JPS58191934A - Method for measuring stationary sound under existence of background noise - Google Patents

Method for measuring stationary sound under existence of background noise

Info

Publication number
JPS58191934A
JPS58191934A JP7576582A JP7576582A JPS58191934A JP S58191934 A JPS58191934 A JP S58191934A JP 7576582 A JP7576582 A JP 7576582A JP 7576582 A JP7576582 A JP 7576582A JP S58191934 A JPS58191934 A JP S58191934A
Authority
JP
Japan
Prior art keywords
noise
level
sound
factory
noise level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7576582A
Other languages
Japanese (ja)
Inventor
Katsuyasu Horiuchi
堀内 克泰
Hisashi Kogo
向後 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7576582A priority Critical patent/JPS58191934A/en
Publication of JPS58191934A publication Critical patent/JPS58191934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • G01H3/14Measuring mean amplitude; Measuring mean power; Measuring time integral of power

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain the noise level of stationary sounds, by obtaining the energy difference of sounds between the level of a background noise and each state of a region having a lower noise level in the state where the background noise and stationary sounds are mixed. CONSTITUTION:The first measuring point P1 is provided in the place where the traffic noise of a road 10 and the factory noise of a factory 12 are mixed, and the noise level is measured; and the second measuring point P2 is provided near a residence section 14,where the factory noise can be ignored, separated sufficiently from the factory 12, and the noise level is measured. At the measuring point P2, there are no noise sources except the traffic noise. The level of the background noise measured at the measuring point P2 is subtracted from the noise level measured at the measuring point P1 to obtain accurately the noise level of stationary sounds generated from the factory 12.

Description

【発明の詳細な説明】 本発明は、騒音レベルが変動する暗騒音を排除すること
が困難な場所における定常音の騒音レベルを測定する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the noise level of stationary sound in a place where it is difficult to eliminate background noise where the noise level fluctuates.

着しい数音は、生活環境を破壊する寺の多くの整置を廟
するため、騒音規制法等によりも檀騒廿について基準値
が定められている。従って、特定の騒音源から生じてい
る騒音レベルを知ることは、m f ISh正対策上な
どにおいて重要なことである1しかし、一般には複数の
騒音源から発生した騒音が同時に存在し、特定の騒音源
から発生し7ている一汁のみを測定することは困難であ
る。そこで、特定の騒音源から生ずる騒音(以下対象音
と称す)の騒音レベルz df3は、測定点において騒
音測定器により測定し&騒音レベルをx df4とし、
測定点におけるlIt@音(対象音以外の音)の騒音レ
ベル2yd13としたとき、次式により推定される。
The Noise Control Law and other regulations set standard values for noise levels in order to prevent many temples from setting up loud noises that destroy the living environment. Therefore, it is important to know the noise level generated from a specific noise source for mf ISh countermeasures.1 However, in general, noise generated from multiple noise sources exists at the same time, and it is important to know the noise level generated from a specific noise source. It is difficult to measure just the amount of noise generated from the noise source. Therefore, the noise level z df3 of the noise generated from a specific noise source (hereinafter referred to as target sound) is measured by a noise measuring device at the measurement point & the noise level is x df4,
When the noise level of the lIt@ sound (sound other than the target sound) at the measurement point is 2yd13, it is estimated by the following equation.

五  y Z=10og(10I0−10  )  ・・・・・・
・・・・・・・・・・・・ (1)即ち、対象音と暗騒
音とが混在した状態における騒音レベルXを測定し、次
に対象音の発生を停d: i−C騒Mレベルyを測定し
、xX yから音のエネルギ差を求めて対象音の騒音レ
ベル2を(1)式より推定している1j しかし、llflmfの騒音レベルyが大きく変動する
場合には、定常音の騒音レベルが一定であってもyの変
動につれてXも変動するため、(1)式を適用して定常
音の騒音レベル2を推定することができない。
5yZ=10og(10I0-10) ・・・・・・
・・・・・・・・・・・・ (1) That is, measure the noise level X in a state where the target sound and background noise are mixed, and then stop the generation of the target sound. The noise level 2 of the target sound is estimated from equation (1) by measuring the level y and finding the sound energy difference from x Even if the noise level is constant, X also changes as y changes, so it is not possible to estimate the noise level 2 of the stationary sound by applying equation (1).

