JPS58193721A - Treatment of waste gas of coal fired boiler - Google Patents

Treatment of waste gas of coal fired boiler

Info

Publication number
JPS58193721A
JPS58193721A JP57075630A JP7563082A JPS58193721A JP S58193721 A JPS58193721 A JP S58193721A JP 57075630 A JP57075630 A JP 57075630A JP 7563082 A JP7563082 A JP 7563082A JP S58193721 A JPS58193721 A JP S58193721A
Authority
JP
Japan
Prior art keywords
exhaust gas
waste gas
fired boiler
coal
air preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57075630A
Other languages
Japanese (ja)
Inventor
Tadashi Shirakata
正 白方
Hayamizu Ito
伊東 速水
Yoshitaka Kajihata
梶畠 賀敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP57075630A priority Critical patent/JPS58193721A/en
Publication of JPS58193721A publication Critical patent/JPS58193721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To decrease the amt. of waste water to be treated of a wet desulfurizer in the stage of subjecting the waste gas of a coal fired boiler to treatments of denitration, air preheating, dust collection at low temp. and wet desulfurization by adding an alkali slurry thereto between the desulfurizer and the air preheater. CONSTITUTION:Ammonia is added through a supply pipe 2 to the waste gas of a coal fired boiler 1 and NOx is converted to nitrogen and water in a denitrator 3. The waste gas is then introduced into a spray dryer 4 where a Ca or Mg alkali slurry is supplied to the gas through a supply pipe 5 to adsorb and remove the sulfur trioxide, hydrogen chloride and hydrogen fluoride in the waste gas. The waste gas is further recovered of heat in an air preheater 6, is removed of fine powder together with coal ash in a dust collector 7 and is recovered of heat in a heat exchanger 8, whereafter the waste gas is introduced into a wet desulfurizer 9 and is adsorbed away of sulfur dioxide. The cleaned waste gas is released through a chimney 10 into the atmosphere.

Description

【発明の詳細な説明】 本発明は1石炭焚きボイラ排ガスを高ばいじん系脱硝、
空気予熱、低温集じん、湿式脱硫と処理する方法におり
て一集じん装置捕集石度灰中に含まれるアンモニウム化
合物の濃度を減少させ、かつ湿式脱硫装置の循環水中の
塩素イオン、フッ素イオンの蓄積を防止して排水量を減
少させることができる石炭焚きボイラ排ガスの処理方法
に関するものである。
[Detailed Description of the Invention] The present invention denitrates coal-fired boiler exhaust gas with high dust and nitrogen content.
By using air preheating, low-temperature dust collection, and wet desulfurization, the concentration of ammonium compounds contained in the ash collected by the dust collection device is reduced, and chlorine and fluorine ions are removed from the circulating water of the wet desulfurization device. The present invention relates to a method for treating coal-fired boiler exhaust gas that can prevent the accumulation of water and reduce the amount of wastewater.

右脚焚きボイラ排ガスを高ばいじんの状態でアンモニア
接触還元方式の脱硝装置に導入して脱硝し、ついで排ガ
スを空気予熱器に導入1−て熱回収l−た後、排ガスを
低温電気集じん機などの集じん装置に導入して除じんし
、さらに排ガスを湿式脱硫装置に導入して脱硫処理する
場合、アンモニアを添加された排ガスは脱硝触媒が充填
された脱硝装置へ導かれ− NO十NH,+V40□→L + 3/2 H,0の反
応式によ多窒素酸化物は無害な窒素と水に変換されると
同時に、脱硝触媒がSO,酸化能を何するために次式の
副反応も進行する。
The exhaust gas from the right-leg firing boiler is introduced in a highly dusty state to an ammonia catalytic reduction type denitrification device for denitrification, then the exhaust gas is introduced to an air preheater for heat recovery, and then the exhaust gas is sent to a low-temperature electrostatic precipitator. When the exhaust gas is introduced into a dust collector such as a wet desulfurizer to remove dust, and the exhaust gas is further introduced into a wet desulfurization device for desulfurization treatment, the exhaust gas to which ammonia has been added is led to the denitrification device filled with a denitrification catalyst. , +V40□→L + 3/2 H,0 According to the reaction equation, nitrogen oxides are converted to harmless nitrogen and water, and at the same time, the denitrification catalyst is converted to SO, and in order to increase the oxidation ability, the following equation is used: The reaction also progresses.

so、−1−1/20t→SO。so, -1-1/20t→SO.

