JPS58190919A - Laser beam optical system - Google Patents

Laser beam optical system

Info

Publication number
JPS58190919A
JPS58190919A JP57073870A JP7387082A JPS58190919A JP S58190919 A JPS58190919 A JP S58190919A JP 57073870 A JP57073870 A JP 57073870A JP 7387082 A JP7387082 A JP 7387082A JP S58190919 A JPS58190919 A JP S58190919A
Authority
JP
Japan
Prior art keywords
lens
mirror
optical
photoreceptor
cylindrical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073870A
Other languages
Japanese (ja)
Inventor
Nobuo Sakuma
佐久間 伸夫
Yutaka Kaneko
豊 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57073870A priority Critical patent/JPS58190919A/en
Priority to US06/489,935 priority patent/US4586782A/en
Publication of JPS58190919A publication Critical patent/JPS58190919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/126Arrangements for the main scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Lasers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To compensate a fall of a rotary mirror, by using a cylindrical mirror lens which uses the plane side of a flat convex cylindrical lens to a reflector. CONSTITUTION:The plane of a flat convex cylindrical lens 6 is used as a reflecting surface, and a beam is made incident obliquely to the optical axis. Thus the optical path is folded by a reflecting surface and the beam focusing in the subscanning direction is performed simultaneously. The reflected light on the surface of the mirror lens 6 does not come back to a rotary polyhedral mirror as shown by dotted lines. This eliminates the generation of a static ghost and the flare. No dust nor toner is stacked since the lens surface is set downward. Then it is possible to use a cylindrical lens of a long para-axial focal distance owing to the fact that the beam is made incident obliquely to the lens 6. When a beam having 30 deg. inclination to the optical axis is made incident to the lens 6, the incident angle of the beam is set at 20.5 deg. to a photoreceptor. As a result, the ghost due to the reflected light scattered from the surface of the photoreceptor can be reduced.

Description

【発明の詳細な説明】 不発明け、光走査装置における光学系の・大阪特に回転
椀等の倒れ補正II能を有する光栄系にシミシントリカ
ルミラーレンズを用いたレーザビーム光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser beam optical system using a symmetrical mirror lens in an optical system in an optical scanning device, particularly in an optical system having a function of correcting tilting of a rotary bowl or the like.

回転多面鏡やホログラムスキャナ等の光偏向器とfθレ
ンズ搾の@鎖素子を用いて感光体Fにレーザービームな
走査さぜる光書込IItにおいてけ、回転多面鏡の各観
面の倒れll華、ホログラムスキャナーのホログラムの
位置ずれや偏心環、各偏向要素のバラツキ忙よるいわゆ
る面倒れWA畢を補正するための補正光学系を有して贋
るー 第1図はこのような光学系の公知の1例を示し、光偏向
器としては回転多面鏡を用い、これより光源の部分は省
略しである。
In optical writing IIt, a laser beam is scanned onto the photoconductor F using an optical deflector such as a rotating polygon mirror or a hologram scanner and an @ chain element of an fθ lens, and the tilting of each surface of the rotating polygon mirror is performed. The hologram scanner is equipped with a correction optical system for correcting the so-called tilted WA surface caused by misalignment of the hologram, eccentric rings, and variations in each deflection element. Figure 1 shows a known optical system of this type. An example is shown in which a rotating polygon mirror is used as the optical deflector, and the light source part is omitted.

間知のように光51[けガスレーザあるいけ半導体レー
ザを用いるが、ガスレーザの場合、光源を発し禽し−ザ
光FiAOM等の変l1ll#lsによってf調され、
ビームエクスパンダ等により適当など一ム匝にされる。
As I know, a gas laser or a semiconductor laser is used, but in the case of a gas laser, the light source is emitted and the light is adjusted to f by a modification such as FiAOM.
It is made into an appropriate size using a beam expander or the like.

また、半導体レーザの場合、変調発光されたレーザ光は
カプリング光学系や整杉光堂系によってill肖なビー
ム匝にされる。
Further, in the case of a semiconductor laser, the modulated laser light is converted into an illumination beam by a coupling optical system or a Seisugi optical system.

これらのビームは第1のアナモフィック光学系により回
転多面[1上にその回転軸に略直交する長軸を有する細
長い楕円状ビームとなって入封子ろ。
These beams are formed by the first anamorphic optical system into elongated elliptical beams having long axes substantially perpendicular to the axis of rotation on a rotating polygon [1] and then into an encapsulant filter.