その1例として道路に敷界が接している工場等から生ず
る騒音を推定する場合がある。この場合、暗騒音とは、
連続的に音量レベルが大きく変動する交通騒音をいい、
定常騒音とは、工場騒音等の如く暗wiII音に比べて
比較的長時間はぼ一定の音量レベルにあるものをいう。
One example of this is estimating the noise generated from a factory or the like whose premises are in contact with a road. In this case, background noise is
Traffic noise that continuously fluctuates in volume level,
Steady noise refers to noise, such as factory noise, that remains at a constant volume level for a relatively long period of time compared to dark wi II sound.

即ち、定常騒音も風向き、日中と夜間との相違または工
場の稼動状況により変化するものであるが、少なくとも
騒音測定中(1〜2時間)は、はぼ一定の音量レベルに
あると推定されるMfである。
In other words, although steady noise also changes depending on the direction of the wind, the difference between daytime and nighttime, and the operating status of the factory, it is estimated that the volume level remains at a constant level at least during the noise measurement (1 to 2 hours). This is Mf.

本発明は、hIJ配従来技術の欠点を解消するためにな
されたもので、暗騒音の騒音レベルが大きく変動しても
、足ifの騒音レベルを推定することができる定常音の
測定方法を提供することを目的とする。
The present invention was made in order to eliminate the drawbacks of the conventional hIJ arrangement technology, and provides a method for measuring steady sound that can estimate the noise level of the foot if even if the noise level of background noise changes greatly. The purpose is to

本発明は、験音醐定点における交通騒音等の暗騒音が、
大型特殊車などの影響を強く受けるため、測定した騒音
レベルの1000個程度のデータの分布を見ると平均値
や中央値等が大きく変動し、データ全体からその時の定
常音の騒音レベルを推定することは困難であるが、暗騒
音のレベルの低い領域においては暗騒音の分布がほぼ一
定の値を不すことを発見したことに基づいている。
The present invention eliminates background noise such as traffic noise at the Kennego fixed point.
Because it is strongly influenced by large special vehicles, etc., when looking at the distribution of approximately 1000 measured noise levels, the average value and median value fluctuate significantly, so the noise level of stationary sound at that time is estimated from the entire data. This is based on the discovery that the distribution of background noise does not maintain a nearly constant value in areas where the level of background noise is low, although it is difficult to do so.

本発明は、暗騒音と定常音とが混在する状態において騒
音レベルを測定するとともに、前記定常Iが無視できる
状態において前記暗騒音の騒音レベルを測定し、これら
測定した騒音レベルから麺旨レベルの小さい領域におい
て#記各状態の音のエネルギ差を求め、その結果から定
常音の騒音レベルを求めることができるように構成しま
たものである、 次に、本発明に係る定常音測定方法の測定JIA理を直
曲する。
The present invention measures the noise level in a state where background noise and steady sound are mixed, measures the noise level of the background noise in a state where the steady I can be ignored, and calculates the level of noodle flavor from these measured noise levels. The device is configured to determine the energy difference between the sounds in each state marked # in a small area, and determine the noise level of the stationary sound from the results.Next, measurements using the stationary sound measurement method according to the present invention. Directly bend JIA theory.

第1図は、工場音等の定常音がない場合のある測定点に
おける5秒間隔をもって測定した交通騒謳°の911度
分布を示す図である。横軸はdBで表わした一廿レベル
を示し、縦軸は騒音の発生細度を示しである。また、実
MAは交通量の少ない午前零時から午前2時までの間に
測定した分布であり、−直鎖#Bは交通量の多い午前2
時けら午前4時までの間に測定した分布である。
FIG. 1 is a diagram showing a 911 degree distribution of traffic noise measured at 5 second intervals at measurement points where there is no stationary sound such as factory noise. The horizontal axis shows the level in dB, and the vertical axis shows the level of noise generation. In addition, the actual MA is the distribution measured from midnight to 2 a.m. when traffic volume is low, and - straight chain #B is the distribution measured from 2 a.m. when traffic volume is high.
This is the distribution measured between midnight and 4 a.m.

第1図に示したように騒音レベルの小さい領域における
実線Aと一直鎖線Bとの分布曲線は良く一致している。
As shown in FIG. 1, the distribution curves of the solid line A and the straight chain line B in the region of low noise level match well.

