JPS58193370A - Surface treatment and application thereof - Google Patents

Surface treatment and application thereof

Info

Publication number
JPS58193370A
JPS58193370A JP7459582A JP7459582A JPS58193370A JP S58193370 A JPS58193370 A JP S58193370A JP 7459582 A JP7459582 A JP 7459582A JP 7459582 A JP7459582 A JP 7459582A JP S58193370 A JPS58193370 A JP S58193370A
Authority
JP
Japan
Prior art keywords
low
gas
plasma
temperature plasma
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7459582A
Other languages
Japanese (ja)
Inventor
Takeshi Yasui
安井 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP7459582A priority Critical patent/JPS58193370A/en
Publication of JPS58193370A publication Critical patent/JPS58193370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly clarify and activate the surface of a workpiece to be treated, by applying low-temp. plasma to said surface. CONSTITUTION:Microwaves generated at a microwave power source 11 pass through a waveguide 12 to ionize H2 gas introduced through a gas-introducing opening 13 into the state 10 of low-temp. plasma. Said gas 10 under the condition of low-temp. plasma clarifies and activates the surface of a metal material 15 existent at the center of a treating vessel 14. The gas is then discharged through an exhaust opening 18. The low-temp. plasma may be formed by DC glow discharge. This method is esp. suitable for treating the surfaces of metal members in pressure-welding a plurality of metal members to manufacture a laminated article.

Description

【発明の詳細な説明】 (発明の技術分W) 本発明は低温プラズマによる表面処理に関する。[Detailed description of the invention] (Technical portion of invention W) The present invention relates to surface treatment using low temperature plasma.

(発明の技術的背景とその問題5点) 材料表面の清浄化及び活性化を同時に行なう処理には従
来、化学的処理、機械的処理。
(Technical background of the invention and its 5 problems) Conventionally, chemical treatment and mechanical treatment have been used to simultaneously clean and activate the surface of a material.

電気的処理及びそれらを組合せた処理が使用されていた
Electrical and combined treatments have been used.

例えば、化学的処理には塩酸、硫酸を用いた酸性処理や
水酸化ナトリウムを用いたアルカリ性処理かある。
For example, chemical treatments include acidic treatment using hydrochloric acid or sulfuric acid, and alkaline treatment using sodium hydroxide.

機械的処理に!虚21例えばエメリー研摩やブラッシン
グやバフ研摩なと、がある。
For mechanical processing! For example, there are emery polishing, brushing, and buffing.

電気的処理には電解研摩があ企、シかし、これらの方法
を単独あるいは組合せて用い7エも高度に清浄化及び活
性化された表面を得ることが困難であった。
Although electropolishing has been attempted as the electrical treatment, it has been difficult to obtain highly cleaned and activated surfaces using these methods alone or in combination.

(発明Φ目的) 本発明の目的は被処理体表面を比較的高度に清浄にし、
かつ活性にする方法を得ることであ゛る。
(Purpose of the invention Φ) The purpose of the present invention is to relatively highly clean the surface of the object to be treated,
The goal is to find a way to make it active.

(発明の概要) 本発明は被処理体表面に低温プラズマを作用し、この表
面を比較的高度ξこ清浄にし、かつ活性番こすることを
特徴とする表面処理方法である。
(Summary of the Invention) The present invention is a surface treatment method characterized by applying low-temperature plasma to the surface of an object to be treated, cleaning the surface to a relatively high degree, and scrubbing the surface with active scrubbing.

プラズマとはガスが電離して、正、負の荷電粒子が振動
しながら電気的中性になっている状態を言い、ガスの電
離が少なく温度が低いプラズマを低温プラズマと呼んで
いる。
Plasma is a state in which gas is ionized and the positively and negatively charged particles vibrate to become electrically neutral. Plasma with low gas ionization and low temperature is called low-temperature plasma.

本発明では、その低温プラズマ状態に電離しているガス
を材料の表面にぶつけあるいは付着させ、その表面の活
性度と清浄度を上げようとする方法である。
The present invention is a method in which gas ionized in a low-temperature plasma state is bombarded with or adhered to the surface of a material to increase the activity and cleanliness of the surface.

次に低温プラズマの清浄度、活性度に関する因子につい
て述べる。
Next, we will discuss factors related to the cleanliness and activity of low-temperature plasma.