しだがって脱硝装置からの排ガス中には未反応のリーク
アンモニアとともにSO3が含まれ、このリークアンモ
ニアと排ガス中のSO3との反応に起因するNH4H3
O,−(NH,)、SO,などのアンモニウム化合物が
集じん装置捕集石炭灰中に含まれるにのアンモニウム化
合物はアンモニア臭俄の発生。
Therefore, the exhaust gas from the denitration equipment contains SO3 along with unreacted leak ammonia, and NH4H3 due to the reaction between this leak ammonia and SO3 in the exhaust gas.
Ammonium compounds such as O, -(NH,), SO, etc. contained in the coal ash collected by the dust collector give off an ammonia odor.

水系へのアンモニアの溶出などのため、・石炭灰の投棄
、利用に際し悪影響が予想される。この影響を避けるた
めに、もちろん脱硝装置からのリークアンモニアの低減
が検討されているが、不十分な結果しか得られていない
のが現状である。またアンモニウム化合物を含む集じん
装置捕集石炭灰を加熱してアンモニウム化合物を熱分解
し、アンモニアを石炭灰から除去する方法も検討されて
bるが、アンモニウム化合物の熱分解にはかなりの高温
を必要とし、このだめの多量の熱源が必要であるので処
理コストが高くなるという問題点がある。
Due to the elution of ammonia into the water system, adverse effects are expected when dumping and using coal ash. In order to avoid this effect, reduction of leak ammonia from the denitrification equipment is of course being considered, but at present only insufficient results have been obtained. In addition, a method of heating the coal ash collected by a dust collector containing ammonium compounds to thermally decompose the ammonium compounds and remove ammonia from the coal ash is also being considered, but thermal decomposition of ammonium compounds requires a considerable high temperature. However, since a large amount of heat source is required, there is a problem that the processing cost becomes high.

一方1石炭焚きボイラ排ガス中に含まれる塩化水素ガス
、フッ化水素ガスが、湿式脱硫装置で硫黄酸化物ととも
に吸収除去されるため、循環水中には塩素イオン、フッ
素イオンが蓄積される。塩素イオン−フッ素イオンが過
度に蓄積されると。
On the other hand, since hydrogen chloride gas and hydrogen fluoride gas contained in the exhaust gas of a coal-fired boiler are absorbed and removed together with sulfur oxides in a wet desulfurization device, chlorine ions and fluoride ions are accumulated in the circulating water. Chloride ions - When fluorine ions accumulate excessively.

装置の腐蝕あるいは硫黄酸化物除去率の低下をきたすた
め、循環水の一部をブローする必要があり一このため排
水処理量が多くなる欠点がある。
It is necessary to blow out a part of the circulating water to prevent corrosion of the equipment or a decrease in the sulfur oxide removal rate, which has the drawback of increasing the amount of wastewater to be treated.

本発明者らは、上記の問題点を解決すべく鋭意研究を重
ねた結果−脱硝装置の後流の排ガス温度が250〜50
0°Cの領域にCa、Mg系アルカリスラ!J −ヲF
A加fるト−Ca−Mg系アルカリヌラリーは、排ガス
中の三酸化イオウ−塩化水素、フッ化水素を吸収すると
同時に高温雰囲気のため乾燥して微粉末状となることを
知見し、経済的、技術的に優れた石炭焚きボイラ排ガス
の処理方法を発明するに至った。
As a result of intensive research to solve the above problems, the inventors of the present invention found that the exhaust gas temperature downstream of the denitrification device was 250 to 50.
Ca, Mg-based alkaline slurry in the 0°C range! J-woF
It was discovered that A-Ca-Mg-based alkaline slurry absorbs sulfur trioxide, hydrogen chloride, and hydrogen fluoride in the exhaust gas, and at the same time dries into a fine powder due to the high temperature atmosphere, making it economical. This led to the invention of a technically superior method for treating coal-fired boiler exhaust gas.