しかし、騒音レベルの大きな領域においては、通過台数
が少ないが、大きな騒音を発生する大型特殊車等の影響
により、実線Aと一直鎖@Bとの間に差異を生ずる。
However, in an area with a high noise level, there is a difference between the solid line A and the straight chain @B due to the influence of large special vehicles that generate large noises, although the number of passing vehicles is small.

なお、騒音レベルは、音のエネルギを対数によって衣不
したものであるので、第1図の騒音レベルの分布をエネ
ルギの分布に変換すると、第2図の如くなる。M音レベ
ルが50dBと60 dBとでは、エネルギにすると1
0倍の相違があり、50dBと70dBと−rhioo
倍、50dBと80dBとでは1000倍の差となって
、騒音レベルの大きな領域における実MAと一直鎖MA
Bとではエネルギ差が非常に大きいことがわかる。しか
し、騒音レベルの小さい領域(第1図及び第2図のaよ
り小さい部分)においては、両者はエネルギ分布におい
ても良く一致している。即ち、交通騒音の騒音レベルの
小さい領域における騒音発生頻度は、交通量の多少、車
樵による影響を受けない。
Note that the noise level is the logarithm of sound energy, so when the noise level distribution in FIG. 1 is converted into an energy distribution, it becomes as shown in FIG. 2. When the M sound level is 50 dB and 60 dB, the energy is 1
There is a difference of 0 times, 50dB and 70dB and -rhioo
There is a 1000 times difference between 50 dB and 80 dB, and the difference between real MA and single-chain MA in areas with high noise levels.
It can be seen that the energy difference between B and B is very large. However, in a region where the noise level is low (a portion smaller than a in FIGS. 1 and 2), the two also match well in energy distribution. That is, the frequency of noise occurrence in areas where the noise level of traffic noise is low is not affected by the amount of traffic or the amount of traffic.

従って、ll1t騒音の騒音レベルが大きく変動する場
合であっても、騒音レベルが小さい領域における暗騒音
の騒音レベルを測定できれば、(1)式を用いて定常音
の騒音レベルを推定することができる。
Therefore, even if the noise level of ll1t noise varies greatly, if the noise level of background noise can be measured in an area where the noise level is small, the noise level of stationary sound can be estimated using equation (1). .

以下本発明に係る暗騒音の存在下における定常音測定方
法の好ましい実施例を添付図面に従ってI+祝する1、 第3図は、敏界が道路に接している工場の騒音測定を、
本発明に係る実施例により測定する場合のtill1足
点t−i近を示す図である。
A preferred embodiment of the method for measuring steady sound in the presence of background noise according to the present invention will be described below with reference to the accompanying drawings.
FIG. 3 is a diagram showing the vicinity of till1 foot point ti when measured according to an embodiment of the present invention.

第3図において道路lOに面して一方の1411に工場
12が位置、この工場12と対向する道路100反対側
−帯は住居地域14となっている。そして、道路10を
通る車両は昼夜とだえることがなく、暗騒音である交通
騒音を排除することができないため、定常音である工場
の騒音だけを測定することか困難である。
In FIG. 3, the factory 12 is located at 1411 on one side facing the road 10, and the area on the opposite side of the road 100 facing the factory 12 is a residential area 14. Vehicles passing on the road 10 do not change day and night, and traffic noise, which is background noise, cannot be excluded. Therefore, it is difficult to measure only factory noise, which is stationary noise.

そこで、まず交通騒音と工場騒音とが混在する場所、即
ち、工場12の道路に面した第1測定点P1において騒
音レベルの測定をする。また、工場12が而している道
路lOの工場12から十分に離れた工場騒音が無視でき
る場所(例えば、工場12から500肩以上離れ友場所
)であって、道路10に面した第2測定点P、において
も騒音レベルの測定を行う。なお、第2測定点P、は、
交通騒音以外には付近に大きな騒音源がない場所である
Therefore, first, the noise level is measured at a place where traffic noise and factory noise coexist, that is, at the first measurement point P1 facing the road of the factory 12. In addition, a second measurement site facing the road 10 is located at a location sufficiently far away from the factory 12 on the road 10 where the factory 12 is located, where factory noise can be ignored (for example, a location 500 shoulders or more away from the factory 12). The noise level is also measured at point P. Note that the second measurement point P is
There are no major noise sources nearby other than traffic noise.

