JPH04141215A - Exhaust gas desulfurizing method - Google Patents

Exhaust gas desulfurizing method

Info

Publication number
JPH04141215A
JPH04141215A JP2264543A JP26454390A JPH04141215A JP H04141215 A JPH04141215 A JP H04141215A JP 2264543 A JP2264543 A JP 2264543A JP 26454390 A JP26454390 A JP 26454390A JP H04141215 A JPH04141215 A JP H04141215A
Authority
JP
Japan
Prior art keywords
desulfurization
agent
exhaust gas
desulfurizing agent
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2264543A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshikawa
博文 吉川
Koichi Yokoyama
公一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2264543A priority Critical patent/JPH04141215A/en
Publication of JPH04141215A publication Critical patent/JPH04141215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To achieve a high desulfurizing rate by humidifying the sulfur oxide containing an unreacted desulfurizing agent and reacted desulfurizing agent in exhaust gas after desulfurization at a specified temp. or less and drying the same at the specified temp. or higher. CONSTITUTION:The temp. of the exhaust gas from a boiler 1 is lowered by an air heater 2 to guide the exhaust gas to a desulfurizing tower 3. A desulferizing agent A is sprayed in the exhaust gas and the reacted desulfurizing agent A and the ash and unreacted desulfurizing agent A in the exhaust gas are collected by a dust collecting apparatus 5. Water or steam B is supplied to the collected desulfurizing A and ash-containing particles at 100 deg.C or higher from a line 7. A part thereof is disposed and the remainder is dried at 100 deg.C or higher by a heating apparatus 8. As the desulfurizing agent A, slaked lime, quick lime, caustic soda, caustic potash, magnesium hydroxide and sodium sulfate are used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリ金属tたアルカリ土類金属化合物のう
ち少なくとも一種類以上の化合物を脱硫剤として用いる
排煙脱硫方法に係り、特に脱硫剤の再生法に関するもの
である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a flue gas desulfurization method using at least one compound selected from alkali metals and alkaline earth metal compounds as a desulfurization agent. It concerns the Reclamation Act.

[従来の技術] 火力発電所における重油焚、石炭焚ボイラから排出され
る排ガス中には、硫黄酸化物(SOx)や)(CIなど
の酸性有害物質が通常、100〜3000ppmの割合
で含まれており、酸性雨や光化学スモッグの原因物質と
されるため、その効果的な処理手段が望まれている。従
来から湿式法(例えば石灰石−石膏法)または乾式法(
活性炭法)が実施されているが、湿式法は有害物質の除
去率が高い反面、廃水処理が困難で、排ガスを再加熱す
る必要があり、設備費や運転費が高く、乾式法では高い
除去率が得られないという問題があった。
[Conventional technology] Exhaust gas discharged from heavy oil-fired and coal-fired boilers in thermal power plants usually contains acidic harmful substances such as sulfur oxides (SOx) and (CI) at a rate of 100 to 3000 ppm. Since it is considered to be a causative agent of acid rain and photochemical smog, an effective treatment method is desired. Conventionally, wet methods (for example, limestone-gypsum method) or dry methods (
Activated carbon method) has been implemented, but while the wet method has a high removal rate of harmful substances, it is difficult to treat wastewater, it is necessary to reheat the exhaust gas, equipment costs and operating costs are high, and the dry method has a high removal rate. There was a problem that the rate could not be obtained.

このため、無排水の低コストプロセスで高い除去率が得
られる脱硫方法の開発が望まれている。
Therefore, it is desired to develop a desulfurization method that can obtain a high removal rate with a wastewater-free, low-cost process.

ボイラなどの排ガスの脱硫法としては、上記方法のほか
に、消石灰やそのスラリを排ガス中に噴霧する半乾式法
や火炉内や煙道内の高温ガス中に石灰石を直接分散させ
て酸性有害物質を除去する乾式法が提案されており、設
備費や運転費が安いという特徴を有しているが、いずれ
の方法も除去率が低いという問題がある。
In addition to the methods mentioned above, desulfurization methods for exhaust gas from boilers include a semi-dry method in which slaked lime or its slurry is sprayed into the exhaust gas, and a method in which limestone is directly dispersed in the high-temperature gas in the furnace or flue to remove acidic harmful substances. A dry method for removal has been proposed and is characterized by low equipment and operating costs, but both methods have the problem of low removal rates.