すなわち本発明は1石炭焚きボイラ排ガスを高ばいじん
の状態でアンモニア接触還元方式の脱硝装置に導入して
脱硝し、ついで排ガスを空気予熱器に導入して熱回収し
た後、排ガスを低温集じん装置に導入して除じんし、つ
込で排ガスを湿式脱硫装置に導入して脱硫する方法にお
−で、前記脱硝装置と空気予熱器との間の高温排ガス中
にCa−Mg系アルカリヌラリーヲ添加して、排ガス中
ノ三酸化イオウ、塩化水素、フッ化水素を吸収除去する
ことにより一部じん装置捕集石炭灰中のアンモニウム化
合物含有量を減少させ、さらに湿式脱硫装置の循環水中
の塩素イオン、フッ素イオンの蓄積を防止して排水処理
量を減少させることができる石炭焚きボイラ排ガスの処
理方法を提供せんとするものである。
That is, the present invention introduces coal-fired boiler exhaust gas in a highly dusty state into an ammonia catalytic reduction type denitrification device for denitrification, then introduces the exhaust gas into an air preheater to recover heat, and then passes the exhaust gas to a low-temperature dust collector. In this method, Ca-Mg-based alkaline slurry is introduced into the high-temperature exhaust gas between the denitration equipment and the air preheater. By adding sulfur trioxide, hydrogen chloride, and hydrogen fluoride in the flue gas and absorbing and removing them, the content of ammonium compounds in the coal ash collected by the dust removal equipment is partially reduced, and the content of ammonium compounds in the circulating water of the wet desulfurization equipment is further reduced. It is an object of the present invention to provide a method for treating coal-fired boiler exhaust gas that can prevent the accumulation of chlorine ions and fluorine ions and reduce the amount of wastewater to be treated.

以下、木発明力構成を図面に基づいて説明する。Hereinafter, the tree invention structure will be explained based on the drawings.

第1図は本発明の方法を実施する装置の一例を示してい
る。石炭焚きボイラ1から排出される排ガヌハ、アンモ
ニア供給管2からアンモニアヲ添加された後、脱硝触媒
が充填された脱硝装置6へ導びかれ窒素酸化物が無害な
窒素と水とに変換される。つbで排ガスはスプレードラ
イヤー装置4に導入される。このスプレードライヤー装
置4にけCa −Mg系アルカリスラリー供給管5が接
続され。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. After ammonia is added to the exhaust gas discharged from the coal-fired boiler 1 from the ammonia supply pipe 2, it is led to the denitrification device 6 filled with a denitrification catalyst, where nitrogen oxides are converted into harmless nitrogen and water. . At step b, the exhaust gas is introduced into the spray dryer device 4. A Ca-Mg based alkali slurry supply pipe 5 is connected to this spray dryer device 4.

たとえば水酸化カルシウム微粉末または/および酸化カ
ルシウム微粉末の水スラリーなどが供給される。なお酸
化カルシウム微粉末と水とを混合してスラリー状にする
と一酸化カルシウムの大部分が水酸化カルシウムに変換
するので、単に水酸化カルシウムスラリーと記述する。
For example, an aqueous slurry of fine calcium hydroxide powder and/or fine calcium oxide powder is supplied. Note that when calcium oxide fine powder and water are mixed to form a slurry, most of the calcium monoxide is converted to calcium hydroxide, so it is simply referred to as calcium hydroxide slurry.

スプレードライヤー装置4内で排ガス中の三酸化イオウ
、塩化水素−フッ化水素は添加されたたとえば水酸化カ
ルシウムスラリーと下記の反応式のように反応して吸収
、除去、される。
In the spray dryer 4, sulfur trioxide and hydrogen chloride-hydrogen fluoride in the exhaust gas are absorbed and removed by reacting with the added calcium hydroxide slurry as shown in the reaction formula below.