第1測尾点P、における騒音レベルの頻度分布の例を第
4図にボし、第2測定点P、における騒音レベルの如度
分布例を第5図に示す。第4図は、交通騒音と工場−音
との和であるから、一般的には第4図の騒音レベルの平
均値から求めた音のエネルギから、第5図の騒音レベル
の平均値から求めた竹のエネルギを引い友値を工場騒音
の音のエネルギとみなし、工場騒音の騒音レベルを求め
ることがでさる1、シかし、前述し九ように交通騒音の
レベル(第2測定点P、における騒音レベル)の平均値
が変動するに伴い、交通騒音と工場騒音との和として求
められる第1 I11定点P、における騒音レベルの平
均値も変動するため、両地点の平均値から工場騒音のレ
ベルを求めることができない1、そこで、交通騒音は、
前述した如く騒音レベルの小さい領域が交通量や通過す
る車両の種類によらず、一定の分布を示すところから、
第1釧定A P 、 と第2 fill定点P、とにお
ける騒音レベルの小さい狽域(?+1えば、第4図のX
、以下の領域と第5図のy6以下の領域)において両者
の音のエネルキ岸を求めることにより、工場の騒音レベ
ルを求めることがでさる1、そこで、測定した騒音レベ
ルの累積頻度が等しくなる第4図の’I 、’N・・・
・・・X。
An example of the frequency distribution of the noise level at the first measurement point P is shown in FIG. 4, and an example of the frequency distribution of the noise level at the second measurement point P is shown in FIG. Since Figure 4 is the sum of traffic noise and factory noise, generally the sound energy is calculated from the average value of the noise level in Figure 4, and the energy of the sound is calculated from the average value of the noise level in Figure 5. The noise level of the factory noise can be obtained by subtracting the energy of the bamboo and considering the value as the sound energy of the factory noise. As the average value of the noise level at fixed point P, which is calculated as the sum of traffic noise and factory noise, changes, the average value of the noise level at the 1st I11 fixed point P, which is calculated as the sum of traffic noise and factory noise, also changes. 1, so the traffic noise is
As mentioned above, the area with low noise level shows a constant distribution regardless of the traffic volume or the type of passing vehicle.
The area where the noise level is small at the first fill fixed point A P and the second fill fixed point P (?+1, for example,
, the following areas and the area below y6 in Figure 5), the noise level of the factory can be determined by determining the energy level of both sounds.1, Therefore, the cumulative frequencies of the measured noise levels are equal. 'I,'N... in Figure 4
...X.

と第5凶のYt、Vt・・・・・・y、とから、工場騒
音2奮次式により求める、 ここVCi=1.2・・・・・・6である。
From the fifth factor Yt, Vt...y, the factory noise is calculated using the second equation, where VCi = 1.2...6.

次に、第1測定点P1及び第2測定小P、において、5
秒間隔をもって1000回、5000秒にわたって騒音
レベルの測定をして、工場騒音を求めた結果を表1に示
す 表−1 第1測定点P1においては、騒音レベルが50.6dB
以下″の時が50回(5慢)おり、同じ< 50.8d
B以−トの時が100回(10%)あった。また、第2
測W点P、においては、騒音レベルが472d13以)
の時が50回(5嘩)あり、同じ(48,0d13以F
の時が100回(10チ)あった、っそして、累積頻度
が30チ以下においては、ztがほぼ一定であって、4
7〜48dBであった。従って。
Next, at the first measurement point P1 and the second measurement point P, 5
The noise level was measured 1000 times at second intervals for 5000 seconds, and the results of the factory noise are shown in Table 1 Table 1 At the first measurement point P1, the noise level was 50.6 dB.
50 times (5 arrogance), the same < 50.8d
There were 100 times (10%) when B or higher was achieved. Also, the second
At measurement point P, the noise level is 472d13 or higher)
There were 50 times (5 fights) and the same (48,0d13 and above)
There were 100 times (10 chis), and when the cumulative frequency was 30 chis or less, zt was almost constant and
It was 7 to 48 dB. Therefore.

を場の騒音レベルは、47〜48dBと推定できる。な
お、累積頻度が35チ以上の領域においては、[場騒廿
のある第1測定点P、の方が工場騒音のない第2測定点
P、よりも騒音レベルが小さいという不都合な結果を生
じる場合もある。
The noise level in the field can be estimated to be 47 to 48 dB. In addition, in a region where the cumulative frequency is 35 or more, an inconvenient result occurs in that the noise level is lower at the first measurement point P, where there is a lot of field noise, than at the second measurement point P, where there is no factory noise. In some cases.

