用いて第2図に示すボタン形電池を組立
てた。第2図において、1は厚さ0.16咽のニッケル
メッキを施したステンレス鋼からな縁に装着したポリプ
ロピレン製のガスケット、3は封目板の粗面化した内面
に圧着した直径6.5mm。
Margin below (Unit double placement part) Using these positive electrodes, a button-shaped battery as shown in Figure 2 was assembled. In Figure 2, 1 is a polypropylene gasket attached to the edge of nickel-plated stainless steel with a thickness of 0.16 mm, and 3 is a 6.5 mm diameter gasket attached to the roughened inner surface of the sealing plate. .

厚さ0.25mmの金属リチウムからなる負極である。This is a negative electrode made of metallic lithium with a thickness of 0.25 mm.

3はポリプロピレン製不織布からなるセパレータで、炭
酸プロピレンと1,2−ジメトキシエタンとを体積比で
1:1の割合で混合した溶媒に過塩素酸リチウムを1モ
ル/2溶解させた電解液を含浸している。6は前記の正
極で、片面には前記のネット6を集電体として備えてい
る。7は厚さ0.16mmのニッケルメッキを施したス
テンレス鋼よりなる外径9.5鰭、高さ1.2胴のケー
スである。
3 is a separator made of polypropylene nonwoven fabric, which is impregnated with an electrolytic solution in which 1 mole/2 of lithium perchlorate is dissolved in a solvent that is a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1:1. are doing. Reference numeral 6 denotes the above-mentioned positive electrode, and one side thereof is provided with the above-mentioned net 6 as a current collector. 7 is a case made of 0.16 mm thick nickel-plated stainless steel with an outer diameter of 9.5 fins and a height of 1.2 mm.

前記の各種正極を用いて作製した電池を20℃において
30にΩの定括抗放電をしたときの放電曲線を第3図に
、また放電初期における電圧落ち込みの最低電圧値、お
よび放電容量を第4図に示す。
Figure 3 shows the discharge curves when batteries made using the various positive electrodes described above were subjected to a constant discharge of 30 Ω at 20°C, and the lowest voltage value of the voltage drop in the early stage of discharge and the discharge capacity are shown in Figure 3. Shown in Figure 4.

これらの図から明らかなよ゛うに、酸化第二銅と硫化ニ
ッケルとの混合物を正極活物質として用いた電池は、放
電初期における電圧の落ち込みが抑制されていることが
わかる。特に正極活物質中における硫化ニー、ケルの混
合割合約10〜60重量%のものは、放電容量が増大し
、しかも放電初期における電圧の落ち込みも小さい。
As is clear from these figures, it can be seen that in the battery using a mixture of cupric oxide and nickel sulfide as the positive electrode active material, the drop in voltage at the early stage of discharge is suppressed. In particular, a cathode active material with a mixing ratio of about 10 to 60% by weight of sulfurized Ni-Kel increases the discharge capacity and also reduces the drop in voltage at the initial stage of discharge.

一般に酸化銅よりも放電電圧の高い活物質として酸化ビ
スマス、酸化鉛、酸化アンチモンなどがあり、これらを
それぞれ酸化第二銅に混合して用いた場合は、第5図の
ような放電曲線を示すものが多い。すなわち第5図のA
領域では酸化ビスマスなど酸化第二銅よりも放電電圧の
高いものが先に反応し、続くB領域では酸化第二銅の反
応が進行する。したがって、A−B境界域では酸化第二
銅の放電初期にみられる電圧の落ち込みが認められる。
Active materials that generally have a higher discharge voltage than copper oxide include bismuth oxide, lead oxide, and antimony oxide, and when these are mixed with cupric oxide, the discharge curve shown in Figure 5 is shown. There are many things. In other words, A in Figure 5
In the region, substances having a higher discharge voltage than cupric oxide, such as bismuth oxide, react first, and in the subsequent region B, the reaction of cupric oxide proceeds. Therefore, in the AB boundary region, a drop in voltage is observed at the initial stage of discharge of cupric oxide.

しかし、酸化第二銅に硫化ニッケルを混合した場合、前
述のような電圧の落ち込みが抑列される。
However, when nickel sulfide is mixed with cupric oxide, the drop in voltage as described above is suppressed.