Ca(OH)、 −1−8o、 −+Ca5O,+H,
0Ca(OH)! + 2 HC1→Ca C1x +
2Hx 0Ca(OH)、+2HP→CaF、+2H2
0上記反応と同時に250〜500°Cの高温雰囲気で
あるのでスラリーは乾燥し微粉末となる。なおスプレー
ドライヤー装置4は排ガスとスラリーとが充分に混合さ
れる構造を有し一ガス滞留時間が0.5〜5秒、好まし
くは1〜3秒を有する装置であれば良く、一般に使用さ
れてbるものでも用いることができる。スプレードライ
ヤー装置4を出た排ガスは空気予熱器乙におじて熱回収
され、ついで集じん装置7に導ひかれて、排ガス中の石
炭灰とともに上記微粉末が除去される。集じん装置7と
しては電気集じん機、バグフィルタなどが使用される。
Ca(OH), -1-8o, -+Ca5O, +H,
0Ca(OH)! + 2 HC1→Ca C1x +
2Hx 0Ca(OH), +2HP→CaF, +2H2
0 At the same time as the above reaction, the slurry is dried and becomes a fine powder because of the high temperature atmosphere of 250 to 500°C. The spray dryer 4 may be any device that has a structure that allows exhaust gas and slurry to be sufficiently mixed and has a residence time of one gas of 0.5 to 5 seconds, preferably 1 to 3 seconds, and is generally used. It can also be used. The exhaust gas exiting the spray dryer device 4 is heat-recovered in the air preheater B, and then led to the dust collector 7, where the fine powder is removed together with the coal ash in the exhaust gas. As the dust collector 7, an electrostatic precipitator, a bag filter, etc. are used.

除じんされた排ガスはガス・ガス熱交換器8で熱回収さ
れた後−湿式脱硫装置9に導かれ。
After the dust-removed exhaust gas is heat-recovered in a gas-to-gas heat exchanger 8, it is led to a wet desulfurization device 9.

排ガス中の二酸化イオウが吸収除去される。つbで清浄
化された排ガスは煙突10から大気中に放出される。
Sulfur dioxide in the exhaust gas is absorbed and removed. The exhaust gas purified in step b is released into the atmosphere from the chimney 10.

つぎに実施例および比較例について説明する。Next, Examples and Comparative Examples will be explained.

実施例1 ?7モニア接触11元方式の脱硝装置、スプレードライ
ヤー装置からなる実験装置を用いてSO。
Example 1? SO using an experimental device consisting of a 7-monia contact 11-element denitrification device and a spray dryer device.

)ICI−HFの除去実験を行なった。供試ガスは石炭
焚きボイラ節炭器出口ガスで、大略−NOx : 30
0ppm−SOx : 1,500ppm−”* :3
%−Co、:12%−H,O: 1[]]%−N、:残
部ばいじん量: 20F/Nm”の組成を有して因だ。
) An ICI-HF removal experiment was conducted. The sample gas is coal-fired boiler economizer outlet gas, approximately -NOx: 30
0ppm-SOx: 1,500ppm-”*:3
%-Co, : 12%-H, O: 1[]]%-N, : Remaining amount of soot and dust: 20F/Nm''.

第1表に示す条件で実験を行ない、結果は第2図に示す
とおりであった。
The experiment was conducted under the conditions shown in Table 1, and the results were as shown in FIG.

第  1  表 排ガス量(Nm”/Hr)         500ヌ
ブレ一ドライヤー人口温度(”C)      380
スプレ一ドライヤー出口温度(”C)     360
〜370スプレ一ドライヤー人口Sos濃度(ppm)
   30〜40スプレ一ドライヤー人口HCI濃度(
PPIll)   40〜5050スプレードライヤー
HP濃度(ppm)     8〜10噴射Ca(OH
)、量(f/Hr )      50〜7 DO実施
例2 アンモニア接触還元方式の脱硝装置、スブレート:ライ
ヤー装置−空気予熱器、集じん装置(電気集じん機)か
らなる実験装置を用いて一部じん装置捕集石伏灰中のア
ンモニウム化合物の濃度低減確認実験を行なった。供試
ガスは実施例1と同じものを用いた。第2表に実験条件
を示す。
Table 1 Exhaust gas amount (Nm”/Hr) 500 Nubre dryer population temperature (“C) 380
Spray dryer outlet temperature ("C) 360
~370 Spray Dryer Population Sos Concentration (ppm)
30-40 sprays per dryer population HCI concentration (
PPIll) 40-5050 Spray dryer HP concentration (ppm) 8-10 Injection Ca (OH
), amount (f/Hr) 50-7 DO Example 2 Part of the test was carried out using experimental equipment consisting of an ammonia catalytic reduction type denitrification device, a scrubber: dryer device, an air preheater, and a dust collector (electrostatic precipitator). An experiment was conducted to confirm the reduction in the concentration of ammonium compounds in the ash collected by the dust device. The same sample gas as in Example 1 was used. Table 2 shows the experimental conditions.