材料表面の清浄化と活性化は低温プラズマを被処理体表
面にぶつける速度、低温プラズマの温度及び処理される
時間に依存する。低温プラズマを被処理体表面にぶつけ
る速度が速いほど、表面の清浄化と活性化が可能だが材
料を破壊しないようにするため、その上限を決めるとよ
い。
Cleaning and activation of the material surface depends on the speed at which the low-temperature plasma is applied to the surface of the object to be treated, the temperature of the low-temperature plasma, and the duration of the treatment. The higher the speed at which the low-temperature plasma is applied to the surface of the object to be treated, the more the surface can be cleaned and activated, but in order to avoid destroying the material, it is best to set an upper limit.

低温プラズマの温度が高いほど表面の清浄化と活性化が
可能だが材料を破壊しないようにするために、その上限
を決めるとよい。
The higher the temperature of the low-temperature plasma, the more the surface can be cleaned and activated, but it is best to set an upper limit to avoid destroying the material.

処理時間は長いほど表面の活性度、清浄度を上げやすい
が、これも長すぎては材料を破壊する可能性が高い。
The longer the treatment time, the easier it is to increase surface activity and cleanliness, but if the treatment time is too long, there is a high possibility that the material will be destroyed.

したがって低温プラズマを用いる場合、被処理体の材料
によって、プラズマが表面に衝突する速度、低温プラズ
マの温度及び処理される時間がそれぞれとのかね合いで
決められる。
Therefore, when using low-temperature plasma, the speed at which the plasma impinges on the surface, the temperature of the low-temperature plasma, and the processing time are determined depending on the material of the object to be treated.

次に低温プラズマ発生方法として種々の方法があるが、
それぞれの方法に対応した清浄度、活性度の因子を述べ
る。
Next, there are various methods for generating low-temperature plasma.
The cleanliness and activity factors for each method are described below.

例えば、マイクロ波を発生させ、このマイ   1′・
クロ波によりガスを電離させ低温プラズマを得る方法が
あり、このプラズマを被処理体の表面へ導くことによっ
て処理をする。この場合、低温プラズマが被処理体表面
に衝突する速度はガスの流量とガス圧力の増加によって
増し、その温度もガスの流量とガス圧の増加によって上
昇する。したがって、この場合、被処理体の材料により
ガスの流量と圧力と処理時間を決定し、その被処理体表
面の清浄度と活性度を決めるとよい。
For example, by generating microwaves,
There is a method of obtaining low-temperature plasma by ionizing gas using chroma waves, and processing is performed by guiding this plasma to the surface of the object to be processed. In this case, the speed at which the low-temperature plasma impinges on the surface of the object to be processed increases as the gas flow rate and gas pressure increase, and the temperature also increases as the gas flow rate and gas pressure increase. Therefore, in this case, it is preferable to determine the gas flow rate, pressure, and processing time depending on the material of the object to be processed, and determine the cleanliness and activity of the surface of the object to be processed.

他の例として、例えば、被処理体を電極とした直流グロ
ー放電でガスを電離させ、低温プラズマを得る方法があ
る。直流グロー放電では被処理体表面近傍の急激な電位
勾゛配によりイオンが加速されて被処理体表面に衝突す
る。このとき表面よ″す2次電子が飛び田七で放電を持
続する。イオンの衝突により表面が。
Another example is a method of obtaining low-temperature plasma by ionizing gas by direct current glow discharge using the object to be processed as an electrode. In DC glow discharge, ions are accelerated by a sharp potential gradient near the surface of the object to be processed and collide with the surface of the object to be processed. At this time, the secondary electrons on the surface continue to discharge at Tobita.The surface is damaged by the collision of ions.

スパッタ1されるので、同じ消費電力に対して前記のマ
イクロ波による方法より清浄化、活性化が実現されやす
い、この場合、低温プラズマが被処理体表面に衝突する
速度は主に電圧の増加によってまし、そのIiL[も1
゛に電圧の増加によって上昇する。したがって直流グロ
ー放電の場合、被処理体の材料により電圧と処理時間が
決定され、その表面の清浄度と活性度を決めるとよい。
Since sputtering is performed by sputtering, cleaning and activation can be achieved more easily than the above-mentioned microwave method for the same power consumption. Mashi, that IiL[Mo1
゛It rises with an increase in voltage. Therefore, in the case of DC glow discharge, the voltage and treatment time are determined by the material of the object to be treated, which preferably determines the cleanliness and activity of its surface.

