JPS58190878A - Manufacture of ceramic bonded body - Google Patents

Manufacture of ceramic bonded body

Info

Publication number
JPS58190878A
JPS58190878A JP7366082A JP7366082A JPS58190878A JP S58190878 A JPS58190878 A JP S58190878A JP 7366082 A JP7366082 A JP 7366082A JP 7366082 A JP7366082 A JP 7366082A JP S58190878 A JPS58190878 A JP S58190878A
Authority
JP
Japan
Prior art keywords
ceramic
bonding
strength
molded
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7366082A
Other languages
Japanese (ja)
Inventor
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7366082A priority Critical patent/JPS58190878A/en
Publication of JPS58190878A publication Critical patent/JPS58190878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はセラミックスの接合方法に関するものである。[Detailed description of the invention] The present invention relates to a method for joining ceramics.

最近、セラミックスは一般工業材料から電子部品に至る
まで広範に利用されており、更−こ広い分野での用途に
期待さねている。これに伴い、複雑形状のセラミック焼
結体の製造法の開発、そのため、とりわけセラミックス
の強11な接合方法や異種セラミックスの接合力法が強
く望まねてむする。
Ceramics have recently been widely used in everything from general industrial materials to electronic components, and are expected to be used in an even wider range of fields. Along with this, there is a strong need for the development of a method for producing ceramic sintered bodies with complex shapes, and for this purpose, there is a strong desire for a method for bonding ceramics with high strength and a method for bonding different types of ceramics.

従来、考えられているセラミックスの接合方法には従来
法A;焼成収縮率の大きいセラミック生成形体に焼成収
縮率の小さいセラ ミック生成形体を嵌合して焼成を 行う口 従来法B;セラミック生成形体と同じ成分のセラミック
粉末と有機物バインダ ーを混合したペーストをセラミツ ク生成形体の接合面に所望の鳩尾 となるように塗布した後、焼成を 行ろ。
Conventional methods for joining ceramics that have been considered include Conventional Method A: A ceramic molded body with a large firing shrinkage rate is fitted with a ceramic molded body with a small firing shrinkage rate, and firing is performed.Conventional Method B: A paste made by mixing ceramic powder and an organic binder of the same composition is applied to the joint surface of the ceramic forming body so as to form the desired dovetail, and then firing is performed.

従来法C:接合される両セラミック焼結体の接合7i1
 Ir金属化面を形成し、該金属化−を直接接合するか
、或いは、 該金属化面をろう付けにより接合 する。
Conventional method C: Joining of both ceramic sintered bodies to be joined 7i1
Either an Ir metallization is formed and the metallization is joined directly, or the metallization is joined by brazing.

等かある。There is something like that.

しかし、上記従来法では次の点に問題がある。However, the above conventional method has the following problems.

即ち、従来法Δは生成形体の嵌合部分の加工と焼成収縮
率のコントロールがむすかしく、しかも、焼成後の嵌合
部に応力が残留するので接合強度が劣化する。更に、嵌
合に要する形状に制限されるという問題もある。
That is, in the conventional method Δ, it is difficult to process the fitting portion of the formed body and control the firing shrinkage rate, and furthermore, since stress remains in the fitting portion after firing, the bonding strength deteriorates. Furthermore, there is also the problem that the shape required for fitting is limited.

従来法Bでは製造工程は従来法Aと比べて簡単になるが
、焼成後でも接合部分に気孔が多数残るため接合強度が
劣ることがわかっている。
Conventional method B has a simpler manufacturing process than conventional method A, but it is known that the joint strength is inferior because many pores remain in the joint even after firing.

また、従来法Cではセラミック接合面に非常に高精度の
仕上げをしなければならないため(面粗さl/1以下)
、量産に不向きであり、しかも、セラミック接合層の金
属が温度上昇によって溶融化するため、それに伴い接合
強度か低下するという欠点を有している。
In addition, in conventional method C, the ceramic bonding surface must be finished with extremely high precision (surface roughness l/1 or less).
, is not suitable for mass production, and has the disadvantage that the metal of the ceramic bonding layer melts due to temperature rise, resulting in a corresponding decrease in bonding strength.