第2表 排ガス量(Nrn”/ Hr )          
500スプレ一ドライヤー人口温度(”C)     
   380スプレ一ドライヤー出口温度(’C)  
      370空気予熱器出ロ温度(’C)   
    150集じん装置出口温度(’C)     
  140スプレ一ドライヤー人口so、濃度(ppm
)      30スフレ−ドライヤー人口HCI濃度
(ppm)     40□ ヌブレードライヤー人口IF濃度(ppm)10スプレ
ードライヤー人口NH,濃度(ppm)      5
噴射Ca(OH)、量(y/Hr)500実験の結果、
スプレードライヤー出口のSo、 9度−HCI濃度、
HF濃度−NH,濃度はそれぞれlppm以下−20p
pm、 1 ppl!l−5ppmで、集じん装置出口
のso、濃度、HCI濃度、HF濃度−NH。
Table 2 Exhaust gas amount (Nrn”/Hr)
500 spray - dryer population temperature ("C)
380 spray - dryer outlet temperature ('C)
370 Air preheater outlet temperature ('C)
150 Dust collector outlet temperature ('C)
140 spray - dryer population so, concentration (ppm
) 30 Souffle dryer population HCI concentration (ppm) 40 □ Nublade dryer population IF concentration (ppm) 10 Spray dryer population NH, concentration (ppm) 5
Injection Ca (OH), amount (y/Hr) 500 experiment results,
So at the spray dryer outlet, 9 degrees - HCI concentration,
HF concentration-NH, concentration is less than lppm-20p, respectively
pm, 1 ppl! l-5ppm, so, concentration, HCI concentration, HF concentration-NH at the exit of the dust collector.

?1度ハソレソレ1 ppm以下、 20 PPm−I
 PPm −5ppmであった。 また集じん装置で捕
集された石炭灰中のNH,−濃度は20■/に9以下で
あり、本石炭灰中にアンモニウム化合物は殆ど含まれて
因なかった。
? 1 degree breakout 1 ppm or less, 20 PPm-I
PPm was -5 ppm. Furthermore, the NH,- concentration in the coal ash collected by the dust collector was less than 9/20, indicating that the coal ash contained almost no ammonium compounds.

比較例 実施例2と同一装置を用い、Ca(OR)、スラ13−
の噴射を行なわなし以外は実施例2と同一条件で実験を
行なった。実験の結果、スプレードライヤー出口のso
、濃度、HCI濃度−HF濃度−NH,濃度はそれぞれ
3oppm−40PPm、 IQppm、 5ppmで
Comparative Example Using the same equipment as Example 2, Ca(OR), slurry 13-
The experiment was conducted under the same conditions as in Example 2 except that no injection was performed. As a result of the experiment, the SO at the spray dryer outlet
, concentration, HCI concentration - HF concentration - NH, concentration is 3 oppm - 40 PPm, IQ ppm, 5 ppm, respectively.

集じん装置出口のSO,濃度、 HCI濃度−HF濃度
SO, concentration, HCI concentration - HF concentration at the exit of the dust collector.

NH,濃度はそれぞれI PPm以下、 40ppm−
10ppm−1ppm以下であった。また集じん装置で
捕集された石炭灰中のNHJ濃度は約200〜/kqで
あり1本石炭灰中に多量力アンモニウム化合物が含まれ
ていた。
NH, concentration is less than IPPm, 40ppm-
It was 10 ppm-1 ppm or less. Further, the NHJ concentration in the coal ash collected by the dust collector was about 200~/kq, and a large amount of ammonium compounds were contained in one coal ash.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を示す系統
的説明図、第2図は本発明の実施例の結果を示すもので
−Ca/(SOs+172HCI+1/2HF)モル比
とSO,・HCI 、 IF除去率との関係を示すグラ
フである。 1・・石炭焚きボイラ、2・アンモニア供給管、6・・
脱硝装置、4・・スプレードライヤー装置、5・・Ca
−Mg系アルカリスラリー供給管、6・・空気予熱器、
7・・・集じん装置−8・・・ガス・ガス熱交換器、9
・・湿式脱硫装置、10・煙突
Fig. 1 is a systematic explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and Fig. 2 shows the results of an example of the present invention. It is a graph showing the relationship between HCI and IF removal rate. 1. Coal-fired boiler, 2. Ammonia supply pipe, 6.
Denitration equipment, 4... Spray dryer equipment, 5... Ca
-Mg-based alkali slurry supply pipe, 6... air preheater,
7... Dust collector -8... Gas/gas heat exchanger, 9
・・Wet desulfurization equipment, 10・Chimney