消石灰や生石灰を排ガス中に噴霧した排ガス中のSOx
と反応させ、これを集塵装置で除去する方法の代表的な
フローシートを第5図に示す、ボイラ1からの排ガスは
エアヒータ2で温度を下げられ、脱硫塔3に導かれる。
SOx in exhaust gas when slaked lime or quicklime is sprayed into exhaust gas
FIG. 5 shows a typical flow sheet of a method for reacting with the oxidation gas and removing it using a dust collector. The exhaust gas from the boiler 1 is lowered in temperature by the air heater 2, and is led to the desulfurization tower 3.

消石灰等の脱硫剤Aは煙道4または脱硫塔3内に噴霧に
して供給され、排ガス中のSOX等の酸性有害物質と反
応する。
The desulfurizing agent A, such as slaked lime, is supplied as a spray into the flue 4 or the desulfurizing tower 3, and reacts with acidic harmful substances such as SOX in the exhaust gas.

この時水Bも供給されることにより排ガスの温度を下げ
、湿度を上げるに の際、水Bは脱硫剤Aと別に供給しても、脱硫剤Aをス
ラリとして同時に供給しても良い。反応した脱硫剤Aは
排ガス中の灰とともに集塵装置5で捕集され、その一部
は再び脱硫塔3に供給されて排ガス中のS08等の酸性
有害物質と反応する。残りの脱硫剤Aおよび灰は廃棄さ
れる。
When water B is also supplied at this time to lower the temperature and increase the humidity of the exhaust gas, water B may be supplied separately from desulfurizing agent A, or desulfurizing agent A may be supplied simultaneously as a slurry. The reacted desulfurizing agent A is collected by the dust collector 5 together with the ash in the exhaust gas, and a part of it is again supplied to the desulfurization tower 3 and reacts with acidic harmful substances such as S08 in the exhaust gas. The remaining desulfurization agent A and ash are discarded.

このような方法において、酸性有害物質の除去率は排ガ
ス中の水分く相対湿度)が支配的であるとされている。
In such a method, the removal rate of acidic harmful substances is said to be dominated by moisture (relative humidity) in the exhaust gas.

すなわち、除去率を上げるためには、排ガスの温度を下
げ、水分を上げることが必要である。水分濃度を上げる
ためには、水や消石灰スラリを噴霧する方法が提案され
ているが、このようなガス中の水分濃度を上げる方法で
は除去率の向上は十分ではない。除去率が低い場合は、
集塵袋f5によって捕集された未反応の脱硫剤を含む粒
子に水や水蒸気を添加し、表面に形成された反応生成物
の殻を破壊した後、この一部を再び排ガス中に噴霧する
ことによって除去率を向上する方法も提案されている(
例えば、米国特許第3431289号、特開昭61−3
5827号)。
That is, in order to increase the removal rate, it is necessary to lower the temperature of the exhaust gas and increase the moisture content. In order to increase the moisture concentration, methods of spraying water or slaked lime slurry have been proposed, but such methods of increasing the moisture concentration in the gas do not sufficiently improve the removal rate. If the removal rate is low,
Water or steam is added to the particles containing the unreacted desulfurizing agent collected by the dust collection bag f5 to destroy the reaction product shell formed on the surface, and then a part of this is sprayed into the exhaust gas again. A method has also been proposed to improve the removal rate by
For example, U.S. Pat.
No. 5827).

[発明が解決しようとする課題] しかし、上記従来技術は集塵装置5で捕集された未反応
の脱硫剤を含む粒子に水や水蒸気を添加しても反応生成
物の殻が完全には破壊されないため除去率の回復は充分
ではない。このため、リサイクルする粒子の割合、すな
わち、集塵装置5で処理しなければならない粒子量が増
加し、集塵装置5の処理容量を増やさなければならなく
なるという問題があった。このように上記従来技術では
脱硫剤の再生方法、特に再生時の温度について配慮がさ
れておらず、そのため酸性有害物質の除去率(脱硫率)
も低くなり、装置コストが高価になるという問題があっ
た。
[Problems to be Solved by the Invention] However, in the above conventional technology, even if water or steam is added to particles containing unreacted desulfurizing agent collected by the dust collector 5, the shell of the reaction product is not completely removed. Since it is not destroyed, the recovery rate of removal is not sufficient. Therefore, there is a problem in that the proportion of particles to be recycled, that is, the amount of particles that must be treated by the dust collector 5 increases, and the processing capacity of the dust collector 5 has to be increased. As described above, in the above conventional technology, no consideration is given to the regeneration method of the desulfurization agent, especially the temperature during regeneration, and as a result, the removal rate of acidic harmful substances (desulfurization rate)
There was a problem that the cost of the device became high.

そこで本発明の目的は未反応脱硫剤の再生を図りながら
簡易なシステムで、高い脱硫率を得る排煙脱硫方法を提
供することである。
Therefore, an object of the present invention is to provide a flue gas desulfurization method that achieves a high desulfurization rate with a simple system while regenerating unreacted desulfurization agent.

[課題を解決するための手段] 本発明の上記目的は、次の構成により達成される。[Means to solve the problem] The above object of the present invention is achieved by the following configuration.

すなわち、アルカリ金属またはアルカリ土類金属化合物
のうち、少なくとも一種類以上の化合物を脱硫剤として
用いて燃焼装置から排出される排ガス中に添加して、排
ガス中の硫黄酸化物を除去する脱硫塔を用いる排煙脱硫
方法において、未反応の脱硫剤を含む排ガス中の硫黄酸
化物と反応した脱硫剤に100℃以下で水または水蒸気
を添加する工程と、100℃以上で水または水蒸気を添
加された脱硫剤を乾燥する工程を有する排煙脱硫方法、
である。
In other words, a desulfurization tower that removes sulfur oxides from the exhaust gas by adding at least one type of alkali metal or alkaline earth metal compound as a desulfurization agent to the exhaust gas discharged from the combustion equipment. The flue gas desulfurization method used includes a step of adding water or steam to the desulfurization agent that has reacted with sulfur oxides in the flue gas containing unreacted desulfurization agent at a temperature of 100°C or lower, and a step of adding water or steam at a temperature of 100°C or higher. A flue gas desulfurization method comprising a step of drying a desulfurization agent;
It is.

本発明の脱硫剤としては消石灰、生石灰、苛性ソーダ、
苛性カリ、水酸化マグネシウム、[11ナトリウム等が
用いられる。
Desulfurizing agents of the present invention include slaked lime, quicklime, caustic soda,
Caustic potash, magnesium hydroxide, sodium [11], etc. are used.

[作用] 排ガス中に添加して脱硫処理した後の未反応の脱硫剤を
含んだ粒子に水または水蒸気を100℃以下の温度条件
で添加した後、100℃以上の条件で乾燥させることに
より、前記粒子表面の反応生成物の殻の破壊が促進され
る。このため、排ガス中のSO8等の酸性有害物質と脱
硫剤との接触効率が向上し、酸性有害物質の除去率が高
くなる。
[Function] By adding water or steam to particles containing an unreacted desulfurizing agent after desulfurization treatment by adding it to exhaust gas at a temperature of 100°C or lower, and then drying at a temperature of 100°C or higher, Destruction of the reaction product shell on the particle surface is promoted. Therefore, the contact efficiency between the desulfurizing agent and acidic harmful substances such as SO8 in the exhaust gas is improved, and the removal rate of acidic harmful substances is increased.

さらに、100℃以上に加熱することにより該粒子に含
まれている反応済脱硫剤(Ca S O3)が酸化され
、使用済脱硫剤の廃棄が容易になる。
Furthermore, by heating to 100° C. or higher, the reacted desulfurizing agent (Ca S O 3 ) contained in the particles is oxidized, making it easier to dispose of the used desulfurizing agent.

[実施例] 本発明は、下記の実施例によってさらに詳細に説明され
るが、下記の例に制限されるものではない 実施例1 脱硫剤として消石灰を用い、石炭焚ボイラの排ガスを脱
硫処理する場合について、本発明法を適用した例につい
て説明する。
[Example] The present invention will be explained in more detail by the following example, but is not limited to the following example. Example 1 Exhaust gas from a coal-fired boiler is desulfurized using slaked lime as a desulfurizing agent. An example in which the method of the present invention is applied will be described.

第1図において、ボイラ1からの排ガスはエアヒータ2
で温度を下げられ、脱硫塔3に導かれる。
In Figure 1, exhaust gas from boiler 1 is transferred to air heater 2.
The temperature is lowered in the step 3, and the product is led to the desulfurization tower 3.

脱硫剤Aは煙道4または脱硫塔3内に噴霧して供給され
、排ガス中のSO□等の酸化有毒ガスと反応し、反応し
た脱硫剤Aは排ガス中の灰および未反応の脱硫iAとと
もに集塵袋W5で捕集される。
Desulfurization agent A is sprayed and supplied into the flue 4 or desulfurization tower 3, and reacts with oxidized toxic gases such as SO□ in the exhaust gas, and the reacted desulfurization agent A is mixed with ash in the exhaust gas and unreacted desulfurization iA. The dust is collected by the dust bag W5.

脱硫剤Aを噴霧する際、脱硫率をより向上させるため、
煙道4または脱硫塔3内にライン6より水または水蒸気
Bを供給することにより排ガスの温度を下げ、湿度を上
げることも可能である。この際水または水蒸気Bは脱硫
剤Aと同一箇所で供給しても別な場所で供給しても良い
。集塵装置5で捕集された未反応および反応済みの脱硫
剤A並びに灰を含んだ粒子(以下、捕集粒子という。)
にライン7より水または水蒸気Bが供給され、集塵装置
5より回収された捕集粒子の一部は廃棄され、その残り
は、加熱装置8内で空気Cまたは排ガスDにより流動・
混合されながら乾燥される。乾燥された捕集粒子はライ
ン9を通って加湿器10に送られ、加湿器10内で再び
水または水蒸気Bにより加湿される。このような処理が
なされた捕集粒子は、ライン11より煙道4または脱硫
塔3内に再度噴霧して供給され、排ガス中のSO□等の
酸性有毒ガスと反応する。
When spraying desulfurization agent A, in order to further improve the desulfurization rate,
It is also possible to lower the temperature of the exhaust gas and increase the humidity by supplying water or steam B from the line 6 into the flue 4 or the desulfurization tower 3. At this time, water or steam B may be supplied at the same location as the desulfurizing agent A, or may be supplied at a different location. Particles containing unreacted and reacted desulfurizing agent A and ash collected by the dust collector 5 (hereinafter referred to as collected particles)
Water or water vapor B is supplied from the line 7, a part of the collected particles collected from the dust collector 5 is discarded, and the remainder is fluidized by air C or exhaust gas D in the heating device 8.
Dry while mixing. The dried collected particles are sent to a humidifier 10 through a line 9, and are again humidified with water or water vapor B in the humidifier 10. The collected particles subjected to such treatment are again sprayed and supplied from the line 11 into the flue 4 or the desulfurization tower 3, where they react with acidic toxic gases such as SO□ in the exhaust gas.

この装置を用いて、A炭(石炭中の硫黄分08%)を燃
焼した時の脱硫性能を測定した。ただし、脱硫剤Aとし
て消石灰を用い、脱硫塔3に水Bとともに噴霧した。消
石灰を排ガス中に含まれるS02に対しモル比で2倍、
水Bは重量比で排ガスの3%添加した。集塵装置5では
捕集粒子に重量比で5%の水Bが添加され、捕集された
粒子の自重量比で50%が廃棄され、残りの50%が加
熱装置8で処理された。この時、集塵装置5内の平均温
度は90℃であった。加熱装置8内では200℃の空気
Cにより乾燥され、加湿器10では温度70℃において
捕集粒子に対して重量比で5%の水Bが添加された。こ
のような処理をされた脱硫剤Aは脱硫塔3に再び噴霧供
給した。
Using this device, the desulfurization performance was measured when coal A (sulfur content in coal was 08%) was burned. However, slaked lime was used as the desulfurization agent A and was sprayed into the desulfurization tower 3 together with water B. The molar ratio of slaked lime to S02 contained in exhaust gas is twice,
Water B was added in an amount of 3% by weight of the exhaust gas. In the dust collector 5, 5% by weight of water B was added to the collected particles, 50% by weight of the collected particles was discarded, and the remaining 50% was processed by the heating device 8. At this time, the average temperature inside the dust collector 5 was 90°C. In the heating device 8, the particles were dried with air C at 200°C, and in the humidifier 10, water B was added at a temperature of 70°C in an amount of 5% by weight to the collected particles. The desulfurizing agent A treated in this way was again spray-supplied to the desulfurizing tower 3.

ボイラ1出口および集塵装置5出口において、ガス中の
水分を除去した後、S02濃度を測定したところ、それ
ぞれ640ppmおよび50ppmであった。すなわち
、排ガス中のSO2の内92%が除去(以下、脱硫率9
2%と呼ぶ、)されたことになる。
After removing moisture from the gas at the boiler 1 outlet and the dust collector 5 outlet, the S02 concentration was measured and found to be 640 ppm and 50 ppm, respectively. In other words, 92% of SO2 in the exhaust gas is removed (hereinafter referred to as desulfurization rate 9).
2%).

実施例2 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。ただし、加熱装置8において、加熱空気で捕集
粒子を乾燥させる代わりに、ボイラ1のエコノマイザ−
(図示せず、)下部より回収された灰(温度350℃)
と加湿した捕集粒子を混合した。
Example 2 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, in the heating device 8, instead of drying the collected particles with heated air, the economizer of the boiler 1
(Not shown) Ash collected from the bottom (temperature 350°C)
and humidified collected particles were mixed.