従来複数の部材を圧着して、複層材をつくる場合、化学
的処理や機械的処理によって部材の表面が清浄にかつ活
性にされていた。しかし、それらの処理では十分でなく
、健全に圧着された複層材が得られない場合があった。
Conventionally, when multiple members are crimped together to create a multilayer material, the surfaces of the members are made clean and active by chemical or mechanical treatment. However, these treatments were not sufficient, and a properly crimped multilayer material could not be obtained in some cases.

したがって、特にこの場合、本発明は有効である。Therefore, the present invention is particularly effective in this case.

(発明の実施例) 実施例1 本発明の一実施例を図面を用いて説明する。(Example of the invention) Example 1 An embodiment of the present invention will be described with reference to the drawings.

第1図はマイクロ波によって低温プラズマを発生させ、
表面を処理する装置の断面図である。
Figure 1 shows low-temperature plasma generated by microwaves,
1 is a cross-sectional view of an apparatus for treating a surface.

マイク−波電諌11から発生したマイクロ波は導波管1
2を通り、ガス導入口13ふら装置内へ導入されたガス
を、電離させ低温プラズマ状總10にさせる。低温プラ
ズマ状妙のガス10は処理容器14の中央にある材料1
5の表面を清浄かつ活性にして、排気口18から排気さ
れる。この場合、材料15がロール16.17で走行さ
れながら処理をうけることによって短時間に低温プラズ
マ処理を完了する。
Microwaves generated from the microphone-wave transmission 11 are transferred to the waveguide 1.
The gas introduced into the device through the gas inlet 13 is ionized and turned into a low-temperature plasma 10. A low-temperature plasma-like gas 10 is placed in the material 1 in the center of the processing container 14.
5 is made clean and active, and then exhausted from the exhaust port 18. In this case, the material 15 is treated while being moved by the rolls 16 and 17, thereby completing the low temperature plasma treatment in a short time.

用いられたガスは水素で、圧力は2 Torrであった
。水素の送入速度は3Qce/分であり、発生させたマ
イクロ波の周波数は13.56MH2であり、材料の走
行速度は10 Ml / secであった。
The gas used was hydrogen and the pressure was 2 Torr. The hydrogen feed rate was 3 Qce/min, the frequency of the generated microwaves was 13.56 MH2, and the material running speed was 10 Ml/sec.

材料は@10CII、厚さ0.1 M 、長さ100筒
のニッケルが用いられ1以上の条件でニッケルを低温プ
ラズマ処理したところ、化、学的処理や機械的処理や電
気的処理より清浄で活性なニッケルの表面が得らnた。
The material used was @10CII, 0.1M thick, and 100 tubes long. When the nickel was subjected to low-temperature plasma treatment under 1 or more conditions, it was cleaner than chemical, chemical, mechanical, or electrical treatment. An active nickel surface was obtained.

さらにリボン状ニッケル材とリボン状ステンレス鋼材の
表面を同様に低温プラズマで処理をして、圧着したとこ
ろ非常に密着性の良好な複層材かえられた。同じ条件で
この複層材を50本作成したところ、すべて密着性が良
好な複層材が得られた。
Furthermore, when the surfaces of the ribbon-shaped nickel material and the ribbon-shaped stainless steel material were similarly treated with low-temperature plasma and crimped together, a multilayer material with very good adhesion was obtained. When 50 pieces of this multilayer material were created under the same conditions, all multilayer materials with good adhesion were obtained.

脱脂を行い、ブラッシングをする方法で得られた密着性
が良好な複層材は50本中種7本であった。したがって
本発明は、クラッド部材の清浄化に有効と思われる。
Seven out of 50 multilayer materials had good adhesion obtained by degreasing and brushing. Therefore, the present invention seems to be effective for cleaning cladding members.

実施例2 本発明の他の実施例を図を用いて説明する。Example 2 Other embodiments of the present invention will be described with reference to the drawings.

第2図は直流グロー放電によって低温プラズマを発生さ
せ、材料表面を処理する装置の断面図である。
FIG. 2 is a cross-sectional view of an apparatus that generates low-temperature plasma by DC glow discharge to treat the surface of a material.