本発明の目的は上記の事情に鑑みて成されたもので、高
い接合強度を有し、且つ複雑形状のセラミックス品が得
られるセラミック接合方法を拐供することにある。
The object of the present invention has been made in view of the above circumstances, and is to provide a ceramic bonding method that has high bonding strength and can produce ceramic products with complex shapes.

本発明の他の目的は高温下で高強度を有するというセラ
ミックスの特性を十分発揮させるため、母材となるセラ
ミックスの材料強度か劣化する温度に至るまで、接合強
度がほとんど劣化しないという利点を有したセラミック
接合方法を提供することにある。
Another object of the present invention is to fully utilize the characteristics of ceramics, which have high strength under high temperatures, so that it has the advantage that the bonding strength hardly deteriorates until the temperature reaches a temperature at which the material strength of the ceramic base material deteriorates. An object of the present invention is to provide a ceramic bonding method that achieves this.

本発明の更に他の目的は従来の接合方法に比べてより簡
単にセラミック接合体を製造できる方法を提供すること
にある。
Still another object of the present invention is to provide a method for manufacturing a ceramic bonded body more easily than conventional bonding methods.

本発明のセラミック接合体製造方法はセラミック粉末に
有機物バインダーを加えて混合したものを所望形状に成
形し、同一または異なったセラミック材質から成る複数
の該生成形体を接合するために接合面を加熱によって溶
融及び可馳化することで圧着し、それによって得られる
主成形接合体を焼成することを特徴とする。
The method for producing a ceramic bonded body of the present invention involves adding an organic binder to ceramic powder, forming the mixture into a desired shape, and heating the bonding surfaces to bond a plurality of formed bodies made of the same or different ceramic materials. It is characterized in that it is crimped by melting and softening, and the resulting main molded joined body is fired.

以下、本発明の製造方法を詳細に説明する。Hereinafter, the manufacturing method of the present invention will be explained in detail.

本発明はバインダーとして熱可塑性の有機物をセラミッ
ク粉末へ混入し、例えば、射出成形、押し出し成形など
任意の成形法により該混合物を成形して生成形体を得る
。熱可塑性有機物バインダーとしては、高密度または低
密度ポリエチレン、ポリスチレン、ポリブチレン、ポリ
ブタジェン、ポリ酢酸ビニル、ポリエチレンオキサイド
等がある。また、加熱に対する溶融性や成形性を増すた
めジブチルフタレート、ジー2−エチルヘキシルエステ
ル、ジヘプチルエステル等の可塑剤、離型性を向上させ
るためステアリン酸、油脂(例えばワックスなど)等の
中で少くとも1つを添加するのか好ましい。
In the present invention, a thermoplastic organic substance is mixed into ceramic powder as a binder, and the mixture is molded by any molding method such as injection molding or extrusion molding to obtain a green body. Examples of the thermoplastic organic binder include high-density or low-density polyethylene, polystyrene, polybutylene, polybutadiene, polyvinyl acetate, and polyethylene oxide. In addition, plasticizers such as dibutyl phthalate, di-2-ethylhexyl ester, and diheptyl ester are used to increase meltability and moldability when heated, stearic acid is used to improve mold release, and small amounts of oils and fats (such as wax) are used. It is preferable to add one of both.

前記有機物バインダーの添加量はセラミック粉末の種類
、粒度、粒形等によって異なり、また、有機物バインダ
ーとして添加混合され、該混合物に流動性を与え成形を
可能にするための樹脂、モして離型や脱脂を容易にする
油脂の種類によっても多少異なるが25〜7 Q vo
1%が適当で、好ましくは35〜5 Q vo1%がよ
い。有機物バインダの使用量が25 vo1%に満たな
いと成形性が著しく劣化するたけでなく、接合が難しく
なる。また、該使用量か70 vo/7%以上の場合に
は成形性と接合性は良好であるが、でき上がった焼成品
は焼結不充分であるばかりでなく、セラミックスの緻密
性及び、希望通りの焼成収縮性か得られない。
The amount of the organic binder added varies depending on the type, particle size, particle shape, etc. of the ceramic powder, and is added as an organic binder to give fluidity to the mixture and enable molding. Although it varies somewhat depending on the type of oil and fat that facilitates degreasing.
1% is appropriate, preferably 35-5 Q vo1%. If the amount of organic binder used is less than 25 vol%, not only will the moldability deteriorate significantly, but also joining will become difficult. In addition, when the amount used is 70 vo/7% or more, the formability and bonding properties are good, but the finished fired product is not only insufficiently sintered, but also has poor density of the ceramic and is not as desired. It is not possible to obtain the same firing shrinkage.

