JPS58193510A - Mechanism of sun restraint device - Google Patents

Mechanism of sun restraint device

Info

Publication number
JPS58193510A
JPS58193510A JP57076800A JP7680082A JPS58193510A JP S58193510 A JPS58193510 A JP S58193510A JP 57076800 A JP57076800 A JP 57076800A JP 7680082 A JP7680082 A JP 7680082A JP S58193510 A JPS58193510 A JP S58193510A
Authority
JP
Japan
Prior art keywords
sun
solar
altitude
sunlight
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57076800A
Other languages
Japanese (ja)
Inventor
Masatoshi Takenouchi
竹之内 正寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57076800A priority Critical patent/JPS58193510A/en
Publication of JPS58193510A publication Critical patent/JPS58193510A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To utilize solar energy while following up the momentarily varying altitude and direction of the sun and fixing the sun at a specific stationary point optically by using a sun altitude tracking mechanism equipped with solar batteries on the surface of a photodetecting plate which rotates around a horizontal axis in combination with a sun direction tracking mechanism. CONSTITUTION:The sun leaving the horizon increases in altitude and when its light becomes incident to the surface of the solar battery 8, a motor 5 rotates by its electromotive force to transmit its rotation through a gear 4 to a semicircular gear 3, rotating the photodetecting plate 2. When the sun starts decreasing in altitude from its highest point, the light is incident to the surface of a solar battery 9 and a motor 6 is therefore driven to rotate the photodetecting plate 2 in the opposite direction to the direction in the forenoon. A bearing stand 11 for those sun altitude tracking mechanisms is used in combination with the sun direction tracking mechanism having two solar batteries 20 and 21 and the photodetecting plate 2 is held at right angles to the sun light all the time.

Description

【発明の詳細な説明】 本発明は、時々刻々に変化する太陽の高度、方位を追跡
して一定の位置に太陽を光学的に静止固定させる装置機
構に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device mechanism for tracking the ever-changing altitude and azimuth of the sun and optically fixing the sun at a fixed position.

従来、太陽のエネルギーはその前がぼう犬であるにも拘
らず、太陽が常に移動して一瞬たりとも静止することが
ない等、いろいろな制約があって利用技術面に問題が少
くない。
Conventionally, the sun's energy has been subject to various limitations, such as the fact that the sun is always moving and never stands still, even though the sun's energy is a sluggish dog, and there are many problems in terms of its utilization technology.

本発明は、この太陽が絶えず移動し、地上の物体と太陽
光との光学的角度関係が一定しないことに起因する不都
合を取除き、太陽エネルギー利用面で新分野を開拓する
ため、太陽の高度及び方位の変化を太陽電池で検出追跡
し、光学的に静止した太陽を現出する恵めの装置機構を
提供するものである。
The present invention aims to eliminate the inconvenience caused by the constant movement of the sun and the uneven optical angular relationship between objects on the ground and the sunlight, and to develop new fields of solar energy utilization. It provides an advantageous device mechanism that detects and tracks changes in direction and orientation using solar cells and reveals an optically stationary sun.

図について太陽高度追跡機構から説明する。第1図は本
発明の詳細な説明した正面図。第2図は同要部平面図。
The figure will be explained starting with the solar altitude tracking mechanism. FIG. 1 is a front view illustrating the invention in detail. Figure 2 is a plan view of the main parts.