回転多面鏡1の回転rよって偏向されたレーザ光束ヒf
θレンズ2によって感光体5Fに桔青さ−れ、w&應走
*が六される。
The laser beam f deflected by the rotation r of the rotating polygon mirror 1
The light is reflected onto the photoreceptor 5F by the θ lens 2, and the angles w and 0 are reflected.

上記の面倒れ補正叫能を有する光学系においてけ、第2
図に上記のレーザビームの走査方向と直角ないわゆる副
走査方向の光911I図で示されるように、第2シリン
ドリカルレンズ4hζ配憇さfl、このシリンドリカル
レンズ4とfθレンズ2に明して(ロ)転illと感光
体5とhK幾何光学的に兵役の関係におかれている。こ
ね、によりuA面lのWI@れによって点−のようなレ
ーザ光の些れが生じても、感光体上のスづ2ツトfα1
iけ一定となり、いわゆる走査線のビツチムラカに発生
するのを防1ヒしている。
In the optical system having the above-mentioned surface tilt correction function, the second
As shown in the diagram 911I of light in the so-called sub-scanning direction that is perpendicular to the scanning direction of the laser beam, the second cylindrical lens 4hζ arrangement fl, the cylindrical lens 4 and the fθ lens 2 are ) illumination, photoreceptor 5, and hK are geometrically and optically placed in a military service relationship. Even if the laser light such as a dot occurs due to the WI@ of the uA surface l due to kneading, the strip fα1 on the photoreceptor
i is kept constant, which prevents the occurrence of so-called "bitch irregularities" in scanning lines.

図中3は堅固ミラーであり、光路を屈折さ?感光体5の
上方からレーザ光を入射さ建る九めのものである。
3 in the figure is a solid mirror that refracts the optical path. This is the ninth type in which the laser beam is incident on the photoreceptor 5 from above.

上記のような光学配#においては、第2シ1】ンドリカ
ルレンズ上にホコリや1i3h込んだトナー等が堆積し
て透過率の低下が起こるばかねでなく、不均一な堆ll
Iによってコピー、l:に副走査方向に堆積′@による
白スジが発生する0また、この配Iijによれば、第2
シリンドリカルレンズ4の表面からの反射光と、感光体
5表面からの散乱5躬光が(ロ)転多面情lて戻り、再
反射されて感光体5上にいわゆる静止ゴーストと呼ばれ
る白スジを発生する。
In the above-mentioned optical arrangement, not only does the transmittance decrease due to the accumulation of dust, toner, etc. on the second lens, but also non-uniform deposition occurs.
According to this arrangement Iij, white streaks are generated in the sub-scanning direction in copying and l: due to '@.
The reflected light from the surface of the cylindrical lens 4 and the scattered light from the surface of the photoreceptor 5 are (b) turned around and returned, and are re-reflected to generate a white streak called a stationary ghost on the photoreceptor 5. do.

本発明は上記の平面ミラー3と第2シリンドリカルレン
ズ4を1つのシリンドリカルミラーレンズとすることに
よって上記の欠点を含まぬ光学系を得ようと+るもので
ある。3 十吟わち、哨3図に示すようにモ凸シリンド1)カルレ
ンズ6の平面を反射面とし、この光軸忙斜めにビームを
入射させ1反射面による光路の折曲と副走査方向でのビ
ーム集束を同時に行っている。このように十れげ、ミラ
ーレンズ6のレンズ表面の反射光は点線のように:回転
多面鏡にけ戻らなく危り、静止ゴーストやフレアが発生
しなくなる。そして、レンズ表面は下向きと橙るので、
ホコリやトナーが堆積するととけ々くなるうその上、ミ
ラーレンズ6にビームが斜入射することによって従寮例
に比べて近軸焦点距離の長いシリンドリカルレンズを用
いることが可能に々Z0 すなわち、第4図に示すように、第1面の曲率半径R1
,第2面の曲率半径R2のレンズに、ビームが第1面へ
の入射角、屈折#1111.1買執2面の入射角、屈折
角がi2.12で通過し、レンズ中での幾何光学的党略
長をA、屈折率をnとしたとき、実効焦点距離feは で表わされる。ミラーレンズの8合けR2=−R。
The present invention attempts to obtain an optical system that does not have the above-mentioned drawbacks by combining the above-mentioned plane mirror 3 and the second cylindrical lens 4 into one cylindrical mirror lens. 3. As shown in Fig. 3, the movable convex cylinder 1) The flat surface of the cull lens 6 is used as a reflective surface, and the beam is incident diagonally along the optical axis, and the optical path is bent by the 1 reflective surface and in the sub-scanning direction. beam focusing at the same time. In this way, the reflected light on the lens surface of the mirror lens 6 is dangerous because it does not return to the rotating polygon mirror as shown by the dotted line, and stationary ghosts and flares do not occur. And since the lens surface turns orange when facing downward,
In addition to the fact that dust and toner will melt when accumulated, since the beam is obliquely incident on the mirror lens 6, it is possible to use a cylindrical lens with a longer paraxial focal length than the conventional example. As shown in Figure 4, the radius of curvature R1 of the first surface
, the beam passes through a lens whose second surface has a radius of curvature R2, the angle of incidence on the first surface, the angle of incidence on the second surface of refraction #1111.1, the angle of refraction is i2.12, and the geometry in the lens When the approximate optical length is A and the refractive index is n, the effective focal length fe is expressed as follows. 8-piece mirror lens R2=-R.