Claims (1)

【特許請求の範囲】[Claims] 1 石炭焚きボイラ排ガスを高ばいじんの状態でアンモ
ニア接触還元方式の脱硝装置に導入して脱硝し、ついで
排ガスを空気予熱器に導入して熱回収した後、排ガスを
低温集じん装置に導入して除じんし、っ込で排ガスを湿
式脱硫装置に導入して脱硫する方法におばて、前記脱硝
装置と空気予熱器との間の高温排ガス中に、ca−M8
系アルカリスラリーを添加して、排ガス中の三酸化イオ
ウ−塩化水素−フッ化水素を吸収除去することを特徴と
する石炭焚きボイラ排ガスの処理方法。
1 Coal-fired boiler exhaust gas is introduced in a highly dusty state into an ammonia catalytic reduction type denitrification device for denitrification, then the exhaust gas is introduced into an air preheater to recover heat, and then the exhaust gas is introduced into a low-temperature dust collector. In the method of desulfurization by introducing the exhaust gas into a wet desulfurization equipment including dust removal, ca-M8 is added to the high temperature exhaust gas between the denitrification equipment and the air preheater.
A method for treating coal-fired boiler exhaust gas, which comprises adding an alkaline slurry to absorb and remove sulfur trioxide, hydrogen chloride, and hydrogen fluoride in the exhaust gas.
JP57075630A 1982-05-06 1982-05-06 Treatment of waste gas of coal fired boiler Pending JPS58193721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075630A JPS58193721A (en) 1982-05-06 1982-05-06 Treatment of waste gas of coal fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075630A JPS58193721A (en) 1982-05-06 1982-05-06 Treatment of waste gas of coal fired boiler

Publications (1)

Publication Number Publication Date
JPS58193721A true JPS58193721A (en) 1983-11-11

Family

ID=13581750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075630A Pending JPS58193721A (en) 1982-05-06 1982-05-06 Treatment of waste gas of coal fired boiler

Country Status (1)

Country Link
JP (1) JPS58193721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293017A (en) * 1990-04-11 1991-12-24 Mitsubishi Heavy Ind Ltd Treatment of waste combustion gas
KR100303388B1 (en) * 1999-06-02 2001-09-24 세 영 모 Aaaaa

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293017A (en) * 1990-04-11 1991-12-24 Mitsubishi Heavy Ind Ltd Treatment of waste combustion gas
KR100303388B1 (en) * 1999-06-02 2001-09-24 세 영 모 Aaaaa

Similar Documents

Publication Publication Date Title
JP4242297B2 (en) Method and apparatus for removing mercury species from hot flue gas
JP3872677B2 (en) Mercury removal method and system
TW200808429A (en) Integrated dry and wet flue gas cleaning process and system
JP4227676B2 (en) Gas purification equipment
JPH11503221A (en) Waste heat treatment method and apparatus
KR920003768B1 (en) Method and system for purifying exhaust gas
JPS6136969B2 (en)
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
JPS58193721A (en) Treatment of waste gas of coal fired boiler
JP3086156B2 (en) RDF incineration / exhaust gas treatment equipment
JPH0521609B2 (en)
JP3358904B2 (en) Exhaust gas treatment method
JP2566746B2 (en) How to clean a flue gas stream
JP2655725B2 (en) Exhaust gas treatment method for pulverized coal combustion boiler
KR100587490B1 (en) Treatment apparatus of incineration flue gas
DK1493481T3 (en) Process and plant for the purification of flue gases combining two separation units and a catalytic purification
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JP2000015058A (en) Treatment apparatus and method for incinerator exhaust gas
JP2000015057A (en) Treatment method and apparatus for incinerator exhaust gas
JPH0780244A (en) Treatment of exhaust gas
JPH04197423A (en) Method for removing nitrous oxide in flue gas
JPH05285340A (en) Method for simultaneously desulfurizing and denitrating exhaust gas
JPH04141215A (en) Exhaust gas desulfurizing method
JPH11179143A (en) Method for treating exhaust gas
JPH07308540A (en) Waste gas treatment