第8図は同じく要部側面図を示す。lは円筒状回転軸で
、受光板2の回転軸をなす。8は半円形の歯車で2の裏
側に固定され、4の歯車とかみ合い2を回転させる。4
を作動させるのが5のモーターで、之は太陽電池8の起
電力によって制御され、8′の増幅回路、29のリレー
回路を経て作動する。検出機能を太陽電池によって行な
うため本発明では、太陽電池表面が火源としては使用せ
ず太陽の装置が変化し追跡の必要が生じた時のみ起電力
を利用するもので本装置の特長の一つである。今、地平
線をはなれた太陽が高度を増して太陽電池8の表面に光
が差し込むと、8には僅かに起電力が発生する。8の起
電力は8′の増幅回路を経て29のリレー回路を作動さ
せ5のモーターを回転させる。5の回転数は7の減速装
置で所定を減速され歯車4に伝達される。手は8と歯車
のかみ合いにより受光板2を回転させる。そして受光板
2と太陽光とが垂直となり、8の表面に差し込む光がな
くなり発電力がゼロとなるまで上昇方向の回転が続き、
太陽高度を追跡する。高度が正午最高点に達し下降に転
すると、光は太陽電池9の表面に差し込む。9に発生し
た起電力は9′で増幅され80のリレー回路に作動しモ
ーター6を回転させる。6の回転数は7で減速され4の
歯車に伝達され8を動かし受光板2を前と逆方向に回転
させる。
FIG. 8 similarly shows a side view of the main part. 1 is a cylindrical rotation axis, which serves as the rotation axis of the light receiving plate 2. 8 is a semicircular gear fixed to the back side of 2, meshing with gear 4 to rotate 2. 4
is operated by a motor 5, which is controlled by the electromotive force of a solar cell 8, and operates via an amplifier circuit 8' and a relay circuit 29. Since the detection function is performed by a solar cell, the present invention does not use the surface of the solar cell as a fire source, but uses electromotive force only when the solar device changes and tracking becomes necessary, which is one of the features of this device. It is one. When the sun, which has now left the horizon, increases in altitude and shines onto the surface of the solar cell 8, a slight electromotive force is generated in the solar cell 8. The electromotive force 8 passes through the amplifier circuit 8', activates the relay circuit 29, and rotates the motor 5. The number of revolutions 5 is reduced by a predetermined speed by a reduction gear 7 and transmitted to the gear 4. The hand rotates the light-receiving plate 2 by engaging the gear 8. Then, the light receiving plate 2 and the sunlight become perpendicular, and the rotation continues in the upward direction until no light enters the surface of the plate 8 and the power generation becomes zero.
Track solar altitude. When the altitude reaches its highest point at noon and begins to descend, light shines onto the surface of the solar cell 9. The electromotive force generated at 9 is amplified at 9' and operates on a relay circuit 80 to rotate the motor 6. The rotational speed of 6 is decelerated by 7 and transmitted to gear 4, which moves 8 and rotates the light receiving plate 2 in the opposite direction.

(モーター6と5は7を挾んで向い合う様に装着される
。この場合回転軸を固定し共通軸とすることにより7の
回転方向を逆にすることが出来る。)即ち5け午前の上
昇太陽を、6は午后の下降太陽を追跡することになる。
(Motors 6 and 5 are mounted so as to face each other with 7 in between. In this case, by fixing the rotating shaft and making it a common shaft, the direction of rotation of 7 can be reversed.) In other words, the 5th motor is raised in the morning. 6 will track the sun as it descends in the afternoon.

次に水平方向太陽方位の追跡機構を説明する。Next, a mechanism for tracking the horizontal solar direction will be explained.

太陽は地球上乗から西に向って常に移動している。The sun is always moving westward from the Earth's surface.

今回転軸lと太陽光とが垂直即ち太陽電池2oの表面に
九があたらないとする。つぎにその状態が変化して、太
陽が移動し20の表面に光が差し込むと起電力が発生す
る。この起電力は2領の増幅回路、31のリレー回路を
経てモーター16を作動させる。16の回転力は18の
減速装置で減速されピニオン14を低速回転させ、■4
とかみ合う円形ラック18に沿ってゆっくり移動し20
の起電力がゼロ即ち回転軸lと太陽光とが垂直となるま
で継続する。この動作は太陽光がある限り日の出から日
没まで繰返えされるが曇天、夜間は静止り動作しない。
Assume now that the axis of rotation l and sunlight are perpendicular, that is, nine does not hit the surface of the solar cell 2o. Next, when the state changes and the sun moves and light shines on the surface of 20, an electromotive force is generated. This electromotive force operates the motor 16 through a second amplifier circuit and a relay circuit 31. The rotational force of 16 is decelerated by the reduction gear of 18, causing the pinion 14 to rotate at a low speed, and
slowly move along the interlocking circular racks 18 20
This continues until the electromotive force becomes zero, that is, the axis of rotation l and the sunlight become perpendicular. This operation is repeated from sunrise to sunset as long as there is sunlight, but on cloudy days or at night it stands still and does not operate.

