JPS58190831A - Manufacture of quartz glass powder - Google Patents

Manufacture of quartz glass powder

Info

Publication number
JPS58190831A
JPS58190831A JP7085582A JP7085582A JPS58190831A JP S58190831 A JPS58190831 A JP S58190831A JP 7085582 A JP7085582 A JP 7085582A JP 7085582 A JP7085582 A JP 7085582A JP S58190831 A JPS58190831 A JP S58190831A
Authority
JP
Japan
Prior art keywords
quartz glass
gel
boric acid
glass powder
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7085582A
Other languages
Japanese (ja)
Inventor
Yasuo Kuroda
黒田 康雄
Hiroshi Ikeda
博 池田
Koichi Yamakawa
山川 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7085582A priority Critical patent/JPS58190831A/en
Publication of JPS58190831A publication Critical patent/JPS58190831A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To efficiently manufacture high-purity quartz glass powder without requiring a pulverizing stage, by forming fine-grained gel from ethyl silicate or the like in the presence of boric acid as a catalyst and by separating and calcining the gel. CONSTITUTION:To ethyl silicate (or propyl silicate) is added about 4-6mol water contg. boric acid so that boric acid is contained by about 1-300mmol per 1mol ethyl silicate. The molar ratio of ethyl silicate: boric acid: water is about 1: (0.001-0.3):(4-6). They are held in a suspended state by vigorous agitation to form powdered gel. The gel is separated from the mother liquor contg. by- product alcohol, washed, dried, and calcined at about 1,000 deg.C to obtain quartz glass powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は資源的にttllJ+畏の少ない素原料を用い
。 多成分系オグテイ力ルファイバー、集積回路パターン転
写用ホトマスク基板尋の製造用原料粉本並びに半導体デ
バイスの封止材用光槙物として必要rL +%純度の石
英ガラス粉末を1問題の多い粉砕工根金要することなく
、より高い収率で製造すること倉口■能ならしめる石英
ガラス粉末の製造方法に関するものであるう 従来石英ガラス粉末はブラジル原石に代表される艮′直
の天然水晶全ボールミル等によって粉砕して装造されて
いたが、近年三つの間11が顕在化し、鯵r規の製造ル
ートの開発が強く瘉まれているうその間−一の1つは純
度の向上である、天然水晶には良質とけいえ1重金属、
アルファ線放射体婢の不純物が含葦れており、オプティ
カルファイバーでは重金属不純物が光伝送損失を招き、
半導体単結晶用−ヒげルツボとしては重金属不純物の陵
透により、生成単結晶の電子物性的特性を低FL。 ホトマスク基板としては露元用紫外巌の龜曾輌不純物に
よる吸収損失をもたらし、半導体デバイス用封正材の光
鷹材としては倣瞳ウラン不純物から出るアルファ機がデ
バイスの電気的誤動作を惹起するため、それぞれ扁純反
品が9!望されてbる。 第二の間租点は粉砕工程に伴う粉じん発生と粉砕設備か
らの不純物の混入であり、粉砕r:程を要しBい方法の
出現が期待されている。 第三の問題は資諒的制約である。天然水晶の賦存は間圧
しており、しかも枯渇の恐れがあるため。 比較的i菖に存在している珪石を出発原料とする中間体
であって、4留等により梢製の谷烏なハロゲン化珪嵩乃
至珪酸エステルを用いる新プロセスの開発が指向されて
いる。 本出願人はすでに梢1Ii1′Jsによって特に實倫媚
不純物の除去の各易な珪酸ニスアルに!目し、E#:m
エステル中水との柑俗性の籍に低い珪酸エチル乃至珪酸
プロピルに酸触媒の存在−ドで/に會桶濁させることに
より粉粒状グルを生成させ、核扮粒状グルを焼成して石
英ガラス粉末を製造法を完成し。 これt−%許出顕(以下、先細1という)しているが、
この方法は石英ガラスの収率が70数チと比較的低いの
が欠点と1≧っている。 さらに1本出績人は収率のより高い石英ガラス粉の製造
法として、珪酸ニスデルと所定範囲量の水単味とよりな
る混合浴液乃至は珪酸エステルと所定範囲量の水とアル
コールとよりizる混合浴液をドデカン等の該混合浴液
と実質的に相溶性のない分散媒中に分数、S濁させるこ
と妃よって、紛枚状ゲル金生成させ、核#粒状ゲルを焼
成し石英ガラス粉とする方法をすでに特許用m<以下、
光重Uという)してhるが、この万fl:は大過剰の水
と多縦の分散媒とを用いなければIでらないので、粉粒
状ゲルの生成用装置が大!(ν化するとともに該坪酵エ
チル乃至珪酸プロピルの加水分解反応後の残e、ならび
に該分散媒の分離1回収操作が煩唯となる欠点がある。 本4?A明省らは石英ガラス粉末の収率がより高(かつ
操作のより容易な石英ガラス粉末の両省方法全提供すべ
く検討した結果、先細Uにおけるごとき多縦の分散媒を
用いる必要のない、従って核扮杖状ゲルの生成設置肩が
過大とならない辷把′IC細1の改良を指向し、粉粒状
ゲル生成の触媒につAて117t9℃を重ねた結果、ホ
ウ酸を酸触媒として使用することにより−C2目的が禮
成で々ることを見出し。 本発明に到達した口 すなわち1本発明の要旨とするところは、珪酸エチル乃
至ト4:域〕”ロヒ“ル】モル中にn亥[圭、波エチル
乃至珪酸プロピル1モル当り1ミリモル以上300ミリ
以−ドのホウ酸を′ざむ水全禰濁させることにより、粉
粒状ゲルを生成させ、該#祝状グルを分離し、焼成する
ことを特徴とする石英ガラス粉末の製造法、にある、 本発明において、生成した石英ガラス中に甘“まれるホ
ウ素tは、#ホウ酸の添加綾、該水の添M1薫、咳#杖
伏グルの洗#度1児成温lし焼成時間等によるが、該ホ
ウ酸の添加綾が該珪酸エチル乃至該珪酸プロピル1モル
当り31) <リモル以下では添加したホウ素の約5分
の1乃至15分の1の範囲であり、また:i o ミリ
モル以上冷加した場合には串加世に殆んど関係なく、生
成石英ガラス0末1モル当りU化ホウ素Mにして4ミリ
モル前後となる。この相反のホウ素IA貿蓋を含有する
石英ガラス粉は特に高品質の半4体単結晶引上げ用のル
ツボ材としては必ずしも適当ではな^が、いわゆる多成
分系オプティカルファイバー、ホトマスク用基板の製造
1lit科1.Itびにq!−4体デバイスの封止材尤
欄物とし′Cは何ら問題はない。 このように1本発明で1$媒として使用されるホウ11
は上目己先細1で使用された酸触媒より、夾〃11I例
で示すよ・)に1石英ガラスの収4を大幅に向上させ、
しかも製品の石英ガラス中に1波ホウ酸が若干残留して
も問題がないという特異性含有するものである口 なお、該生成石英ガラス粉の粒度については製造条件、
特に中1山体としての上6ピ粉粒状グルの生成工程での
攪件乗件に依存して大幅に変動する。 一方、核石英ガラス粒子の形状としては径のjilつだ
球が大部分を占めるが、なお球が2乃至数個凝結したも
のも一部混在して因る。球が、硬結した形状の粒子は単
球に比べて大ぎhため、水1ilill、風爾等の操作
で分級し1粒径の揃った球状粒子粉t″得ることも口J
能であろう 次に、本発明による石英ガラス粉末の裂遣工悔を詳述す
る。 (1)  原料溶液より粉粒状グルの生成工種珪酸エチ
ル乃至硅酸プロピル中に核唖濱エチル乃至珪酸プロピル
1モル当り1ミリモル以上300ミリモル以下、好f 
L < ri] 0きリセル以上50ミリモル以下のホ
ウ酸を含む水金4モル以上6モルばド加えて激しく攪拌
して収水の懸濁状類を保ち、粉粒状のゲルを生成させる
。この懸濁液の攪拌の初期に856Cを限度としての核
S濁〆浅の加熱は該粉粒状ゲルの生成促進とその安定化
とのために有効である。該粉粒状ゲルの生成に安する時
間は原料珪酸ニスデルの種類、水の浩加緻、ホウ酸の使
用醗、該J1!!濁欣の加熱温度等に依存するが、実施
例のデータを一考にして決めることができ2また該懸濁
液の乳白色1〈の(y会からも知ることができる。 (2)生成した粉粒状ゲルの分離、乾*−[程生成した
該粉粒状グルを副生アルコールを含む母液から分離し2
デカンテーンヨン等の燥作釦より水で洗浄後、乾燥する
。この洗浄は必ずしも必須要件ではないが、練粉粒状ゲ
kK’lJ4留するアルコールが乾燥乃至焼成工程で揮
発するため、安全対策上行なってお(ことが孟ましい、 (3)  粉粒状ゲルの焼成工程 乾燥した#粒状ゲルの焼成温度はいわゆるゾルグル法に
よる石英ガラスの合成におけると同様1 、000°C
PlU債であり、焼成時間は焼成温lWに依存するが、
概ね1時間でよい、昇温速度は杵に限定されないが1球
状粒子を得る場合には粒子の割れを防ぐため、急速な昇
温は避ける必要がある一本発明の中核となる該粉粒状ゲ
ルの製ffi条件の範囲について、上6ピのように櫨々
]仮定したが、それらの限定理由は以゛ドのJrhりで
ある。 (a)  /jCの使用量 本発明における水の便用眩は珪酸エチル乃至珪1段プロ
ピル1モルにつき4モル以上6モル以下であるか、水の
使用量が珪酸エチル乃至珪酸プロピル1モル当り4モル
未満では生成石英ガラス粉末の収率が着しく低く、また
6モルを越えると、禮懸/jilia中に綿A状の塊り
が生成しやす(、目的とする粉粒状ゲルは潜られず、従
って、粉砕工程な(しては石英ガラス粉末は得られない
。 fbl  酸触媒としてのホウ酸の添加量本発明におけ
るホウ酸の添加量は珪酸エチル乃至珪酸プロピル1モル
当り1ミリモル以上300ミリモル以ドの範囲である。 ホウ鍍の添加量が畦
The present invention uses raw materials that are less dangerous in terms of resources. The pulverization process of quartz glass powder with a purity of rL + %, which is necessary as a raw material powder for the production of multi-component Ogtail fibers, photomask substrates for integrated circuit pattern transfer, and as a light source for sealing materials for semiconductor devices This is a method for producing quartz glass powder that requires no capital and has a higher yield.The method for producing quartz glass powder is achieved by Kuraguchi Noh. Conventionally, quartz glass powder is produced using natural crystal whole ball mills, such as Brazilian raw stone. However, in recent years, three methods have emerged, and the development of a production route for horse mackerel has been strongly encouraged.One of the first is to improve purity, natural The crystal contains high quality heavy metals,
Alpha ray emitters contain impurities, and in optical fibers, heavy metal impurities cause optical transmission loss.
For semiconductor single crystals - As a Higel crucible, the electronic and physical properties of the produced single crystal are low due to the penetration of heavy metal impurities. As a photomask substrate, it causes absorption loss due to impurities in the ultraviolet rays used for exposure, and as a light shielding material for semiconductor device encapsulants, alpha particles emitted from uranium impurities cause electrical malfunctions of devices. , each has 9 pieces of flat cloth! be desired. The second drawback is the generation of dust during the pulverization process and the contamination of impurities from the pulverization equipment, and it is expected that a method of pulverization that requires more time and less time will emerge. The third problem is resource constraints. The availability of natural crystals is limited and there is a risk of depletion. Efforts are being made to develop a new process using a halogenated silica or silicate ester, which is an intermediate starting from silica, which is relatively present in irises, and which is produced by a four-distillation process. The present applicant has already mentioned that Kozue 1Ii1'Js has made it especially easy to remove impurities from silicic acid! Eyes, E#: m
A powdery granular glue is produced by mixing ethyl silicate or propyl silicate, which has a low aromaticity with water in the ester, in the presence of an acid catalyst. Perfected the method of producing powder. This has a t-% tolerance (hereinafter referred to as tapered 1),
The disadvantage of this method is that the yield of quartz glass is relatively low at around 70 cm. In addition, the presenter proposed a method for producing quartz glass powder with a higher yield by using a mixed bath solution consisting of Nisdel silicate and a predetermined amount of plain water, or a silicate ester, a predetermined amount of water, and alcohol. The mixed bath solution is partially suspended in a dispersion medium that is substantially incompatible with the mixed bath solution, such as dodecane, to form powder gel gold, and the core/granular gel is fired to form quartz. The method of making glass powder has already been patented.
However, this 10,000 fl. (There is a drawback that the separation and recovery operations of the fermented ethyl to propyl silicate after the hydrolysis reaction of the fermented ethyl to propyl silicate and the dispersion medium are complicated. We sought to provide a method for producing quartz glass powder with higher yields (and easier handling), thus eliminating the need for multi-vertical dispersion media, such as in tapered U, and thus producing nucleated cane-shaped gels. Aiming to improve IC thin 1 so that the installation shoulder is not excessively large, we tested the catalyst for the formation of powdery gel at 117t9℃, and found that -C2 was achieved by using boric acid as an acid catalyst. The present invention has been reached, that is, the gist of the present invention is that n[kei, wave ethyl] to silicic acid in mol of ethyl silicate to ethyl silicate. A quartz quartz product characterized in that a powdery gel is produced by completely turbidating water containing 1 mmol or more and 300 mmol or more of boric acid per 1 mole of propyl, and the gel is separated and fired. In the present invention, the boron t sweetened in the produced quartz glass is determined by the addition of boric acid, the addition of the water, and the degree of washing of the quartz glass. Depending on the temperature of one baby and the firing time, etc., the addition amount of the boric acid is 31) per mol of the ethyl silicate or propyl silicate.If it is less than 1 mol, the amount of boric acid added is about 1/5 to 1/15 of the added boron. In addition, when cooling is performed over i o mmol, the amount of boron uride M is around 4 mmol per 1 mole of silica glass powder produced, regardless of the temperature difference.This opposite boron IA Although the quartz glass powder containing quartz glass powder is not necessarily suitable as a crucible material for pulling high-quality semi-quadramid single crystals, it is suitable for producing so-called multi-component optical fibers and photomask substrates. q!-There is no problem with the sealing material for the 4-body device except for 'C.As described above, the porcelain 11 used as the 1$ medium in the present invention
This method significantly improves the yield of quartz glass compared to the acid catalyst used in the above-mentioned taper 1, as shown in the example below.
Moreover, it has the unique feature that there is no problem even if a small amount of single-wave boric acid remains in the quartz glass of the product.
In particular, it varies greatly depending on the conditions involved in the production process of the upper 6-piece powder granule as a medium-sized body. On the other hand, the shape of the core quartz glass particles is mostly spherical with a radius of about 100 yen, but there are also some particles in which two to several spheres are condensed. Since particles in the form of hardened spheres are larger than monocytes, it is also possible to obtain spherical particle powder with a uniform particle size by classifying it using water, water, etc.
Next, the process of splitting quartz glass powder according to the present invention will be described in detail. (1) Preferably 1 mmol or more and 300 mmol or less of nuclei per 1 mole of ethyl silicate or propyl silicate for producing granular glue from raw material solution.
L < ri] Add 4 to 6 moles of water containing boric acid in an amount of 0 to 50 mmol and stir vigorously to keep the water in suspension and form a powdery gel. In the early stage of stirring this suspension, heating to a temperature of 856 C to a maximum of 856 C is effective for promoting the formation of the powdery gel and stabilizing it. The time required for the formation of the granular gel depends on the type of Nisdel silicate used as the raw material, the concentration of water, the amount of boric acid used, and the J1! ! Although it depends on the heating temperature of the suspension, etc., it can be determined by taking into account the data in the examples.2 It can also be determined from the milky white color of the suspension. Separation of powdery gel, drying*-[The produced powdery gel is separated from the mother liquor containing by-product alcohol.
After washing with water using a drying button such as a decanter, dry it. Although this cleaning is not necessarily an essential requirement, it is recommended to do so as a safety measure, as the alcohol contained in the powdered and granular gel evaporates during the drying and baking process. Firing process The firing temperature of the dried #granular gel is 1,000°C, which is the same as in the synthesis of quartz glass by the so-called Zorgul method.
It is a PlU bond, and the firing time depends on the firing temperature lW,
Approximately 1 hour is sufficient.The heating rate is not limited to a pestle, but when obtaining spherical particles, rapid heating must be avoided in order to prevent cracking of the particles.The powdery gel, which is the core of the present invention. Regarding the range of production ffi conditions, we assumed the range of the above 6 pins, but the reason for these limitations is the following Jr. (a) Usage amount of /jC The dizziness of water in the present invention is 4 mol or more and 6 mol or less per mol of ethyl silicate to 1-stage propyl silicate, or the amount of water used is per mol of ethyl silicate to propyl silicate. If it is less than 4 moles, the yield of the produced quartz glass powder will be extremely low, and if it exceeds 6 moles, cotton A-shaped lumps will easily be formed in the jilia (the desired powder-like gel will not be absorbed). Therefore, quartz glass powder cannot be obtained without the pulverization process. fbl Amount of boric acid added as an acid catalyst The amount of boric acid added in the present invention is 1 mmol or more per 1 mole of ethyl silicate or propyl silicate. It is in the range of millimole or more.

【浚エチル乃至珪酸プロピル1モル
当り1ミリモル未満では石英ガラス粉末の収率向上は顕
著でなく、一方、 3(10ミリモルを越えると、核畦
酸エチル乃至珪酸プロピル中への1偵水の分散が実質的
に不可能となり、球状粒子全主体とした該粉粒状ゲルに
代って粗大な塊状ゲルか生成Tるようになり、粉砕工程
を経なければ石英ガラス粉が得られな(なる。最も望ま
しいのは10〜50ミリモルである。 tc)  核粉柁状ゲルの生成温度 核#粒状ゲルの生成温(yは高温の方が生成速度が早く
好ましいが、#に被水の添加量が少ない場合には核珪酸
エチル乃至核坪峻プロピルの加水分解が十分に進行しな
い間に該MA濁液を85°Cより高温に加熱すると、該
懸濁液の成分1時に被水が蒸発するため、加水分解に不
足t−きたし、未反応並びに蒸発した核珪酸エチル乃至
該珪酸プロピルの回収、再利用のいわゆる繰返し分が斧
(なり好ましくなく、実際上40°C以上70°C以下
の温度範囲が好ましい。但し、ffJ加水分解が十分に
進んだ後にはより高温に加熱して生成した該粉粒状グル
の固化を増進して安定化すれば、以後の工程での操作中
1粒子の変形1割れ等が防止できるので。 特に球状粒子粉を優ようとする場合には有効である、 rKVc、本祷明2実施例によってさらに板体的に説明
するが1本発明Vよその汝旨を4えない限り以下の実d
しUに限定されるものではない。 実権し01 i、! r&エチル2231I7(1モル)をポリエチ
レン製三用フラスコ(内容積500〃五l)に採り、1
.8!M’(30ミリモル)のホウ酸を含む水90m1
(5モル)を加えて該三角フラスコの口をアルミ尚で護
い。 60°CVC加熱しながらマグネテイツクスターラーで
2.5時間偵しく攪拌した結果、S濁液の乳白色1ばが
増したので、さらに0.5時間攪拌金続けた後。 室温まで放冷した。上澄液を#、き、沈殿した粉粒状ゲ
ルを50 mlの水で5回デカンテーションにより洗浄
し、 ’*気気オーブン中0°Cで8時間2次いで15
0°Cで12時間乾燥した後、アルミナボートに載せて
1直置炉中100’C/時の速度で1 、000°Cに
昇温し、その温(で1時間焼成して粉粒状の焼成物55
)を碍だ。 この焼成物の比重は2.19= Sin、含有499.
7俤であり、石英ガラス粉となって^ることか判った。 ホウ素含有皺は酸化ホウ素として04】9%であった。 また珪酸エチルに基づいた坤素収率は91幅であり、ホ
ウ酸の代りに、塩酸、修凌寺の酸触媒を用いた場合の収
470数チより者しく向ヒしていることが確認された。 なお、上記石英ガラス粉の粒子を光学顕微鏡で親察した
ところ、大部分50μm前後の球状を呈しており、一部
該球が2個乃至故個凝結し仕ったものも混在し、さらに
球が割れた形状の粒子も散見された。 実施例2 珪酸プロピル576・〆11(2モル)をテフロン製ビ
ーカー(同番Mlffl)に採取し、ホウ酸6.2 ?
 (100ミリモル)と水162111C9モル)を加
え、 温度を25°Cに保ちなから、インペラ型攪拌器
により6時間撹拌陳、a1丈を60°Cに上げて1.5
時間撹拌し、さらに温1fを9000に上げて1時間攪
拌の後、 I9を秤を吹けながら室温まで放冷した、生
成した粉粒状ゲルを母液から分離し、50m1の7にで
4回洗浄した後、電気オーブン中幌度800Cで8時間
1次いで温度120°Cでさらに8時間乾燥した。乾燥
した該#祝状グルをアルミナボートに載せて?を気炉中
】00梵4の速度で]、(100°Cに昇温し、この温
度で1時間焼成して、粉粒状の焼成物102fを漫だ、 この粉粒状焼成物の7リカ官有jtは99.5%、ホッ
パ含有itは酸化ホウ素として0.43優であつ°C1
該珪酸グロビルを基にしたシリカ収率85嗟で石英ガラ
ス粉の得られることが判明した。なお、該石英ガラス粉
の粒子は大部分車−球1本で、一部1求体が2個乃至数
個凝結したものも甘まれでいたが、球の割れた形状のも
のFiはとんと認められなかったう 実IIJi丙3 蒸溜4NI製したト圭はプロピル288mJ(1モル)
をポリプロピレン製三角フラスコに採り、化會物半導体
単結籟引上げの液体キャプセル用高純L(酸化ホウ素3
.5P(100ミリモル)音源溜水108 ml(6モ
ル)に溶解した液を加え、該三角フラスコの口をアルミ
箔で陸って温度85°CK加熱しなからマグ不デイック
スターラーで5時間攪拌し、生成した粉粒状ゲルを母液
から分喘後、45°Cに加縮した蒸舖水50 mlで6
回洗浄し1次いでdIL気オープン中120°Cで18
時間乾燥した。乾KL後の該粉粒状ゲルを石英ガラス製
ボートに入れ、電気炉中200°C/時の4IfでI/
+4度1,050°CK昇温し。 30分間濁成して48.5Fの#粒状焼成物を得た。 この粉粒状焼成物のシリカ宵有童は99.5%。 ホウ累含有綾は酸化ホウ素として0.39%であり。 発光分光分析の結果、ホウ虞以外の不純物は検出さルず
、高純度の言ホウ素石英ガラス粉であることが判った。 なお、シリカ収率は該珪酸プロピルを基にして80優で
ある。 実癩例4〜lO 第1表に示した瞳の水ならびにホウ酸倉使用し。 1涜エチル中に含ホウ噴水を懸濁した液の温度會55°
Cとしたこと以外は実癩例1と同様の条件で処理して石
英ガラス粉末を装面し、その結果會第1表に示す、、m
1mが示すように、実施例4〜10において石英ガラス
粉はいずれも高収率で潜られた。 第1衣 比較間1〜5 第2衣に示す旨の水とホウ711を使用し、珪酸エチル
中にこのざホウ噴水t−?a濁させた液の温度を55°
Cとした以外は実施例1と同様な条件で処理して石英ガ
ラス金製潰し、その結果金弟2衣に示す。 第2娩が示すように、珪酸エチル1モル当りの水の添加
着が4モルより低い場廿、ホク酸の奮が1ミリモルより
低い場合には収率が著しく低トシ。 また唖識エチル1モル当りの水の添加敏が6モルを越え
る場合、ホウ酸の着が300ミリモルを越える焼汁には
目的とする粉粒状グルではなく塊状ゲルが生成し1石英
ガラス紛木vi慢られなかった。 第2辰 %許出NA人 三菱金R株式会社 代 理 人  白  川  義  直 169−
[If the amount is less than 1 mmol per mole of ethyl or propyl silicate, the improvement in the yield of quartz glass powder is not remarkable; This becomes virtually impossible, and instead of the granular gel, which is made up entirely of spherical particles, a coarse lumpy gel is produced, and quartz glass powder cannot be obtained without a pulverization process. The most desirable value is 10 to 50 mmol. tc) Nucleus Powder Formation temperature of granular gel Nucleus #Gel formation temperature (y is preferable because the formation speed is faster at a higher temperature, but the amount of water added to # If the MA suspension is heated to a temperature higher than 85°C while the hydrolysis of ethyl silicate or propyl silicate has not sufficiently progressed, the water contained in component 1 of the suspension will evaporate. , the so-called repeated recovery and reuse of unreacted and evaporated nuclear ethyl silicate or evaporated propyl silicate is insufficient for hydrolysis. However, after ffJ hydrolysis has sufficiently progressed, if the particles are heated to a higher temperature to promote solidification and stabilize the resulting powdery glue, deformation of one particle during operations in subsequent steps can be reduced. Since cracking, etc. can be prevented.It is particularly effective when trying to improve spherical particle powder. rKVc, This invention will be further explained in detail with reference to 2 examples. Unless possible, the following fruit d
It is not limited to U. At the helm 01 i,! Add r&ethyl 2231I7 (1 mol) to a three-purpose polyethylene flask (inner volume: 500, 5 liters), and add 1
.. 8! 90 ml of water containing M' (30 mmol) of boric acid
(5 mol) was added and the mouth of the Erlenmeyer flask was protected with an aluminum cap. As a result of vigorous stirring using a magnetic stirrer for 2.5 hours while heating at 60° CVC, the milky white color of the S suspension increased, so stirring was continued for an additional 0.5 hour. It was allowed to cool to room temperature. The supernatant was drained and the precipitated granular gel was washed by decantation with 50 ml of water 5 times and incubated at 0 °C for 8 h in an air oven for 2 then 15 h.
After drying at 0°C for 12 hours, it was placed on an alumina boat and heated to 1,000°C at a rate of 100'C/hour in a direct furnace. thing 55
) is good. The specific gravity of this fired product is 2.19=Sin, and the content is 499.
It turned out that it was 7 yen, and it turned into quartz glass powder. The boron-containing wrinkles were 0.4% as boron oxide. In addition, the silica yield based on ethyl silicate was 91%, which was confirmed to be significantly better than the 470% yield obtained when hydrochloric acid and Shuryoji's acid catalyst were used instead of boric acid. It was done. When the particles of the quartz glass powder were examined under an optical microscope, most of them were spherical with a diameter of around 50 μm, and some particles were coagulated with two or even individual particles. Particles with broken shapes were also found here and there. Example 2 Propyl silicate 576.11 (2 moles) was collected in a Teflon beaker (same number Mlffl), and boric acid 6.2?
(100 mmol) and 162,111C (9 mol) of water) were stirred for 6 hours using an impeller-type stirrer while maintaining the temperature at 25°C.
After stirring for 1 hour, the temperature was raised to 9000 °C, and stirring was continued for 1 hour, I9 was allowed to cool to room temperature while blowing on a scale. The resulting powdery gel was separated from the mother liquor and washed 4 times with 50 ml of water. Thereafter, it was dried in an electric oven at a temperature of 800°C for 8 hours, and then at a temperature of 120°C for an additional 8 hours. Place the dried #congratulations letter on an alumina boat? in the air furnace at a speed of 00°C], (raised the temperature to 100°C and fired at this temperature for 1 hour to produce 102f of powdered and granular fired product. The content of the hopper is 99.5%, and the hopper content is 0.43% as boron oxide and °C1
It has been found that silica glass powder can be obtained with a silica yield of 85 cm based on the globil silicate. In addition, most of the particles of the quartz glass powder were one wheel-ball, and some of the particles were found to be two or several particles of one object condensed, but those in the shape of broken spheres were easily recognized. Umi IIJi Hei 3 Distilled 4NI produced Propyl 288 mJ (1 mole)
was placed in a polypropylene Erlenmeyer flask, and high-purity L (boron oxide 3
.. Add 5P (100 mmol) dissolved in 108 ml (6 mol) of sound source water, cover the mouth of the Erlenmeyer flask with aluminum foil, heat to 85°C, and stir for 5 hours with a magnetic stirrer. After separating the resulting powdery gel from the mother liquor, it was mixed with 50 ml of steamed water heated to 45°C.
Washed twice and heated to 120°C in open air for 18 days.
Dry for an hour. The powdered gel after dry KL was placed in a quartz glass boat and heated at 4If at 200°C/hour in an electric furnace.
+4 degrees 1,050°CK temperature increase. The mixture was stirred for 30 minutes to obtain #granular baked products of 48.5F. The silica content of this fired powder is 99.5%. The boron-containing twill is 0.39% as boron oxide. As a result of emission spectroscopic analysis, no impurities other than boron were detected, indicating that the powder was a highly pure boron quartz glass powder. Incidentally, the silica yield is over 80 based on the propyl silicate. Leprosy Example 4-1O The pupil water and boric acid tank shown in Table 1 were used. Temperature of a suspension of boron-containing water in ethyl chloride: 55°
The leprosy was treated under the same conditions as Example 1, except that C was used, and the quartz glass powder was mounted, and the results are shown in Table 1.
As shown by 1m, in Examples 4 to 10, the quartz glass powder was all submerged at a high yield. 1st Clothing Comparison Period 1-5 Using the water and Hou 711 shown in the 2nd Clothing, this Zahou Fountain T-? a. Set the temperature of the cloudy liquid to 55°.
The quartz glass was crushed into gold by processing under the same conditions as in Example 1, except for C, and the results are shown in Figure 2. As shown in the second experiment, when the amount of water added per mole of ethyl silicate is lower than 4 moles, and when the concentration of hydrochloric acid is lower than 1 mmol, the yield is extremely low. In addition, if the concentration of water added per 1 mol of ethyl ethyl is more than 6 mol, the liquid containing more than 300 mmol of boric acid will produce lumpy gel instead of the desired powdery gel. I couldn't be arrogant. 2nd % Permitted NA Person Mitsubishi Kin R Co., Ltd. Representative Yoshi Nao Shirakawa 169-

Claims (1)

【特許請求の範囲】[Claims] (11tI[エチル乃至珪酸プロピル1モル中に該珪酸
エチル乃至#珪酸プロピル1モル当り1ミリモル以上3
00ミリモル以下のホウ酸ヲ宮む水4モル以上6モル以
下を懸濁させることにより、粉粒状グルを生成させ、核
粉粒状ゲルを分離し焼成することを特徴とする石英ガラ
ス粉末の製造方法。
(11tI[1 mmol or more per mol of the ethyl silicate or #propyl silicate in 1 mol of ethyl silicate or propyl silicate
A method for producing quartz glass powder, which comprises suspending 4 mol or more and 6 mol or less of water containing 00 mmol or less of boric acid to form a powdery gel, and separating and firing the core powder/granular gel. .
JP7085582A 1982-04-27 1982-04-27 Manufacture of quartz glass powder Pending JPS58190831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085582A JPS58190831A (en) 1982-04-27 1982-04-27 Manufacture of quartz glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085582A JPS58190831A (en) 1982-04-27 1982-04-27 Manufacture of quartz glass powder

Publications (1)

Publication Number Publication Date
JPS58190831A true JPS58190831A (en) 1983-11-07

Family

ID=13443592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085582A Pending JPS58190831A (en) 1982-04-27 1982-04-27 Manufacture of quartz glass powder

Country Status (1)

Country Link
JP (1) JPS58190831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300026C (en) * 2004-10-12 2007-02-14 西北有色金属研究院 Method for synthesizing high pure superfine biological glass powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300026C (en) * 2004-10-12 2007-02-14 西北有色金属研究院 Method for synthesizing high pure superfine biological glass powder

Similar Documents

Publication Publication Date Title
US3837843A (en) Process for thermal production of magnesium
JPS59501902A (en) Process for producing aluminum trihydroxide with a median diameter adjusted from 2 to 100 microns as required
JPS62176928A (en) Production of quartz glass powder
JPS59501711A (en) Process for producing aluminum trihydroxide with a median diameter of less than 4 microns tailored to requirements
JPS58190831A (en) Manufacture of quartz glass powder
US5338524A (en) Process for the production of coarse-grained, anhydrous calcium monohydrogen phosphate (dicalcium phosphate anhydride) and a device for carrying out the process
US3800032A (en) Active magnesium oxide
JPH0351654B2 (en)
US1959748A (en) Production of precipitated silica
JPH0567574B2 (en)
US3472787A (en) Preparation of dried gel
US2899276A (en) Process for preparing dense
CN110182809B (en) Preparation method of additive silicon pyrophosphate for semiconductor doped phosphorus diffusion source
JPH05339B2 (en)
JPH04154613A (en) Synthetic silica powder having high purity
JPS6117416A (en) High-purity silica and its preparation
JPS6126524A (en) Production of quartz glass
RU2026814C1 (en) Method of high-pure silicon preparing
JPH10226511A (en) Production of super high purity spherical silica fine particle
JP3040310B2 (en) Manufacturing method of synthetic quartz glass
USRE22951E (en) Process of making alkali
JPS6177621A (en) Manufacture of lithium silicate
US2794783A (en) Colloidal silica products
US1760289A (en) Highly-active adsorbent and catalytic mass
US3576597A (en) Method for the preparation of lithium silicate solutions