ガスはガス導入口23から処理容器24内へ導入される
Gas is introduced into the processing container 24 from the gas inlet 23 .

処理容器24の内部上端にもうけられた電極29を正極
とし、処理容器24の内部中央にある処理材料を負極と
し、その間に電圧をかける。そのことによりガスはグロ
ー放電され低温プラズマ20を発生する。その処理ガス
イオン20は被処理体表面をスパッタすることによって
、清浄にかつ活性にする。
An electrode 29 provided at the upper end of the processing container 24 is used as a positive electrode, and a processing material located at the center of the processing container 24 is used as a negative electrode, and a voltage is applied between them. As a result, the gas is glow-discharged and a low-temperature plasma 20 is generated. The processing gas ions 20 sputter the surface of the object to be processed, thereby making it clean and active.

使用されたガスは、処理容器24の排気口28から排気
される。
The used gas is exhausted from the exhaust port 28 of the processing container 24.

被処理体25は、ロール25.27によって走行され、
電極27と走行材料25以外の処理容器24内部は絶縁
されている。
The object to be processed 25 is run by rolls 25.27,
The inside of the processing container 24 other than the electrode 27 and the traveling material 25 is insulated.

用いられたガスはアルゴンで、圧力は7.5X 10−
” Torrであり、3KVの直流電圧がかけられた。
The gas used was argon, and the pressure was 7.5X 10-
” Torr, and a DC voltage of 3KV was applied.

材料は幅10(m厚さo、im、長さ100mの A銅
が用いられ、材料の走行速度は10■/庭であった。
The material used was A copper with a width of 10 m (o, im) and a length of 100 m, and the running speed of the material was 10 m/yard.

以上の条件で銅を低温プラズマ処理したところ、化学的
処理や機械的処理や電気的処理番と比べて、より清浄で
活性な銅tDi!面が得ら、れた。
When copper was subjected to low-temperature plasma treatment under the above conditions, the copper tDi was cleaner and more active than chemical treatment, mechanical treatment, or electrical treatment. The face was obtained and lost.

(発明の効果) 本発明は被処理体表面に低温プラズマを作用し該表面を
清浄にかつ活性にすることを特徴とする表函処m沫であ
る。
(Effects of the Invention) The present invention is a surface treatment method characterized by applying low-temperature plasma to the surface of an object to be treated to make the surface clean and active.

低温プラズマが素面にII5!する速度、低温プラズマ
の温度及び処理される時間が被処理材料で選択され、そ
の最適条件で被処理体表面を比較的高度に清浄にしかつ
活性にする。
II5 with low-temperature plasma sober! The rate at which the plasma is applied, the temperature of the cold plasma, and the time during which it is treated are selected depending on the material to be treated, and the optimal conditions result in a relatively highly clean and active surface of the treated object.

複層材を製造する工程で各部材どうしを圧着する前に、
そのクラッド部を清浄にかつ活性にするニーがあるが、
その工程に本発明を用いることにより非常に密着性の良
い複層材ができる。
Before crimping each member together in the process of manufacturing multilayer materials,
There is a need to keep the cladding part clean and active.
By using the present invention in this process, a multilayer material with extremely good adhesion can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マイクロ波によって低温プラズマを発生させ
、材料表面を処理する装置であり、第2図は直流グロー
放電によって低温プラズマを発生させ、材料表面を処理
する装置である。 10.20・・・低温プラズマ 11−・・・・・マイクロ波電源 ’12・・ ・−・導波管 13.23  ガス導入口 14.24・・・処理容器 15.25・・被処理体 16.17.26.27・・ロール 18.28・・・排気口 29・・・ ・・電 極
FIG. 1 shows an apparatus that generates low-temperature plasma using microwaves to treat the surface of a material, and FIG. 2 shows an apparatus that generates low-temperature plasma using DC glow discharge to treat the surface of a material. 10.20...Low temperature plasma 11-...Microwave power source'12......Waveguide 13.23 Gas inlet 14.24...Processing container 15.25...Object to be processed 16.17.26.27... Roll 18.28... Exhaust port 29... Electrode

Claims (1)