これは放電初期から混成電極として効率よく反応し、作
動するためと考えられる。
This is thought to be because it reacts and operates efficiently as a hybrid electrode from the early stage of discharge.

前記実施例では硫化ニッケルとしてNi3S2を用いた
が、NiSやN t S 2なども同様に用いられる。
Although Ni3S2 was used as the nickel sulfide in the above embodiment, NiS, NtS2, etc. may be used similarly.

以上のように、本発明によれば、放電初期における電圧
の落ち込みを抑えることができ、電圧の落ち込みによる
電子ウォッチなど機器への悪影響を解消することができ
る。
As described above, according to the present invention, it is possible to suppress the drop in voltage at the initial stage of discharge, and it is possible to eliminate the adverse effects of the drop in voltage on devices such as electronic watches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電池の放電初期の電圧変化を示す図、第
2図は本発明の実施例の電池の半断面図、第3図は酸化
第二銅と硫化ニッケルとの各種混合試料を用いた電池の
放電曲線を示す図、第4図は6パ 酸化第二銅と硫化ニッケルの混合比と放電初期における
電圧最低値および放電容量との関係を示す図、第5図は
従来の混合正極を用いた電池の放電曲線を示す。 3・・Φ・・・負極、4・・・・・・セパレータ、60
・・0正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
図 第5図 鉄質II序間(In−)
Fig. 1 is a diagram showing voltage changes in the early stage of discharge of a conventional battery, Fig. 2 is a half-sectional view of a battery according to an embodiment of the present invention, and Fig. 3 is a diagram showing various mixed samples of cupric oxide and nickel sulfide. Figure 4 shows the relationship between the mixing ratio of hexagonal cupric oxide and nickel sulfide and the minimum voltage value and discharge capacity at the initial stage of discharge. Figure 5 shows the discharge curve of the battery used. The discharge curve of a battery using a positive electrode is shown. 3...Φ...Negative electrode, 4...Separator, 60
...0 positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
Figure 5 Ferrous II Introduction (In-)

Claims (1)

【特許請求の範囲】[Claims] 酸化第二銅と硫化ニッケルとの混合物を活物質とする正
極を備えた有機電解質電池。
An organic electrolyte battery with a positive electrode whose active material is a mixture of cupric oxide and nickel sulfide.
JP57078917A 1982-05-10 1982-05-10 Organic electrolytic battery Pending JPS58194257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57078917A JPS58194257A (en) 1982-05-10 1982-05-10 Organic electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57078917A JPS58194257A (en) 1982-05-10 1982-05-10 Organic electrolytic battery

Publications (1)

Publication Number Publication Date
JPS58194257A true JPS58194257A (en) 1983-11-12

Family

ID=13675198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57078917A Pending JPS58194257A (en) 1982-05-10 1982-05-10 Organic electrolytic battery

Country Status (1)

Country Link
JP (1) JPS58194257A (en)

Similar Documents

Publication Publication Date Title
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH0646578B2 (en) Non-aqueous secondary battery
JPS58194257A (en) Organic electrolytic battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS58206056A (en) Organic electrolyte battery
JPS581971A (en) Organic electrolyte battery
JPS58194258A (en) Organic electrolytic battery
JP2844829B2 (en) Organic electrolyte primary battery
JPH0326502B2 (en)
JPS59205160A (en) Cylindrical nonaqueous electrolyte battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2708887B2 (en) Non-aqueous electrolyte battery
JPS60262350A (en) Flat type organic electrolyte battery
JPS58197665A (en) Organic electrolyte battery
JPS63150867A (en) Nonaqueous secondary cell
JPS5853025Y2 (en) silver oxide battery
JPS58112249A (en) Manufacturing method of positive pole for flat battery
JPS62216166A (en) Nonaqueous electrolyte battery
JPH01128370A (en) Nonaqueous solvent secondary cell
JPS5933168Y2 (en) silver oxide battery
JPS62271350A (en) Nonaqueous electrolytic solution battery
JPH01309251A (en) Flat type organic electrolyte battery
JPH0719595B2 (en) Non-aqueous secondary battery
JPH0665029B2 (en) Non-aqueous electrolyte battery
JPH11126587A (en) Nonaqueous electrolyte secondary battery and manufacture of its sealing plate