−ヒmlの如くして得だ一定値Klが工場騒音であるこ
とは、次のようにして検証することができる。
- It can be verified that the constant value Kl is factory noise as follows.

即ち、音のエネルギ量が既知であるダミー音を時間的に
ランダムに発生させ、交通騒音とダミー音とか混(4E
した状態での触B−レベルxi を測定し、また、交)
!!1tIlk音のみの騒音レベルya  を測定して
、(2)式から求めたzlがある累積頻度α−以下にお
いてダミー音と等しいことを確認すればよい。
That is, dummy sounds with a known amount of sound energy are generated randomly over time, and traffic noise and dummy sounds are mixed (4E).
Measure the touch B-level xi in the state of
! ! It is sufficient to measure the noise level ya of only the 1tIlk sound and confirm that zl obtained from equation (2) is equal to the dummy sound at a certain cumulative frequency α- or less.

ところで、−音i+は、風速の影響などによる測坩誤差
がわり、対象音のエネルギを検旺するには、実際にエネ
ルギ既知のf(ダミーf)を発生させる必要がある。ま
た、対象曾の発生源における対象刊のエネルギを知る(
確認する)ためには、対数音の発生源においてダミー音
を発生させることが最も良い方法である。そして、ラン
ダムに発生するダミー音を検出して、ダミー音がある場
合とない場合との音のエネルギ差を求め、統計的な解析
をすることにより、前記し九変動する暗騒音の存在下に
おける対象音のIllll法がましいことが検1でき、
求めた対象音のエネルギを検1することができる。
By the way, the - sound i+ is subject to measurement errors due to the influence of wind speed, etc., and in order to check the energy of the target sound, it is necessary to actually generate f (dummy f) with known energy. Also, know the energy of the target at the source of the target (
The best way to confirm this is to generate a dummy sound at the source of the logarithmic sound. Then, by detecting randomly generated dummy sounds and calculating the difference in sound energy between the presence and absence of the dummy sound and performing statistical analysis, we found that It was found that the Illll method for the target sound was good.
The energy of the obtained target sound can be detected.

そこで、前記実施例によシ求めた定常音のレベルが正し
いものであることを第6図に示す装置により検証した。
Therefore, it was verified using the apparatus shown in FIG. 6 that the level of the stationary sound determined in the above embodiment was correct.

ダミー音発生装置120は、20〜20000Hzの音
を発生する一般的な雑V発生器22と5〜10 axの
音を発生する低周波音発生器24とから成っており、ダ
ミー音は低周波音と可聴音である騒音とから成る。そし
て、ダミー音発生装置20においてランダムに発生し九
ダミー音は、暗騒音の存在下において低周波マイクロホ
ン26と騒音針28とによシ同時に測定され、測定値が
マイクロコンピュータ等の一般に用いられているデータ
処理装置30に入力される。データ処理装置30は、入
力された測定値に基づき低周波音が一足レベル以上の場
合(暗騒音+ダミー音)と低剃波音が一足レベル以下の
場合(暗騒音のみ)とに区分し、それぞれ1000個の
測定データを集めて累積頻度の5%値、10慢値・・・
95嘩値を算出する。ダミー音の有無に区分して求めた
それぞれの5チ値、10チ値・・・95チ値は、プリン
タ等の表示装置32により表示される。その後、前述し
たようにzlがダミー音のレベルに等しい累積頻度の範
囲αチを求める。次に、前記したようにズ1′#、音の
勺無の場合についてのデータを採取し、ダミー音の有無
によって求めたαチ以下における対象音のレベルを(2
)式から求めることにより、前記した定常f測定方法の
検証をすることかで専る。
The dummy sound generator 120 consists of a general noise V generator 22 that generates a sound of 20 to 20,000 Hz and a low frequency sound generator 24 that generates a sound of 5 to 10 ax. It consists of wave sound and audible noise. The nine dummy sounds randomly generated in the dummy sound generator 20 are simultaneously measured by the low frequency microphone 26 and the noise needle 28 in the presence of background noise, and the measured values are generally used in microcomputers and the like. The data is input to the data processing device 30 located therein. Based on the input measurement values, the data processing device 30 classifies the low-frequency sound into cases where the low-frequency sound is above the one-step level (background noise + dummy sound) and the case where the low-frequency sound is below the one-step level (background noise only). Collecting 1000 measurement data, 5% value of cumulative frequency, 10 chronological value...
Calculate the 95 fight value. The respective 5-chi values, 10-chi values, . . . 95-ch values obtained by classifying whether there is a dummy sound or not are displayed on a display device 32 such as a printer. Thereafter, as described above, the cumulative frequency range α in which zl is equal to the level of the dummy sound is determined. Next, as mentioned above, we collected data for the case of Z1'# and no sound, and calculated the level of the target sound below αC, which was determined by the presence or absence of the dummy sound (2
) is used to verify the steady-state f measurement method described above.