こうして得られる同一または異なったセラミック材質か
ら成る複数の該生成形体の接合両面をできるたけ知時間
加熱し該接合両面を溶融及び可塑化させた後で、すばや
く圧着させる。
Both surfaces of the plurality of formed bodies made of the same or different ceramic materials thus obtained are heated for as long as possible to melt and plasticize them, and then quickly pressed together.

この圧着に姿する圧力はセラミック粉末の種類、粒度、
粒形及び1141i1物バインダーの種類によって異な
るが、2〜20 Kg / am”が適当である。
The pressure that appears in this crimping depends on the type of ceramic powder, particle size,
Although it varies depending on the particle shape and the type of 1141i1 binder, 2 to 20 Kg/am" is appropriate.

該圧力が2 Kg / oml’以下では接合面に気孔
が多く残るので接合強度が下がる。また該圧力か20K
g/Cn1″以上であると、該圧力によって生成形体が
変形したり、或いは接合面に亀裂が生じる。
If the pressure is less than 2 Kg/oml', many pores remain on the bonding surface, resulting in a decrease in bonding strength. Also, the pressure is 20K
If g/Cn1'' or more, the resulting pressure may deform the formed body or cause cracks on the joint surface.

上記の加圧時間は通常10〜60秒であるが、接合面積
が広くなるほど加圧時間を長くするのかよい。
The above-mentioned pressurization time is usually 10 to 60 seconds, but the larger the bonding area, the longer the pressurization time may be.

かくして得られた前記主成形接合体は使用するセラミッ
クス粉末の特性及びバインダーの特性に応じて脱脂そし
て焼成を行うことにより、所望のセラミック接合体が得
られる。
The main molded joined body thus obtained is degreased and fired in accordance with the characteristics of the ceramic powder and the binder used to obtain a desired ceramic joined body.

以上の通り、本発明のセラミック接合体製造方法は従来
法人で述べた形状の制限や焼成収縮率のコントロール、
モして嵌合部分の応力残留といった問題、従来法Bで述
べた接合部分の気孔残留による接合強度劣化といった問
題、また従来法Cで述べたセラミック接合面の仕上げや
温度上昇による接合強度劣化といった問題が解消され、
主体となるセラミック特性を十分に発揮させることがで
きる。
As described above, the method for manufacturing a ceramic bonded body of the present invention can limit the shape and control the firing shrinkage rate as described in the conventional corporation.
problems such as residual stress in the mating part, problems such as deterioration of joint strength due to residual pores in the joint described in conventional method B, and deterioration of joint strength due to finish of ceramic joint surfaces and temperature rise as described in conventional method C. the problem is resolved,
The main ceramic properties can be fully exhibited.

その上、本発明によれば、成形−説脂一焼成一加工と続
〈従来の製造工程に接合の工程を追加するだけで接合体
を得ることができ、新規製造ラインを作る必要がなく、
コスト面でも安価に製造できる。
Furthermore, according to the present invention, it is possible to obtain a joined body by simply adding a joining process to the conventional manufacturing process, and there is no need to create a new manufacturing line.
It can also be manufactured at low cost.

次に、本発明の製造方法及び該方法で得られるセラミッ
ク接合体の接合強度を実施例によって説明する。
Next, the manufacturing method of the present invention and the bonding strength of the ceramic bonded body obtained by the method will be explained using examples.