となる。becomes.

今第3図のミラーレンズ6のU元t R1=  R2= I O0,459 反射面の曲率半径=ψ レンズの中心肉厚=”t。Now the U element of the mirror lens 6 in Fig. 3 R1= R2= I O0,459 Radius of curvature of reflective surface = ψ Center thickness of lens=”t.

レンズの屈折率n=1.52 とすれば、このミラーレンズの近軸焦点距離fけ1()
υとなるが、図示のように光軸に45傾いたビームをレ
ンズ頂に入射させると、実効焦点距峨f8  け503
4となる。
If the refractive index of the lens is n=1.52, then the paraxial focal length of this mirror lens is f 1()
However, if a beam tilted by 45 degrees to the optical axis is incident on the top of the lens as shown in the figure, the effective focal length gradient f8 becomes 503
It becomes 4.

また、同じミラーレンズ6に第5図のように光軸に30
傾いたビームをレンズ頂に入射させたis合の実効焦点
距離f、け74.31)となる。
In addition, the same mirror lens 6 has a 30 mm diameter on the optical axis as shown in FIG.
When the tilted beam is incident on the top of the lens, the effective focal length f is 74.31).

この場合は、感光体へのビームの入射角が2α5と6h
%感光体面からの散乱反射光てよるゴーストも減少する
という効果が生ずる。
In this case, the angle of incidence of the beam on the photoreceptor is 2α5 and 6h.
% ghosts caused by scattered reflected light from the surface of the photoreceptor are also reduced.

上記のように、本発明は光路折曲用のミラーと第2シl
)ンドリカルレンズとを1ケのミラーレンズで胃換よる
ことによれ、部品点数の減少、ゴーストやフレアの除去
、ホコリ等によるコピーの品質低下の防と、その上レン
ズ面の曲率半径の向火によるレンズコツトの低減という
一石囚鳥の゛効果を生ずるものである。
As described above, the present invention includes a mirror for optical path bending and a second shield.
) By replacing the conventional lens with a single mirror lens, it is possible to reduce the number of parts, eliminate ghosts and flares, prevent copy quality from deteriorating due to dust, etc., and improve the radius of curvature of the lens surface. This has the unique effect of reducing the loss of lenses caused by fire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光走査装置の公知例の要部斜視図。 第2図はその副走査方向の光路図、第3図は本発明の走
査装菅のll!櫂例の要部の光路図、第4咲はレンズへ
光ビームが斜入射した場合の原叩の砦明図、@5図は池
の実施例の要部の光路図 I:回転多面−2:fθレンズ 3:平面ミラー 4:
@2シリンドリカルレンズ 5:感光体 6:ミラーレ
ンズ @許出願人 株式会社 リコー 第   1   図 第   2   図
FIG. 1 is a perspective view of essential parts of a known example of an optical scanning device. FIG. 2 is an optical path diagram in the sub-scanning direction, and FIG. 3 is a diagram of the scanning device of the present invention. The optical path diagram of the main part of the paddle example, the 4th figure is the light path diagram of the main part of the ike example when the light beam is obliquely incident on the lens, the @5 figure is the optical path diagram of the main part of the pond example I: Rotating polygon-2 : fθ lens 3: Plane mirror 4:
@2 Cylindrical lens 5: Photoconductor 6: Mirror lens @Applicant Ricoh Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回転多面鏡等の光偏向器を含与、7膣光偏向面と感光体
とを幾何光学的に兵役のQ停におくための$2シリンド
リカルレンズおよび走置光党略を折曲して感光体に上方
から露光走査するいわゆる光偏向器の倒れ補正擲能を有
する光走査*Wにおいて、上記IE2シリンドリカルレ
ンズ及び光路折曲のための反射@が、モ凸シリンドリカ
ルレンズのモ面側を反射鏡としたシリンドリカルミラー
レンズによって構成されていることを特徴とするレーザ
ビーム光学系
Includes a light deflector such as a rotating polygon mirror, and bends the $2 cylindrical lens and the traveling light beam to place the light deflection surface and the photoreceptor at the Q stop of military service in terms of geometrical optics. In the optical scanning*W that has the ability to correct the tilt of the optical deflector, which performs exposure scanning from above, the IE2 cylindrical lens and the reflection @ for bending the optical path use the mo-face side of the mo-convex cylindrical lens as a reflecting mirror. A laser beam optical system comprising a cylindrical mirror lens.
JP57073870A 1982-05-01 1982-05-01 Laser beam optical system Pending JPS58190919A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57073870A JPS58190919A (en) 1982-05-01 1982-05-01 Laser beam optical system
US06/489,935 US4586782A (en) 1982-05-01 1983-04-29 Laser beam optical system with inclined cylindrical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073870A JPS58190919A (en) 1982-05-01 1982-05-01 Laser beam optical system