前記した交通騒音のみが存在する第2測定点P、。A second measurement point P, where only the aforementioned traffic noise exists.

において、48dBのダミー音を発生させ、ダミー廿の
有無に区分して測定した騒音レベルから、ダミー音のレ
ベルを測定した鮎来?:表2に示す。
In Ayurai, a dummy sound of 48 dB was generated, and the level of the dummy sound was measured from the noise levels measured by classifying whether the dummy was present or not. : Shown in Table 2.

表−2 表2に示したように変動する暗騒音が交通騒音である場
合には、一般的に累積頻度が30%以下のときにダミー
音の音のレベルを比軟的梢確に測定できる。υ1ち、交
通騒音の存在下における対象音の測定は、α≦30にお
いて可能であることが実験的に確認゛することがでIf
Table 2 If the background noise that fluctuates as shown in Table 2 is traffic noise, the level of the dummy sound can generally be measured with relative certainty when the cumulative frequency is 30% or less. . If
.

なお、前記実施例においては変動する暗騒音が交通騒音
の場合について説明し九が、交通騒音以外であっても同
様にして対象音を測定できる。また、暗騒音の騒音レベ
ルの低い領域における分布が一足であることが確認で−
たときは、1つの測定点において前記した”sffを#
j定してよい。
In the above embodiment, the case where the fluctuating background noise is traffic noise is explained, but even if it is other than traffic noise, the target sound can be measured in the same manner. In addition, it was confirmed that the distribution of background noise in areas with low noise levels was even.
When the above “sff” is
j may be determined.

以上説明したように本発明によれば、対象音の存在する
場所と存在しない場所とにおいて騒音レベルを測足し、
これらの騒音レベルの小さい領域における音のエネルギ
差から対象音の騒音レベルを求めることができる。
As explained above, according to the present invention, the noise level is measured in a place where the target sound is present and a place where it is not present,
The noise level of the target sound can be determined from the difference in sound energy in these low noise level regions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は交通騒音の頻度分布を示す図、第2図は第1図
の騒音レベルを騒音のエネルギに変換して示した図、第
3図は本発明に係る定常音測定力ぬり実施し1]の直曲
図、第4図は第3図のP1点における騒音頻度の分布図
、第5図は第3図のP。 点における騒音頻度の分布図、第6図は本発明に謙る定
常音測定方法の実施例を検証する装置の一シリケ示す図
である。 10・・・道路、12・・・工場、PI ・・・第1測
定点、P、・・・第2測定点。 代理人  鵜  沼  辰  之 (ほか2名) 第1図 第2図 騒音の玉子ルfc”   (7−7)ン61す第3図 e、にあ1する2黴者レヘ′ル(−8)yz y4ys P21:あ′1するl&音レし゛ル(d8)181 第6図
Figure 1 is a diagram showing the frequency distribution of traffic noise, Figure 2 is a diagram showing the noise level in Figure 1 converted into noise energy, and Figure 3 is a diagram showing the steady sound measurement force coloring according to the present invention. 1], FIG. 4 is a noise frequency distribution diagram at point P1 in FIG. 3, and FIG. 5 is P in FIG. 3. FIG. 6 is a diagram illustrating the distribution of noise frequency at points, and is a diagram illustrating one example of an apparatus for verifying an embodiment of the steady sound measuring method according to the present invention. 10...road, 12...factory, PI...first measurement point, P...second measurement point. Agent: Tatsuyuki Unuma (and 2 others) Fig. 1 Fig. 2 Noise egg lefc” (7-7) yz y4ys P21: A'1 Suru l & sound level (d8) 181 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 騒音レベルが変動する暗騒音の存在下において騒音レベ
ルがほぼ一定な定常音の騒音レベルを測定する暗騒音の
存在下における定常音測定方法において、前記暗騒音と
前記定常音とが混在した状態における騒音レベルが小さ
い領域の騒音エネルギを求め、この騒音エネルギから前
に、tti−廿の騒音レベルが小さい領域における騒音
エネルギを引いて求めたエネルギから、前記定常音の騒
音レベルを求めることを特徴とするW&騒音の存在下に
おけるW常音測定方法。
In a method for measuring steady sound in the presence of background noise, which measures the noise level of a steady sound whose noise level is approximately constant in the presence of background noise whose noise level fluctuates, in a state where the background noise and the steady sound are mixed. The noise level of the stationary sound is determined by determining the noise energy in a region where the noise level is low, and from the energy obtained by subtracting the noise energy in the region where the noise level is low in the previous noise energy. A method for measuring W normal sound in the presence of W & noise.
JP7576582A 1982-05-06 1982-05-06 Method for measuring stationary sound under existence of background noise Pending JPS58191934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7576582A JPS58191934A (en) 1982-05-06 1982-05-06 Method for measuring stationary sound under existence of background noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7576582A JPS58191934A (en) 1982-05-06 1982-05-06 Method for measuring stationary sound under existence of background noise