〔実施例1〕 アルミナ系セラミック粉末100重量部に対してポリス
チレン18重量部、ワックス2重量部、ジヘプテルエス
テル1重量部を加熱しつつ混練し、該混合物を直径4−
の球形に造粒した後、第1図のように180℃、140
0Kg/em”で10 X 10X100flの角柱1
を射出成形した。次いで、この角柱の接合しようとする
両面2.3を赤外線ランプを用いて短時間(3〜5秒)
で130℃付近まで加熱し、該両面2.3を15Kg/
em′1で定着した。前記工程を繰り返して第2図のよ
うに5本の角柱から1010X60X100j1の主成
形接合体4を作成し、これを炉中にて500℃まで昇温
し、脱脂後、1500℃で焼成することによりセラミッ
ク接合体を得jJo次いでこのセラミック接合体ノ中火
部からj143図R: 示−t J、ウナrM&+ O
IIM、 Wさ51111の円板状試験片5を切削製作
した。尚、第3図に詔いて該試験片5に点線で接合部か
示されているか、これは理解を容易にするためであり、
実際は観察できるものではない(以1、箪4図中の点線
も同じit味を示す)。次に前記試験片5のリークテス
トを行ったところ、リーク度は1O−8Lorr −d
/sao以下となり接合nr+での空気もれは認められ
なかった。また、前記セラミック接合体の中央部から第
4図に示すように3X4X40馴の抗折片6を切り出し
、J184点曲げ抗折試験を行った。その結果、抗折強
度は20℃で30Kg / g*2であった。 比較試
験として、上記と同一のセラミック材料により製作した
同形のセラミック体の抗折片では抗折強度31t/m1
m12(20℃)となり、また、本実施例に従って接合
方法だけを従来法Bにかえて得た同形の抗折片では接合
面は他の部分よりも気孔が多くて抗折強度15 Kit
 /min”(20℃)となった。尚、アルミナ固有の
特性として800℃を越えると徐々に抗折強度が低下す
ることが知られているが、本接合体の場合も8o。
[Example 1] 18 parts by weight of polystyrene, 2 parts by weight of wax, and 1 part by weight of dihepterester were kneaded with heating to 100 parts by weight of alumina-based ceramic powder, and the mixture was mixed with a diameter of 4 mm.
After granulating it into a spherical shape, it was granulated at 180°C and 140°C as shown in Figure 1.
0Kg/em” 10 x 10 x 100 fl square column 1
was injection molded. Next, both sides 2.3 of this prism to be joined are heated for a short time (3 to 5 seconds) using an infrared lamp.
Heated to around 130℃, and weighed 15kg/2.3 on both sides.
It was established in em'1. By repeating the above steps, a main molded assembly 4 of 1010 x 60 x 100 j1 is created from the five prisms as shown in Fig. 2, heated to 500°C in a furnace, degreased, and fired at 1500°C. Obtain the ceramic bonded body and then remove the ceramic bonded body from the medium heat part.
A disc-shaped test piece 5 of IIM and W size 51111 was produced by cutting. In addition, in FIG. 3, the joint portion is indicated by a dotted line on the test piece 5, this is for ease of understanding.
In reality, it is not something that can be observed (hereinafter, the dotted line in Figure 1 and Figure 4 also shows the same "it taste"). Next, when a leak test was performed on the test piece 5, the degree of leakage was 1O-8Lorr -d
/sao or less, and no air leakage was observed at the junction nr+. Further, as shown in FIG. 4, a 3×4×40-sized bending piece 6 was cut out from the center of the ceramic bonded body and subjected to a J184-point bending test. As a result, the bending strength was 30 Kg/g*2 at 20°C. As a comparative test, a bending strength of a ceramic body of the same shape made from the same ceramic material as above was 31t/m1.
m12 (20°C), and in the same-shaped bending piece obtained by changing only the bonding method to conventional method B according to this example, the bonding surface has more pores than other parts, and the bending strength is 15 Kit.
/min" (20°C). It is known that the bending strength of alumina gradually decreases when the temperature exceeds 800°C, which is a characteristic characteristic of alumina, and the strength of this bonded body was 8o.

℃位までは20℃における抗折強kKg/ m”を維持
し、800℃以上では抗折強度か徐々に低下した。更番
こ、本実施例に従って接合方法だけを従来法0にかえて
得た同形の抗折片では該セラミック焼結体の接合面を非
常に高精度の仕上げをしく向粗さ0.5μ以下)、そし
て、該接合面に金属化面を形成し、該金属化層を直接接
合することで、はぼ抗折強度が本発明による接合強度に
達した。
The bending strength kKg/m" at 20 degrees Celsius was maintained up to 800 degrees Celsius or above, and the bending strength gradually decreased at temperatures above 800 degrees Celsius. In addition, according to this example, only the bonding method was changed from the conventional method 0. In the case of a bending piece of the same shape, the joining surface of the ceramic sintered body is finished with very high precision (total roughness of 0.5μ or less), and a metallized surface is formed on the joining surface, and the metallized layer is By directly joining these, the transverse bending strength reached the joining strength according to the present invention.