32け太陽電池で受光板2の上部に、電池面を裏側に向
けて装着される。日没まで太陽を追跡した本装置が朝陽
を捕えるのけこの太陽電池で、1゛   その起電力は
21’、88を経て17モーターを回転させ本装置を東
に回転させ、朝陽と受光板2が垂直となるまで継続する
。この場合17を回転させる起電力は途中で83から2
1に引継がれるため第4図電気回路に示す如く両太陽電
池32と21は並列に接続される。
Thirty-two solar cells are mounted on the upper part of the light receiving plate 2 with the battery side facing back. This device, which tracked the sun until sunset, captures the morning sun with the help of the solar cells.1゛ The electromotive force rotates motor 17 through 21' and 88, rotating this device eastward, and the morning sun and light receiving plate 2. Continue until it becomes vertical. In this case, the electromotive force to rotate 17 changes from 83 to 2
1, both solar cells 32 and 21 are connected in parallel as shown in the electrical circuit of FIG.

次に太陽光誘導路について述べる。Next, let's talk about the solar taxiway.

上述の太陽高度、方位両追跡機構によって受光板2は常
時太陽光と垂直を保つことになる。即ち察22から入射
した太陽光は、円筒内2と45度をなす如く装着された
平面鑓28で反射屈折され回転軸方向に進む。
The light receiving plate 2 is always kept perpendicular to the sunlight by the above-mentioned solar altitude and azimuth tracking mechanisms. That is, the sunlight incident from the sensor 22 is reflected and refracted by the plane lug 28 mounted at an angle of 45 degrees with the inside of the cylinder 2, and travels in the direction of the rotation axis.

平面鏡25はこの反射光の進行方向即ち回転軸の延長線
上、24の軸受とは空間的すきまを隔て\装着される。
The plane mirror 25 is mounted in the traveling direction of this reflected light, that is, on the extension of the rotation axis, with a spatial gap separated from the bearing 24.

すきまを設けることで、受光板2の追跡運動を妨げるこ
となく、28で屈折された太陽光は25に入射する。又
、25は2と同一の軸受台ll上に設置された平面鏡で
あるため太陽の方位が変り、軸受台11が回転しても2
Bで屈折され回転軸lの方向に進んだ太陽光は常に25
に入射することになる。25で垂直下方に屈折した光は
、25の垂直下方軸受台11の底板に装着した平面鏡2
6で再び屈折されて軸受台11の回転軸中心部に向けら
れる。この屈折太陽光は、回転@12の中心線上円筒内
に装着された27千而銹で更に屈折反射されて円筒的垂
直下方に誘導される。即ち太陽の位置が変化しても常に
一定位置、水平回転軸円筒中心に太陽像を見ることが出
来る。28は導光管で同一寸法の平面鏡25.26.2
’lを装着固定すると共に、光学的自由空間、即ち光の
進行に障害となる物質の侵入を防止するためである。従
って平面鏡固定部分を除き省略することが出来る。84
はピニオンで18の円形ラックとかみ合い軸受台11の
全重量をピニオン14.15と共に分担する。又24は
円筒軸受部で支柱IOに支えられボールベアリング等に
より回転機構を円滑化している。
By providing a gap, sunlight refracted at 28 enters 25 without interfering with the tracking movement of light receiving plate 2. In addition, since 25 is a plane mirror installed on the same bearing stand ll as 2, even if the direction of the sun changes and the bearing stand 11 rotates, 2
The sunlight refracted at B and traveling in the direction of the rotation axis l is always 25
It will be incident on . The light refracted vertically downward at 25 is reflected by a plane mirror 2 attached to the bottom plate of the vertically lower bearing stand 11 at 25.
6, it is refracted again and directed toward the center of the rotating shaft of the bearing stand 11. This refracted sunlight is further refracted and reflected by a 27-meter lens mounted inside the cylinder on the center line of the rotation @12, and is guided vertically downward in the cylinder. In other words, even if the position of the sun changes, the sun image can always be seen at a constant position, at the center of the horizontal rotation axis cylinder. 28 is a light guide and a plane mirror of the same size 25.26.2
This is to attach and fix the optical free space, that is, to prevent substances that may obstruct the propagation of light from entering. Therefore, the plane mirror fixing part can be omitted except for the part that fixes the plane mirror. 84
The pinion 14.15 shares the entire weight of the 18 circular racks and the mesh bearing pedestal 11 with the pinion 14.15. Further, reference numeral 24 is a cylindrical bearing part supported by the pillar IO, and uses a ball bearing or the like to smooth the rotation mechanism.

以上の如き構成となっているので本発明の装置機構によ
って容易に、太陽の動きを光学的に固定し、日の出から
日没まで終日、太陽を静止させることが出来る。。
With the above configuration, the movement of the sun can be easily optically fixed by the device mechanism of the present invention, and the sun can be kept stationary throughout the day from sunrise to sunset. .

説明図は円筒回転軸として約80糎程度の断面半径を想
定して画いたが、必要に応じてその大きさは自由に選ぶ
ことができる。太陽が静止することでそのぼり大な光量
とカロリーを、数個の平面鏡の反射屈折で建物内部、地
下室等に導入することが容易となる。又複数個の本装置
を使い、太陽光を1個所に重ね合せることで太陽エネル
ギーの高効率利用が可能となる叫その効果は大きい。
Although the explanatory diagram was drawn assuming a cross-sectional radius of about 80 mm as the cylindrical rotation axis, the size can be freely selected as necessary. When the sun stands still, it becomes easy to introduce a large amount of light and calories into buildings, basements, etc. by catadioptric refraction of several plane mirrors. In addition, by using multiple devices and superimposing the sunlight in one place, it is possible to use solar energy with high efficiency, which has a great effect.

4、蘭学な図面の説明 第1図は要部説明の正面図。第2図は同じく要部平面図
、第3図は同じく要部側面図を示す。第4図に電気回路
図を示す。
4. Explanation of Dutch drawings Figure 1 is a front view explaining the main parts. FIG. 2 is a plan view of the main part, and FIG. 3 is a side view of the main part. Figure 4 shows an electrical circuit diagram.

1.12、円筒回転軸 2、受光板 8、半円形歯車 
4、小歯車 5.6.16及び17、モーター7.18
及び19、減速装置 8.9.20.21及び82、太
陽電池 8’、9’、20’及び21’、増幅回路lO
1軸受支柱 11.軸受台 18、円形ラック14.1
5及び84ピニオン 22、太陽光取り入れ窓 28.
25.26及び27平面鏡 24、円筒軸軸受 28、
導光管 29.80.31及び88、リレー回路 85
、商用交流電流 片1国         ヤj!iffヤス 鑞 労 4− 面
1.12, Cylindrical rotating shaft 2, Light receiving plate 8, Semicircular gear
4. Small gear 5.6.16 and 17. Motor 7.18
and 19, reduction gear 8.9.20.21 and 82, solar cells 8', 9', 20' and 21', amplifier circuit IO
1 Bearing strut 11. Bearing stand 18, circular rack 14.1
5 and 84 pinions 22, sunlight intake window 28.
25.26 and 27 plane mirror 24, cylindrical shaft bearing 28,
Light guide tube 29.80.31 and 88, relay circuit 85
, Commercial AC current piece 1 country Yaj! iff yasu 4-side

Claims (1)

【特許請求の範囲】 α)水平に取付けた円筒状の回転軸lを軸とし垂直作動
させるモーター5及び6、減速装置7及び5.6のモー
ターを制御する2ケの太陽高度検出器(太陽電池8.9
)を受光板20表面に装着した太陽高度追跡機構と、回
転軸lを支持する軸受支柱10を支える軸受台底板11
の円筒回転軸12(回転軸lと同一半径の円筒とする)
と、12の中心を中心とする円形のラック18とビニオ
ン14及び15、そのビニオンを作動させるモーター1
6及び17、減速装置18.19、及び16.17のモ
ーターを制御する2ケの太陽方位検出器(太陽電池20
.21)を軸受台上部に装着した太陽方位追跡機構の二
つから成る太陽追跡機構を持つことを特長とした太陽光
を誘導して一定の位置に太陽を静止固定する太陽静止装
置機構。 (幻 該回転軸lの円筒の一部に設けた窓22の内部に
装着した平面鏡28と1の軸延長上すきまを介して装着
した平面鏡2.5.25の垂直下方軸受台底板11に装
着固定した平面1i26及び軸受台の回転軸12の円筒
内に装着した平面鏡27と2.5.26及びz7を支持
し且つ太陽光の通路を構成する導光管28から成る太陽
光誘導路によって、太陽光を誘導して一定の位置に太陽
を特徴とする特許請求の範囲第1項記載の太陽静止装置
機構。
[Claims] α) Two solar altitude detectors (sun Battery 8.9
) mounted on the surface of the light receiving plate 20, and a bearing stand bottom plate 11 that supports the bearing column 10 that supports the rotation axis l.
cylindrical rotation axis 12 (supposed to be a cylinder with the same radius as the rotation axis l)
, a circular rack 18 centered at the center of 12, binions 14 and 15, and a motor 1 for operating the binions.
6 and 17, speed reducer 18.19, and 2 solar direction detectors (solar cell 20) that control the motors of 16.17.
.. 21) A solar stationary device mechanism that guides sunlight and statically fixes the sun at a certain position, characterized by having a sun tracking mechanism consisting of two solar azimuth tracking mechanisms mounted on the upper part of a bearing stand. (Illusion) The plane mirror 28 is attached to the inside of the window 22 provided in a part of the cylinder of the rotation axis l, and the plane mirror 2.5.25 is attached to the bottom plate 11 of the vertically lower bearing base through a gap on the axis extension of 1. By means of a fixed plane 1i26, a plane mirror 27 mounted in the cylinder of the rotating shaft 12 of the bearing stand, and a sunlight guide path consisting of a light guide tube 28 that supports 2, 5, 26 and z7 and constitutes a path for sunlight. A solar stationary device mechanism according to claim 1, characterized in that the sun is guided to a fixed position by guiding sunlight.
JP57076800A 1982-05-08 1982-05-08 Mechanism of sun restraint device Pending JPS58193510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57076800A JPS58193510A (en) 1982-05-08 1982-05-08 Mechanism of sun restraint device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57076800A JPS58193510A (en) 1982-05-08 1982-05-08 Mechanism of sun restraint device

Publications (1)

Publication Number Publication Date
JPS58193510A true JPS58193510A (en) 1983-11-11

Family

ID=13615715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57076800A Pending JPS58193510A (en) 1982-05-08 1982-05-08 Mechanism of sun restraint device

Country Status (1)

Country Link
JP (1) JPS58193510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397109U (en) * 1986-12-13 1988-06-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182222A (en) * 1936-11-23 1939-12-05 Stuart A Courtis Solar heater
JPS49129546A (en) * 1973-04-13 1974-12-11
JPS522454A (en) * 1975-06-24 1977-01-10 Nippon Buroa Kk Apparatus for following sun
JPS5226234A (en) * 1975-08-25 1977-02-26 Tadashi Naito Process for tracing the position of the solar longitude in a reflex mi rror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182222A (en) * 1936-11-23 1939-12-05 Stuart A Courtis Solar heater
JPS49129546A (en) * 1973-04-13 1974-12-11
JPS522454A (en) * 1975-06-24 1977-01-10 Nippon Buroa Kk Apparatus for following sun
JPS5226234A (en) * 1975-08-25 1977-02-26 Tadashi Naito Process for tracing the position of the solar longitude in a reflex mi rror

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397109U (en) * 1986-12-13 1988-06-23

Similar Documents

Publication Publication Date Title
US4102326A (en) Central receiver solar collector using mechanically linked mirrors
US4419981A (en) Sun tracking apparatus
US4649899A (en) Solar tracker
US4146784A (en) Sun tracking device
CN102374477B (en) Sunshine intelligent household-entry system
JPS5691151A (en) Sun tracking device of solar ray reflector mirror
US6465766B1 (en) Sunlight tracking sensor and its use in full-automatic solar tracking and collecting device
US20050041431A1 (en) Directed reflection light collecting device with planar reflectors
OA09165A (en) "Advanced solar collector".
US4572160A (en) Heliotropic solar heat collector system
RU2354896C1 (en) Photo power plant
CN115956338A (en) Single-axis tracking system for enhancing light intensity of component
US20160301357A1 (en) Solar tracker and solar energy collection system
KR20090105899A (en) A Sun tracker using two blind
USRE30960E (en) Central receiver solar collector using mechanically linked mirrors
JPH0731547B2 (en) Solar tracking device
JPS58193510A (en) Mechanism of sun restraint device
CN218633811U (en) Solar tracking device
FR2527748A1 (en) Servo controller for sun tracking solar panel support - uses photodetectors mounted in shade of vertical wall for position control using electric motor
US4467787A (en) Static solar tracking mechanism
JPH02122159A (en) Sunray-collecting device and sunray terminal projecting device
US20130333688A1 (en) Solar energy collection system
JPS5835505A (en) Mechanism for solar ray inductive device
CN109116873A (en) A kind of solar energy high-efficiency generation device
JPS59104615A (en) Photodetecting device of solar light photodetecting and transmitting device