Publications (1)

Publication Number Publication Date
JPS58191934A true JPS58191934A (en) 1983-11-09

Family

ID=13585630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7576582A Pending JPS58191934A (en) 1982-05-06 1982-05-06 Method for measuring stationary sound under existence of background noise

Country Status (1)

Country Link
JP (1) JPS58191934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347501A (en) * 1999-03-01 2000-09-06 Hong Ching Shen Device for measuring noise
JP2000298058A (en) * 1999-04-14 2000-10-24 Rion Co Ltd Apparatus for analyzing environment noise
US11959798B2 (en) * 2017-04-11 2024-04-16 Systèmes De Contrôle Actif Soft Db Inc. System and a method for noise discrimination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347501A (en) * 1999-03-01 2000-09-06 Hong Ching Shen Device for measuring noise
JP2000298058A (en) * 1999-04-14 2000-10-24 Rion Co Ltd Apparatus for analyzing environment noise
US11959798B2 (en) * 2017-04-11 2024-04-16 Systèmes De Contrôle Actif Soft Db Inc. System and a method for noise discrimination

Similar Documents

Publication Publication Date Title
Gaubitch et al. Performance comparison of algorithms for blind reverberation time estimation from speech
US20080167869A1 (en) Speech Recognition Apparatus
Brandão et al. A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions
Persson et al. Loudness, annoyance and dBA in evaluating low frequency sounds
Bolin et al. Listening test comparing A-weighted and C-weighted sound pressure level as indicator of wind turbine noise annoyance
Persson et al. An experimental evaluation of annoyance due to low frequency noise
JPS58191934A (en) Method for measuring stationary sound under existence of background noise
JPH06201744A (en) Device and method for measuring distortion of audio signal
Jacobsen Random errors in sound power determination based on intensity measurement
Ishibashi et al. Relationships between arithmetic averages of sound pressure level calculated in octave bands and Zwicker’s loudness level
JP3885297B2 (en) Abnormal sound determination device and abnormal sound determination method
Cho et al. Quality evaluation of car window motors using sound quality metrics
Imaizumi et al. Sound propagation and speech transmission in a branching underground tunnel
Pathak et al. Activity accounting technique for environmental noise assessment in mechanized surface mining
EP1806593A1 (en) Determination of the adequate measurement window for sound source localization in echoic environments
Kates Cross-correlation procedures for measuring noise and distortion in AGC hearing aids
Sakurai et al. A computational software for noise measurement and toward its identification
Javed et al. An extended reverberation decay tail metric as a measure of perceived late reverberation
RU2748934C1 (en) Method for measuring speech intelligibility
US11523755B2 (en) Device and method for detecting and compensating for an oblique ear probe insertion
JPH11125623A (en) Method for examining piping structure
Comesana et al. Expanding the sound power measurement criteria for sound intensity pu probes
JP2776307B2 (en) Signal display device
Rousseaux Sound attenuation by wide barriers on the ground
Haverkamp Brake noise assessment by means of vehicle road tests subjective parameters and objective measurement concepts