従って、本発明にくらべて非隼に面倒な工程であり、実
用的でない。尚、前記従来法0において、該金属化層を
ろう付けすると更に、接合強度か劣ることが一般的に確
認されている。
Therefore, compared to the present invention, this process is much more troublesome and is not practical. In addition, in the conventional method 0, it is generally confirmed that if the metallized layer is brazed, the bonding strength is further deteriorated.

〔実施例2〕 炭化ケイ素系セラミック粉末100重蓋部に対して炭化
ホウ11#5重量部、フェノール樹脂23重量部、ポリ
スチレン23東量部を加熱しつつ混練し、該混合物を造
粒した後、実施例1と同様に射出成形し、IOXIOX
looIImの角柱を得た。
[Example 2] After heating and kneading 11 #5 parts by weight of boron carbide, 23 parts by weight of phenol resin, and 23 parts by weight of polystyrene to 100 parts of silicon carbide-based ceramic powder, and granulating the mixture. , injection molded in the same manner as in Example 1, and IOXIOX
A prism of looIIm was obtained.

史に、実施例】に従って該角柱5本を定着して110X
50X100の主成形接合体を作成し、これを脱脂後、
アルゴンガス中2150℃で焼成することによりセラミ
ック接合体を得た。そして、実施例1と同様にリークテ
スト及び4点曲は抗折試験を行ったところ、空気もれは
紹められす、また抗、折強度は20℃で45Kg/am
”、1200℃まで上昇しても45Kg/g1vlIを
維持していた。 比較試験として上記と同一のセラミッ
ク材料により製作した同形のセラミック体の抗折片では
20℃で47Kg/IoI2.1200℃まで上昇Lテ
モ47Kg/sr*rあり、高温域においても接合強度
がほとんど劣化しないことが確認された。尚、本実施例
に従って接合方法だけを従来法Bにかえて得た同形の抗
折片では抗折強度32Kg/m5y2(20℃)となり
、しかも、該接合面には気孔が多く低密度であることが
確認された。更に、本実施例に従って接合方法だけを従
来法(月こかえで得た同形の抗折片では実施例1と同じ
く該セラミック接合面を非常に高精度の仕上げをするこ
とによって、はぼ抗折強度が本発明による接合強度に達
した。
According to the example, the five prisms were fixed at 110X.
After creating a 50x100 main molded joint and degreasing it,
A ceramic bonded body was obtained by firing at 2150° C. in argon gas. Then, as in Example 1, a leak test and a four-point bending test were conducted, and no air leakage was detected.
", 45Kg/g1vlI was maintained even when the temperature rose to 1200℃. As a comparative test, a ceramic body of the same shape made of the same ceramic material as above had a fractured piece, and the IoI increased to 47Kg/IoI2.1200℃ at 20℃. It was confirmed that the bonding strength hardly deteriorates even in the high temperature range.Furthermore, the same-shaped bending piece obtained by changing only the bonding method to conventional method B according to this example had no resistance. The bending strength was 32 kg/m5y2 (20°C), and it was confirmed that the bonded surface had many pores and a low density.Furthermore, according to this example, only the bonding method was changed to the conventional method (the same shape obtained by tsukikoe). As in Example 1, the ceramic bonding surface of the bending piece was finished with very high precision, so that the bending strength reached the bonding strength of the present invention.

〔実施例3〕 窒化ケイ素系セラミック粉末100重量部に対して酸化
アルミニウム40重量部、バインダーとしてポリメチレ
フ60重置部を添加し、粒度調整後、実施例1と同様に
射出成形して、l0XIO×100麿の角柱を得た。
[Example 3] To 100 parts by weight of silicon nitride-based ceramic powder, 40 parts by weight of aluminum oxide and 60 parts by weight of Polymethylenef as a binder were added, and after adjusting the particle size, injection molding was performed in the same manner as in Example 1 to obtain 10XIO× Obtained a 100-maro square pillar.