この時、集塵装置5出口におけるSO2濃度は55pp
mであり、実施例1とほぼ同等の脱硫率が得られた。
At this time, the SO2 concentration at the exit of the dust collector 5 is 55pp.
m, and almost the same desulfurization rate as in Example 1 was obtained.

実施例3 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。ただし、集塵装置5内の温度を60〜200℃
まで変化させ、集塵装置5内の温度と脱硫率との関係を
調べた。その結果を第2図に示す。集塵装置5内の温度
が低いほど脱硫率が高くなる傾向がある。しかし、あま
り温度が低いとS Oy等による酸腐食が起こりやすい
ため、70〜100℃が好ましい。同様に、加湿器10
内の温度も100℃以下が好ましい。
Example 3 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, the temperature inside the dust collector 5 should be set at 60 to 200°C.
The relationship between the temperature inside the dust collector 5 and the desulfurization rate was investigated. The results are shown in FIG. The lower the temperature inside the dust collector 5, the higher the desulfurization rate tends to be. However, if the temperature is too low, acid corrosion due to SOy etc. tends to occur, so the temperature is preferably 70 to 100°C. Similarly, humidifier 10
The temperature inside is also preferably 100°C or less.

実施例4 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。ただし、加熱装置8内の温度を60〜400℃
に変化させ、乾燥温度と脱硫率の関係を調べた。その結
果を第3図に示す。乾燥温度は低すぎても高すぎても脱
硫率は低下し、100〜300℃が好ましいという結果
が得られた。
Example 4 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, the temperature inside the heating device 8 should be set at 60 to 400°C.
The relationship between drying temperature and desulfurization rate was investigated. The results are shown in FIG. The desulfurization rate decreases if the drying temperature is too low or too high, and it was found that a drying temperature of 100 to 300°C is preferable.

乾燥温度が低い場合1反応生成物(ここでは亜硫酸カル
シウムおよび硫酸カルシウム)の中の結晶水が除去され
ず、体積変化による反応生成物の殻の破壊が十分でない
ためと推定される。乾燥温度が高すぎる場合は、未反応
脱硫剤粒子(ここでは消石灰Ca(OH)z)表面に吸
着していた水が完全に蒸発するため、脱硫率が低下する
と考えられる6同様に、加湿器10内で加湿した捕集粒
子を再び噴霧供給する場合も噴霧供給する場所のガス温
度が100℃以上であることが好ましい。
It is presumed that when the drying temperature is low, the water of crystallization in the reaction products (calcium sulfite and calcium sulfate in this case) is not removed, and the shell of the reaction products is not sufficiently destroyed due to volume change. If the drying temperature is too high, the water adsorbed on the surface of the unreacted desulfurizing agent particles (here, slaked lime Ca(OH)z) will completely evaporate, which is thought to reduce the desulfurization rate6. Even when the collected particles humidified in the chamber 10 are sprayed and supplied again, it is preferable that the gas temperature at the place where the spray is supplied is 100° C. or higher.

実施例5 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。ただし、硫黄含有量の異なる5炭種を使用した
。それぞれの石炭に関して、硫黄含有量並びにボイラ出
口1および集塵装置5出口におけるガス中のSO2濃度
並びに集塵装置より排気された反応済脱硫剤(亜硫酸カ
ルシウムおよび硫酸カルシウム)のうち、[酸カルシウ
ムの割合(以下、酸化率と言う)を第1表に示す、高い
脱硫率および酸化率が得られた。
Example 5 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, five types of coal with different sulfur contents were used. For each coal, the sulfur content and the SO2 concentration in the gas at the boiler outlet 1 and the dust collector 5 outlet, and among the reacted desulfurization agents (calcium sulfite and calcium sulfate) exhausted from the dust collector, High desulfurization and oxidation rates were obtained, the ratios (hereinafter referred to as oxidation rates) shown in Table 1.

実施例6 実施例1と同一の装置を用いて、同一条件で脱硫率を測
定した。ただし、脱硫剤としてCab。
Example 6 Using the same apparatus as in Example 1, the desulfurization rate was measured under the same conditions. However, Cab is used as a desulfurization agent.

Ca CO3、NaOHおよびM g (OH)2を用
い、それぞれの脱硫性能を調べた。その結果を第2表に
示す。
The desulfurization performance of each of CaCO3, NaOH and Mg(OH)2 was investigated. The results are shown in Table 2.

第2表 比較例1 第5図に示した従来技術に基づく装置を用いて、A炭か
らF炭までの6種類の石炭について実施例1および実施
例6と同じ条件で脱硫率および酸化率を測定した。ただ
し、水は排ガスの3重量%を煙道4中に噴霧して添加し
た。その結果を第3表に示す0本発明法による脱硫方法
に比較して脱硫率および酸化率が低くなっている。
Table 2 Comparative Example 1 Using the equipment based on the conventional technology shown in Figure 5, the desulfurization rate and oxidation rate were measured for six types of coal from A coal to F coal under the same conditions as Example 1 and Example 6. It was measured. However, water was added by spraying 3% by weight of the exhaust gas into the flue 4. The results are shown in Table 3. Compared to the desulfurization method according to the present invention, the desulfurization rate and oxidation rate are lower.

第3表 比較例2 第5図に示した従来技術に基づく装置を用いて、実施例
6と同様にしてCa O、Ca CO)、NaOHおよ
びM g (OH) 2を脱硫剤として用い、それぞれ
の脱硫性能を調べた。その結果を第4表に示す0本発明
法による脱硫装置に比較して脱硫率が低く(集塵装置出
口S O2が高く)なっている。
Table 3 Comparative Example 2 Using the apparatus based on the conventional technology shown in FIG. The desulfurization performance of The results are shown in Table 4. 0 The desulfurization rate is lower (the dust collector outlet SO2 is higher) than the desulfurization device according to the method of the present invention.

第4表 以上のように、第1図に示した装置では集塵装置5で捕
集粒子を加湿した後、再び加熱および加湿している。ま
た、一部反応した脱硫剤Aの粒子に対し100℃以下で
の加湿と100℃以上での加熱とを繰り返すことにより
反応生成物の殻を破壊し、SO2等の酸性有害物質との
接触を良くすることにより、より高い脱硫率が得られ、
反応済みの脱[躬の酸化が促進される。第1図に示した
実施例と同じ効果は、次の第4図に示すように脱硫塔3
の構造を変えることによっても得られる。
As shown in Table 4 and above, in the apparatus shown in FIG. 1, after the collected particles are humidified by the dust collector 5, they are heated and humidified again. In addition, by repeatedly humidifying the partially reacted desulfurizing agent A particles at temperatures below 100°C and heating them at temperatures above 100°C, the shell of the reaction product is destroyed and contact with acidic harmful substances such as SO2 is prevented. By improving the desulfurization rate, a higher desulfurization rate can be obtained.
The oxidation of the reacted decomposition is promoted. The same effect as the embodiment shown in FIG. 1 can be obtained from the desulfurization tower 3 as shown in the following FIG.
It can also be obtained by changing the structure of

第4図(a)、(b)に、排ガスDの一部をエアヒータ
2の前流側からバイパスさせて脱硫塔3に供給し、エア
ヒータ2を経由して温度の下がった排ガスにより一度下
げた脱硫塔3内部の温度を、再び上げる構造にした場合
の実施例のフローシートおよび脱硫塔3の構造を示す、
第4図(b)に示すように脱硫塔3内部は垂直な壁によ
ってガスの流れが蛇行する構造となっている。第4図(
a>に示すように脱硫剤Aは脱硫塔3または煙道4内部
に供給され、排ガスDの一部はライン12を通って脱硫
塔3の後部に供給され、ライン6からの水Bの噴霧によ
って低下したガス温度を再び高める。
In Fig. 4 (a) and (b), a part of the exhaust gas D is bypassed from the upstream side of the air heater 2 and supplied to the desulfurization tower 3, and the temperature is lowered once by the exhaust gas whose temperature has decreased via the air heater 2. The flow sheet of the example and the structure of the desulfurization tower 3 are shown in the case where the temperature inside the desulfurization tower 3 is raised again.
As shown in FIG. 4(b), the inside of the desulfurization tower 3 has a structure in which the gas flow meanderes due to vertical walls. Figure 4 (
a>, desulfurization agent A is supplied into the desulfurization tower 3 or flue 4, a part of the exhaust gas D is supplied to the rear part of the desulfurization tower 3 through line 12, and water B is sprayed from line 6. The gas temperature, which has been lowered by this, is raised again.

集塵装置5で捕集された粒子にライン7より水Bが添加
され、捕集粒子の一部は煙道4または脱硫塔3に再び供
給される。
Water B is added to the particles collected by the dust collector 5 through a line 7, and a portion of the collected particles are supplied again to the flue 4 or the desulfurization tower 3.

[発明の効果] 本発明によれば、集塵装置で捕集された未反応の脱硫剤
粒子表面に形成された反応生成物の殻を破壊除去できる
ため、高い脱硫率が得られる。また、反応済みの脱硫剤
の酸化を促進させるため、その廃棄が容易になる。
[Effects of the Invention] According to the present invention, a high desulfurization rate can be obtained because shells of reaction products formed on the surfaces of unreacted desulfurization agent particles collected by a dust collector can be destroyed and removed. Furthermore, since the oxidation of the desulfurizing agent that has already reacted is promoted, its disposal becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における脱硫装置のフローシー
ト、第2図は加湿温度と脱硫率の関係図、第3図は乾燥
温度と脱硫率の関係を示した実験データを示す図、第4
図(a)、(b)は本発明の他の実施例における脱硫装
置のフローシートおよび脱硫塔の構造図、第5図は従来
技術のフローシートである。 1・・・ボイラ、3・・・脱硫塔、4・・煙道、5・・
・集塵装置、8・・・加熱装置、10・・加湿装置、A
・・・脱硫剤、B・・・水または水蒸気、C・・空気、
D・・・排ガス 出願人 バブコック日立株式会社 代理人 弁理士 松永孝義 はか1名 第 図 第 図 1二L 第 図 温度(”O) 第 図 第 図
Figure 1 is a flow sheet of a desulfurization apparatus in an example of the present invention, Figure 2 is a diagram showing the relationship between humidification temperature and desulfurization rate, Figure 3 is a diagram showing experimental data showing the relationship between drying temperature and desulfurization rate, and Figure 3 is a diagram showing experimental data showing the relationship between drying temperature and desulfurization rate. 4
Figures (a) and (b) are a flow sheet of a desulfurization apparatus and a structural diagram of a desulfurization tower in another embodiment of the present invention, and FIG. 5 is a flow sheet of a conventional technique. 1... Boiler, 3... Desulfurization tower, 4... Flue, 5...
・Dust collector, 8... Heating device, 10... Humidifying device, A
...Desulfurizing agent, B...Water or steam, C...Air,
D...Exhaust gas applicant Babcock Hitachi Co., Ltd. Agent Patent attorney Takayoshi Matsunaga

Claims (6)

【特許請求の範囲】[Claims] (1)アルカリ金属またはアルカリ土類金属化合物のう
ち、少なくとも一種類以上の化合物を脱硫剤として用い
て燃焼装置から排出される排ガス中に添加して、排ガス
中の硫黄酸化物を除去する脱硫塔を用いる排煙脱硫方法
において、 未反応の脱硫剤を含む排ガス中の硫黄酸化物と反応した
脱硫剤に100℃以下で水または水蒸気を添加する工程
と、100℃以上で水または水蒸気を添加された脱硫剤
を乾燥する工程を有することを特徴とする排煙脱硫方法
(1) A desulfurization tower that removes sulfur oxides from the exhaust gas by adding at least one type of alkali metal or alkaline earth metal compound as a desulfurization agent to the exhaust gas discharged from the combustion equipment. In the flue gas desulfurization method using a method, there are two steps: adding water or steam to the desulfurizing agent that has reacted with sulfur oxides in the flue gas containing unreacted desulfurizing agent at a temperature below 100°C, and adding water or steam at a temperature above 100°C. A flue gas desulfurization method comprising the step of drying a desulfurization agent.
(2)未反応の脱硫剤を含む排ガス中の硫黄酸化物と反
応した脱硫剤に100℃以下で水または水蒸気を添加す
る工程および100℃以上で水または水蒸気を添加され
た脱硫剤を乾燥する工程を二度以上繰り返すことを特徴
とする請求項1記載の排煙脱硫方法。
(2) Adding water or steam at 100°C or lower to the desulfurizing agent that has reacted with sulfur oxide in exhaust gas containing unreacted desulfurizing agent, and drying the desulfurizing agent to which water or steam has been added at 100°C or higher. The flue gas desulfurization method according to claim 1, characterized in that the step is repeated twice or more.
(3)100℃以上で水または水蒸気を添加された脱硫
剤を乾燥する工程として燃焼装置から直接回収された灰
を脱硫剤に混合することにより乾燥することを特徴とす
る請求項1または2記載の排煙脱硫方法。
(3) The step of drying the desulfurizing agent to which water or steam has been added at a temperature of 100° C. or higher includes drying the desulfurizing agent by mixing ash directly recovered from the combustion device with the desulfurizing agent. flue gas desulfurization method.
(4)未反応の脱硫剤が脱硫塔の後流側に配置される集
塵装置から回収された脱硫剤であり、100℃以下でこ
れに水または水蒸気を添加された脱硫剤を排ガス温度が
100℃以上である燃焼装置と脱硫塔との間の煙道また
は脱硫塔内に噴霧供給するこを特徴とする請求項1、2
または3記載の排煙脱硫方法。
(4) Unreacted desulfurization agent is the desulfurization agent recovered from the dust collector placed downstream of the desulfurization tower, and water or steam is added to the desulfurization agent at a temperature below 100°C until the exhaust gas temperature reaches Claims 1 and 2, characterized in that the mixture is sprayed into a flue between the combustion device and the desulfurization tower or into the desulfurization tower at a temperature of 100°C or higher.
Or the flue gas desulfurization method described in 3.
(5)集塵装置内で回収される未反応脱硫剤に水または
水蒸気を添加し、集塵装置内で排ガス温度が100℃以
上の燃焼装置と脱硫塔との間の煙道または脱硫塔内に噴
霧供給することを特徴とする請求項1、2または3記載
の排煙脱硫方法。
(5) Water or steam is added to the unreacted desulfurization agent recovered in the dust collector, and inside the flue between the combustion device and the desulfurization tower where the exhaust gas temperature is 100°C or higher or inside the desulfurization tower. The flue gas desulfurization method according to claim 1, 2 or 3, characterized in that the flue gas desulfurization is supplied by spraying.
(6)集塵装置から回収され100℃以下で水または水
蒸気が添加された未反応の脱硫剤を脱硫塔に供給して、
該未反応脱硫剤を燃焼装置から熱交換処理工程を経由せ
ずに直接脱硫塔に供給される排ガスの一部で乾燥するこ
とを特徴とする請求項1記載の排煙脱硫方法。
(6) Supplying the unreacted desulfurization agent collected from the dust collector and added with water or steam at 100°C or less to the desulfurization tower,
2. The flue gas desulfurization method according to claim 1, wherein the unreacted desulfurization agent is dried with a portion of the flue gas that is directly supplied from the combustion device to the desulfurization tower without going through a heat exchange treatment step.
JP2264543A 1990-10-02 1990-10-02 Exhaust gas desulfurizing method Pending JPH04141215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2264543A JPH04141215A (en) 1990-10-02 1990-10-02 Exhaust gas desulfurizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2264543A JPH04141215A (en) 1990-10-02 1990-10-02 Exhaust gas desulfurizing method

Publications (1)

Publication Number Publication Date
JPH04141215A true JPH04141215A (en) 1992-05-14

Family

ID=17404732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2264543A Pending JPH04141215A (en) 1990-10-02 1990-10-02 Exhaust gas desulfurizing method

Country Status (1)

Country Link
JP (1) JPH04141215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103127794A (en) * 2011-12-02 2013-06-05 洛阳希诺能源科技有限公司 Desulfuration and dust removing technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103127794A (en) * 2011-12-02 2013-06-05 洛阳希诺能源科技有限公司 Desulfuration and dust removing technology

Similar Documents

Publication Publication Date Title
US4604269A (en) Flue gas desulfurization process
KR920003768B1 (en) Method and system for purifying exhaust gas
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
US5817283A (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JPS6136969B2 (en)
HUT51504A (en) Method for removing sulfur dioxide from hot gas fumes
JPS6363248B2 (en)
US5034204A (en) Flue gas desulfurization process
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
JPH04141215A (en) Exhaust gas desulfurizing method
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JP3256717B2 (en) Semi-dry and dry desulfurization equipment
JPS61157328A (en) Purification of exhaust gas by dry dolomite method
JP3358904B2 (en) Exhaust gas treatment method
JPH0549853A (en) Method for stack gas desulfurization method and device therefor
JPH04110017A (en) Stack gas desulfurization method
JP2000015057A (en) Treatment method and apparatus for incinerator exhaust gas
JPH04141216A (en) Wet exhaust gas desulfurizing method
JP4507404B2 (en) Boiler flue gas treatment system
JPH04135618A (en) Method for desulfurizing stack gas
JPH0780244A (en) Treatment of exhaust gas
JP4120725B2 (en) Boiler flue gas treatment method and apparatus
JPH01270926A (en) Flue gas desulfurizer by dry process using fly ash containing lime at high concentration
JPH08323152A (en) Waste gas treatment
JPH04145925A (en) Waste gas treating device