【特許請求の範囲】 1、被処理体表面に低温プラズマを作用し腋表面を清浄
にかつ活性にする−9とを特徴とする表面処理方法。 2、 低温プラズマがマイクロ波によって発生する特許
請求の範囲第1項記載の表面処理方法。 3、低温プラズマが直流グロー放電によって発生する特
許請求の範囲第1項記載の表面処理方法。 4、被処理体が金属である特許請求の範囲第1項記載の
表面処理方法。 5、被処理体が複数の部材を圧着して複層材をつくるこ
とを目的とするものである特許請求の範囲第1項記載の
表面処理方法。
[Scope of Claims] 1. A surface treatment method characterized by: 1. Applying low-temperature plasma to the surface of the object to be treated to clean and activate the armpit surface.-9. 2. The surface treatment method according to claim 1, wherein the low-temperature plasma is generated by microwaves. 3. The surface treatment method according to claim 1, wherein the low-temperature plasma is generated by direct current glow discharge. 4. The surface treatment method according to claim 1, wherein the object to be treated is metal. 5. The surface treatment method according to claim 1, wherein the object to be treated is intended to create a multilayer material by press-bonding a plurality of members.
JP7459582A 1982-05-06 1982-05-06 Surface treatment and application thereof Pending JPS58193370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7459582A JPS58193370A (en) 1982-05-06 1982-05-06 Surface treatment and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7459582A JPS58193370A (en) 1982-05-06 1982-05-06 Surface treatment and application thereof

Publications (1)

Publication Number Publication Date
JPS58193370A true JPS58193370A (en) 1983-11-11

Family

ID=13551657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7459582A Pending JPS58193370A (en) 1982-05-06 1982-05-06 Surface treatment and application thereof

Country Status (1)

Country Link
JP (1) JPS58193370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616285A (en) * 1984-03-06 1986-01-11 ア−エスエム フイコ ツ−リング ベスロ−テン フエン ノ−トチヤツプ Method and device for purifying mold by reversal sputtering
US4791303A (en) * 1984-10-19 1988-12-13 Biflex Development Partners, Ltd. Methods and apparatus for laminating polymeric sheet material
KR20010044059A (en) * 2000-06-29 2001-06-05 박용석 Electron cyclotron resonance ashing apparatus for processing glass substrate or waper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616285A (en) * 1984-03-06 1986-01-11 ア−エスエム フイコ ツ−リング ベスロ−テン フエン ノ−トチヤツプ Method and device for purifying mold by reversal sputtering
US4791303A (en) * 1984-10-19 1988-12-13 Biflex Development Partners, Ltd. Methods and apparatus for laminating polymeric sheet material
KR20010044059A (en) * 2000-06-29 2001-06-05 박용석 Electron cyclotron resonance ashing apparatus for processing glass substrate or waper

Similar Documents

Publication Publication Date Title
JPS616285A (en) Method and device for purifying mold by reversal sputtering
JPS58223400A (en) Palting through hole device and method
JPS58193370A (en) Surface treatment and application thereof
JP2007530788A (en) Manufacturing method of semiconductor coated substrate
US2704883A (en) Method of welding carbon steel to stainless steel
JPH07180091A (en) Aluminum sheet, its production and deposition preventive cover using the sheet
JPS63176494A (en) Electrolytic conductive roll
JPH09302484A (en) Discharge cleaning device of magnetic neutron beam plasma type
JP2001250814A (en) Plasma treatment device
JPS63253628A (en) Plasma treatment apparatus
JPH0262959B2 (en)
JP3211391B2 (en) Dry etching method
KR20060057571A (en) Pvd component and coil refurbishing methods
US1795384A (en) Method of removing gases from metals
JP2004211161A (en) Plasma generating apparatus
JPH09148310A (en) Semiconductor device, its cleaning, and handling of wafer
JPH09260360A (en) Plasma treatment method and its equipment
JP2567970B2 (en) Electropolishing method for inner surface of long small diameter pipe
JP2609792B2 (en) Plasma processing equipment
JPH06132249A (en) Semiconductor manufacture device
CN107910245B (en) Method for reducing aluminum liner defects in semiconductor structure
JPH05131270A (en) Vacuum arc treating device
JPH09143676A (en) Continuous vacuum vapor deposition apparatus
JPH08107073A (en) Plasma treatment apparatus and its cleaning method
JPH06280061A (en) Magnetron type continuous treating method and device thereof