更に、実施例1に従って該角柱5本を定着して110X
50X100+の主成形接合体を作成し、これを脱脂後
、窒素ガス中1750℃で焼成することによりセラミッ
ク接合体を得た。そして、実施例1と同様にリークテス
ト及び4点曲げ抗折試験を行ったところ、空気もれは認
められず、また抗折強度は20℃で47Kg/a″とな
り、実施例2の炭化ケイ素はどではないが高温でも比較
的接合強度が高く維持され、1200℃で23Kg/g
a%となった。比較試験として上記と同一のセラミック
材料により製作した同形のセラミック体の抗折片では2
0℃で48−7厘211200℃で23Kg/−となり
、実施例2の炭化ケイ素のように1200℃まで上昇し
ても接合強度は常温はど高く維持されないが1200℃
においても比較的^い接合強度が誌められた。尚、本実
施例に従って接合方法だけを従来法Bにかえて得た同形
の抗折片では抗折強度20Kg/am”(20℃)とな
った。 更に、本実施例に従って接合方法だけを従来法
Cにかえて得た同形の抗折片では実施例1と同じく該セ
ラミック接合面を非常に高精度の仕上げをすることによ
って、はぼ抗折強度が本発明による接金強度に達した。
Furthermore, according to Example 1, the five prisms were fixed at 110X.
A 50×100+ main molded joined body was prepared, degreased, and then fired at 1750° C. in nitrogen gas to obtain a ceramic joined body. When a leak test and a four-point bending test were conducted in the same manner as in Example 1, no air leakage was observed, and the bending strength was 47 Kg/a'' at 20°C. Although it is not the same, the bonding strength is maintained relatively high even at high temperatures, with a strength of 23 kg/g at 1200°C.
It became a%. As a comparative test, a fractured piece of a ceramic body of the same shape made from the same ceramic material as above was 2.
48-7 at 0℃ and 23Kg/- at 211200℃, and even if the temperature rises to 1200℃ like silicon carbide in Example 2, the bonding strength is not maintained as high as at room temperature, but at 1200℃
Relatively high bonding strength was also observed. Incidentally, a bending piece of the same shape obtained by changing only the joining method to conventional method B according to this example had a bending strength of 20 kg/am'' (20°C). In the same shape of the bending piece obtained by using Method C, the ceramic bonding surface was finished with very high precision as in Example 1, and the bending strength of the ceramic joint reached the welding strength according to the present invention.

〔実施例4〕 アルミナ系セラミック粉末(Ala(Ja 90 W”
%、他8i0s+ 、  (3a(J 、  MgO2
を含む)100重量部に対し、ポリ塩化ビニル20重量
部、ジブチルフタレート2重量部を加熱しつつ混練し、
該混合物を直径4顛の球形に造粒した後、第5図のよう
に175℃、1450Kg/Cm”で6X6X50mm
の角柱7を射出成形した。
[Example 4] Alumina ceramic powder (Ala (Ja 90 W)
%, others 8i0s+, (3a(J, MgO2
), 20 parts by weight of polyvinyl chloride and 2 parts by weight of dibutyl phthalate are kneaded while heating,
After granulating the mixture into a spherical shape with a diameter of 4, the mixture was granulated into 6X6X50mm at 175°C and 1450Kg/Cm'' as shown in Figure 5.
The square pillar 7 was injection molded.

また、安定化ジルコニア粉末(Zr(3291wt。In addition, stabilized zirconia powder (Zr (3291wt.

%他Y2O3を含む)100重量部に対し、ポリ塩化ビ
ニル20重量部、ジブチルフタレート2重量部を加熱し
つつ混練し、前記と同様な方法で6×6X50flの角
柱8を射出成形した。
% and other Y2O3), 20 parts by weight of polyvinyl chloride and 2 parts by weight of dibutyl phthalate were kneaded while heating, and a 6 x 6 x 50 fl square column 8 was injection molded in the same manner as above.

次いで前記角柱7.8のそれぞれの接合面9゜lOをメ
タノールで洗浄し、200℃に加熱した窒素ガスを該内
向9.10に吹きつけて約150℃に加熱し、窒素ガス
を止めると同時に5 Kg / Cm8で定着すること
で第6図のように主成形接合体11を得た。そして、炉
中で500℃まで昇温して脱脂を行った後、1600℃
で焼成することによりセラミック接合体を得た。
Next, each joint surface 9°lO of the prism 7.8 is cleaned with methanol, nitrogen gas heated to 200°C is blown onto the inward direction 9.10 and heated to about 150°C, and at the same time the nitrogen gas is stopped. By fixing at 5 Kg/Cm8, a main molded joined body 11 was obtained as shown in FIG. Then, after degreasing by raising the temperature to 500℃ in a furnace, it is heated to 1600℃.
A ceramic bonded body was obtained by firing the ceramic body.