Publications (1)

Publication Number Publication Date
JPS58190919A true JPS58190919A (en) 1983-11-08

Family

ID=13530650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073870A Pending JPS58190919A (en) 1982-05-01 1982-05-01 Laser beam optical system

Country Status (1)

Country Link
JP (1) JPS58190919A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170825A (en) * 1984-02-15 1985-09-04 Fuji Xerox Co Ltd Light beam scanner
JPS6191985A (en) * 1984-10-09 1986-05-10 アエロンカ・エレクトロニクス・インコーポレーテッド Small laser scanner
WO1986005940A1 (en) * 1985-04-02 1986-10-09 Eastman Kodak Company Multi-format laser printer embodying a method for changing output image sizes
JPH10197822A (en) * 1997-01-10 1998-07-31 Fuji Photo Film Co Ltd Surface tilt correcting optical system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960236A (en) * 1972-08-10 1974-06-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960236A (en) * 1972-08-10 1974-06-11

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170825A (en) * 1984-02-15 1985-09-04 Fuji Xerox Co Ltd Light beam scanner
JPS6191985A (en) * 1984-10-09 1986-05-10 アエロンカ・エレクトロニクス・インコーポレーテッド Small laser scanner
JPH0329318B2 (en) * 1984-10-09 1991-04-23 Aeronka Erekutoronikusu Inc
WO1986005940A1 (en) * 1985-04-02 1986-10-09 Eastman Kodak Company Multi-format laser printer embodying a method for changing output image sizes
JPH10197822A (en) * 1997-01-10 1998-07-31 Fuji Photo Film Co Ltd Surface tilt correcting optical system

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
EP0016630B1 (en) Optical scanning apparatus
US4123135A (en) Optical system for rotating mirror line scanning apparatus
KR900002098A (en) Optical scanning device and asymmetric aspherical scanning lens
JP2778776B2 (en) Optical scanner
JPH0456962B2 (en)
KR100393874B1 (en) Photo Scanner and Image Reading Apparatus and Image Forming Apparatus using the Photo Scanner
EP0387900B1 (en) Scanning optical system
JPH08160338A (en) Optical scanner
JP3104618B2 (en) Optical scanning device and optical lens
KR910009141B1 (en) Wobble correction by two reflections on a faucet without bow
JPS58190919A (en) Laser beam optical system
US4630130A (en) Scanning system for controlling stray beams caused by undesirable optical reflections
JPH0511290B2 (en)
JP3363531B2 (en) Laser scanning device
US4586782A (en) Laser beam optical system with inclined cylindrical lens
US20020060829A1 (en) Optical scanning device and image forming apparatus using the same
US5142404A (en) Optical unit for use in laser beam printer or the like
JP2643224B2 (en) Light beam scanning optical system
JP3402875B2 (en) Optical scanning device
JP2618889B2 (en) Optical scanning device
JPS63142317A (en) Light beam scanner
JP3782646B2 (en) Scanning optical system
JPH01200220A (en) Light beam scanning optical system
JP3853740B2 (en) Optical scanning device