該接合体キ番の接合部分を顕微鏡で観察した所、気孔は
な(Al90sとZrU$lが複雑にからみ合った構造
であった。次に、前記接合体の中央部から3X4X50
1111の抗折試験片を作成し1.tisa点曲げ抗折
試験を行った所、抗折強度は18Kg/a+”となり、
接合部分以外のシルコニγ側で破壊した。
When the bonded part of the bonded body No. K was observed under a microscope, it was found that there were no pores (Al90s and ZrU$1 were intertwined in a complex structure).
A bending test piece of 1111 was prepared and 1. When the TISA point bending test was conducted, the bending strength was 18Kg/a+'',
It broke on the silconi γ side other than the joint.

比較試験として上記と同一のアルミナ材料により製作し
た同形のセラミック体の抗折片では抗折強度よ−’4/
d (20’C)、 まえ同様:。、上記と同一のジル
コニア材料により製作した同形のセラミック体の抗折片
では抗折強度18−/II?r!あった。また、本実施
例に従って接合方法だけを従来法Bにかえて得た同形の
抗折片では適当なペーストが見い出されず接合しなかっ
た。更に、本実施例に従って接合方法だけを従来法Cに
かえた場合、適当な金属が見い出されないので、接合強
度がかなり低く1Kg#ll”以下であった。
As a comparative test, a ceramic body of the same shape made of the same alumina material as above had a bending strength of -'4/
d (20'C), same as before:. , a ceramic body of the same shape made of the same zirconia material as above has a bending strength of 18-/II? r! there were. Further, in the same-shaped bending piece obtained by changing only the joining method to the conventional method B according to this example, an appropriate paste was not found and the joining did not occur. Furthermore, when only the bonding method was changed to conventional method C according to this example, the bonding strength was quite low, less than 1 kg#ll'', because no suitable metal was found.

上述した実施例1乃至3から明らかなように本発明の接
合方法では飛躍的に接合強度が高まり、当然のことなが
ら、接合面に凹凸などをつけたりして接合面積を広げる
ことで更に接合強度を高めることが可能である。しかも
、実施例4のように異なるセラミック材質の接合におい
ても、焼結温度条件等の類似したアルミナ系とジルコニ
ア系を使った場合、高い接合強度が得られ、抗折試験に
おいて接合面で破壊されなかったことは同一セラミック
材質の接合に限らず、異なったセラミック材質の接合を
示す例として特筆すべきことであった。
As is clear from the above-mentioned Examples 1 to 3, the bonding strength of the bonding method of the present invention is dramatically increased, and it goes without saying that the bonding strength can be further increased by increasing the bonding area by adding irregularities to the bonding surface. It is possible to increase Moreover, even when joining different ceramic materials as in Example 4, when alumina and zirconia materials with similar sintering temperature conditions are used, high joint strength is obtained and no fracture occurs at the joint surface in the bending test. The fact that this was not the case is noteworthy because it shows not only the bonding of the same ceramic materials but also the bonding of different ceramic materials.

更に、本発明の接合方法は従来の製造工程に接合工程を
追加するだけで接合体を得ることができ、コスト向で安
価に製造できる利点を有している。
Furthermore, the bonding method of the present invention has the advantage that a bonded body can be obtained by simply adding a bonding step to the conventional manufacturing process, and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は射出成形されたアルミナ系セラミック成形体を
示す図、第2図はアルミナ系成形接合体を示す図、第3
図はアルミナ系接合体から取り出したリークテスト用試
験片を示す図、第4図はアルミナ系接合体から取り出し
た抗折試験用抗折片を示す図、第5図は射出成形された
アルミナ系セラミック成形体とジルコニア系セラミック
成形体を示す図、第6図はアルミナ・シルコニ子系成形
接合体を示す図である。 l・・・射出成形されたアルミナ系セラミック成形体 4・・・アルミナ系成形接合体 7・・・射出成形されたアルミナ系セラミック成形体 8・・・射出成形されたジルコニア系セラミック成形体 11・・・アルミナΦシルコニγ系成形接合体出願人 
京都セラミック株式会社 □□□ 派 法
Figure 1 shows an injection molded alumina ceramic molded body, Figure 2 shows an alumina molded joined body, and Figure 3 shows an alumina ceramic molded body.
The figure shows a leak test specimen taken out of an alumina-based joined body, Figure 4 shows a bending test specimen taken out of an alumina-based joined body, and Figure 5 shows an injection-molded alumina-based specimen. FIG. 6 is a diagram showing a ceramic molded body and a zirconia ceramic molded body, and FIG. 6 is a diagram showing an alumina-silconium molded joined body. l...Injection molded alumina ceramic molded body 4...Alumina molded joined body 7...Injection molded alumina ceramic molded body 8...Injection molded zirconia ceramic molded body 11. ...Alumina Φsilcony γ-based molded joint applicant
Kyoto Ceramic Co., Ltd. □□□ School of Law

Claims (2)

【特許請求の範囲】[Claims] (1) セラミック粉末に有機物バインダーを加えて混
合したものを所望形状に成形して、複数の該生成形体を
圧着し焼成するセラミック接合体の製造方法において、
該生成形体の接合面を加熱によって溶融及び可塑化する
ことで圧着させることを特徴とするセラミック接合体の
製造方法。
(1) A method for manufacturing a ceramic bonded body in which a mixture of ceramic powder and an organic binder is molded into a desired shape, and a plurality of the formed bodies are compressed and fired,
A method for manufacturing a ceramic bonded body, characterized in that the bonded surfaces of the formed body are melted and plasticized by heating to be pressure-bonded.
(2)  前記セラミック接合体が同一または異なるセ
ラミック材負から成る複数の生成形体を接合して成るこ
とを特徴とする特許請求の範囲181項記載の製造方法
(2) The manufacturing method according to claim 181, wherein the ceramic bonded body is formed by bonding a plurality of formed bodies made of the same or different ceramic materials.
JP7366082A 1982-04-30 1982-04-30 Manufacture of ceramic bonded body Pending JPS58190878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7366082A JPS58190878A (en) 1982-04-30 1982-04-30 Manufacture of ceramic bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7366082A JPS58190878A (en) 1982-04-30 1982-04-30 Manufacture of ceramic bonded body

Publications (1)

Publication Number Publication Date
JPS58190878A true JPS58190878A (en) 1983-11-07

Family

ID=13524647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7366082A Pending JPS58190878A (en) 1982-04-30 1982-04-30 Manufacture of ceramic bonded body

Country Status (1)

Country Link
JP (1) JPS58190878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726798B2 (en) * 1995-08-11 2004-04-27 Henkel Kommanditgesellschaft Auf Aktien Polystyrene binders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726798B2 (en) * 1995-08-11 2004-04-27 Henkel Kommanditgesellschaft Auf Aktien Polystyrene binders

Similar Documents

Publication Publication Date Title
US6033788A (en) Process for joining powder metallurgy objects in the green (or brown) state
US20070154666A1 (en) Powder injection molding of glass and glass-ceramics
EP2233232A1 (en) Process for joining powder injection molded parts
KR20090092320A (en) Metal-ceramic composite with good adhesion and method for its production
JPH0264063A (en) Production of bonding type silicon carbide molded article
JP7212633B2 (en) Method for improved manufacture of dual microtextured parts
JPS58190878A (en) Manufacture of ceramic bonded body
JPH0244056A (en) Production of sintered article
WO2007111199A1 (en) Sintered body, light emitting tube and process for manufacturing the same
JP4599591B2 (en) Manufacturing method of ceramic structure
EP0639417B1 (en) Process for manufacturing powder injection molded parts
JPS6342682B2 (en)
JPH0711305A (en) Method for joining injection molded articles of metallic powder and ceramic powder
KR101522440B1 (en) A method of joining ceramic materials
JPH04114959A (en) Production of inorganic baked product
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPH08310878A (en) Method for binding sintered compact and material body of different kind
WO2022191142A1 (en) Composite sintered body, method for manufacturing same, and bonding material
JPS61205103A (en) Manufacture of ceramic hollow shape body
JP2016211042A (en) Method for producing composite sintered compact
JPS63139070A (en) Binder for silicon carbide base formed body and manufacture of silicon carbide base sintered body
JP3878316B2 (en) Method for producing metal molded body
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation