JPS58190667A - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPS58190667A
JPS58190667A JP7408882A JP7408882A JPS58190667A JP S58190667 A JPS58190667 A JP S58190667A JP 7408882 A JP7408882 A JP 7408882A JP 7408882 A JP7408882 A JP 7408882A JP S58190667 A JPS58190667 A JP S58190667A
Authority
JP
Japan
Prior art keywords
temperature
heat source
heat
condenser
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7408882A
Other languages
Japanese (ja)
Inventor
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP7408882A priority Critical patent/JPS58190667A/en
Publication of JPS58190667A publication Critical patent/JPS58190667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍サイクルの吸熱側即ち蒸発器で気化した冷
媒″t’[収液に吸収させる際冬−発生する熱(以下、
吸収熱と云う)’t’利用して島源流体温度以−ヒの被
加熱流体を取り出す吸収ヒートポンプの改良(:関する
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the heat generated in winter when the refrigerant "t'" vaporized in the endothermic side of the refrigeration cycle, that is, the evaporator, is absorbed into the collected liquid (hereinafter referred to as
Improvement of an absorption heat pump that extracts heated fluid at a temperature higher than the Shimagen fluid temperature by utilizing absorbed heat (referred to as absorption heat).

此種吸収ヒートポンプは吸収冷凍サイクルの放熱側を利
用するようC二した所謂冷温可逆のヒートポンプとは興
なるヒートポンプ専用機で、蒸発器及び吸収器内の圧力
、温度が凝縮器と発生器とで形成された再生凝縮器内の
圧力、温度より高い状態で運転されており、凝縮器≦二
流入する冷却水の温に変動によって蒸発器へ導入される
凝縮冷媒凌が変動すると蒸発器及び吸収器内の圧力、温
度が大巾(二変動して吸収ヒートポンプの熱出力が激し
く変動する欠点があり、又冷却水温が上昇した場合C二
は熱#流体の温度も高(しなければ、凝縮冷媒Y得られ
ず、所定の熱出力が得られないと云う問題点もある。
This kind of absorption heat pump is different from the so-called cold-temperature reversible heat pump, which utilizes the heat radiation side of the absorption refrigeration cycle, and is a dedicated heat pump machine in which the pressure and temperature in the evaporator and absorber are changed by the condenser and generator. The regeneration condenser is operated at a higher pressure and temperature than the formed regeneration condenser, and if the condensed refrigerant introduced into the evaporator changes due to fluctuations in the temperature of the incoming cooling water, the evaporator and absorber There is a drawback that the heat output of the absorption heat pump fluctuates drastically due to large fluctuations in the pressure and temperature within C2, and if the cooling water temperature rises, the temperature of the fluid will also be high (if not, the condensed refrigerant There is also the problem that Y cannot be obtained and a predetermined heat output cannot be obtained.

本発明は、断る点に鑑み、再生凝縮器内(二形成した低
温熱源発生器(−供給する熱#流体より温度の高い熱源
流体を供給する中温熱源発生器を形成し、該宅生器への
熱源流体供給量を凝縮器1;流入させる冷却水温の変化
に応じて調節する構成Y採り、薫発i!!(=導入させ
る凝縮冷媒曖″Ik:調整して吸収ヒートポンプの熱出
力!安定化し、所望温度の被加熱置体を安定的5二取り
出すことt目的としたものである。
In view of the above, the present invention provides a medium-temperature heat source generator that supplies a heat source fluid with a temperature higher than that of the heat source fluid in the regenerative condenser (2 low-temperature heat source generators (-heat supplied), and The amount of heat source fluid supplied to the condenser 1 is adjusted according to changes in the temperature of the cooling water flowing into the condenser 1. The purpose is to stabilize and take out a heated object at a desired temperature in a stable manner.

以下、本発明の実施例を因JH=基き説明する。Hereinafter, embodiments of the present invention will be explained based on factor JH=.

第1図「:おいて、illは冷却水管(2)!収納した
凝縮器(31と熱源管(4)及び15))j’仮収納た
低温熱源発生器(61及び中温熱源発生器(7)とで形
成されている再生凝縮器、(8)は熱源管(91を収納
した蒸発器、0(Iは被加熱流体取り出し管a111に
一収納した吸収器、113は溶液熱費換器で、これらは
冷媒ポンプo3v有する凝縮冷媒液管14J、未蒸発冷
媒液t’s発器+811=再供給するための冷媒ポンプ
uS付きの循環路11e、溶液ポンプ0ηン有する濃液
管1%権液庸下管口9、中間液流下管Iで気密(−配管
接続されている。Qυ、口及び(至)は熱源管(41、
(5)及び(9)の夫々(:設けた循環ポンプ、(24
)は冷却水の凝綱器+31人口側冷却水賃(211:備
えた4度検出器、礪は被加熱流体の吸収器(10出口側
被加熱り体取り出しfauに備えた温度検出器、(ト)
は温度検出器@及び/又は(至)の信号ン受けて循環ポ
ンプ(2υ、@若しくは(21の作動vw4御する制御
器である。
Figure 1: ill is cooling water pipe (2)! Stored condenser (31 and heat source tubes (4) and 15)) j' temporarily stored low temperature heat source generator (61 and medium temperature heat source generator ( 7), (8) is an evaporator that houses a heat source tube (91), 0 (I is an absorber that is housed in a heated fluid extraction tube a111, and 113 is a solution heat exchanger). These are a condensed refrigerant liquid pipe 14J with a refrigerant pump o3v, an unevaporated refrigerant liquid t's generator +811 = circulation path 11e with a refrigerant pump uS for resupply, and a concentrated liquid pipe 1% with a solution pump 0η. The liquid flow down pipe port 9 and the intermediate liquid flow down pipe I are airtightly connected.
Each of (5) and (9) (: installed circulation pump, (24)
) is a cooling water condenser + 31 population side cooling water charge (211: equipped with 4 degree detector, 10 is a heated fluid absorber (10 outlet side heated body extraction fau), ( to)
is a controller that controls the operation of the circulation pump (2υ, @ or (21) in response to the signal from the temperature sensor @ and/or (to).

而して、冬期等のように凝・1器(31(:魔人する冷
却水温が低く、低設定温1tJ2を下の場合には、温度
検出器(24の4M号ζ−よりJWJ器(4)Y介して
ポンプ+23の作動!44止させて中温熱源発生器(7
)への熱源流体供給4I−止め、低温熱源発生器(61
の駆動により冷媒源%を発生させて凝縮冷媒液l得る。
Therefore, when the cooling water temperature is low and is below the low set temperature 1tJ2, such as during the winter, the JWJ device ( 4) Activate the pump +23 via Y! Stop the pump +23 and turn on the medium temperature heat source generator (7
) Heat source fluid supply 4I-stop, low temperature heat source generator (61
A refrigerant source is generated by driving the refrigerant to obtain condensed refrigerant liquid.

そして、冷却水温の昇降C二応じてポンプQυの回転数
を増減させ凝縮冷媒gk′%:!liI整する。次(二
夏期等のように凝IM器+31 にrA人Tる温(が高
く、高設定温度以上の場合1咀ま温度検出器QΦの信号
により制御器((イ)Y介してポンプ123を作動せし
める一方でポンプ(21)の作動ン停止させて中温熱・
原発生器(7)の駆動(二より冷媒蒸気ン発生させて凝
縮冷媒液な得る。そして冷却水温の昇降に応じてポンプ
I23の回転数χ増減させ、凝縮冷媒tt’:A*する
。また、春秋の中間期のように凝縮@(3++ユ流入す
る冷却水温が低設定温間と高設定温rzとの間C二ある
場合には、温(検出器1゛24の信号により制御器(慢
ン介してポンプ+2υ及び・21w作動させ低温及び高
温熱源発生器f61+71の両駆動!−より冷媒蒸気音
発生させて#l縮冷媒液!得る。そして、冷却水温の昇
降に応じてポンプ123の回転数を増減させ、中温熱源
発生器(7)への熱#流体供給*yit増減せしめ再生
凝縮器(1)での##I冷媒輪を調整する。
Then, the rotation speed of the pump Qυ is increased or decreased according to the rise and fall C2 of the cooling water temperature, and the condensed refrigerant gk'%:! liI adjustment. Next (2 summers, etc.), if the temperature of the IM device +31 is high and exceeds the high set temperature, the signal from the temperature sensor QΦ will cause the pump 123 to be activated via the controller ((a) Y). At the same time, the pump (21) is stopped and heated at medium temperature.
Driving of the generator (7) (2) generates refrigerant vapor to obtain condensed refrigerant liquid.Then, the rotation speed χ of the pump I23 is increased or decreased according to the rise and fall of the cooling water temperature, and the condensed refrigerant tt':A* is generated. When the temperature of the inflowing cooling water is between the low set temperature and the high set temperature rz, as in the middle of spring and autumn, the controller ( The pumps +2υ and .21w are operated through the constant operation to generate refrigerant vapor sound from the low-temperature and high-temperature heat source generators f61+71 to obtain #l condensed refrigerant liquid.Then, the pump 123 is activated in accordance with the rise and fall of the cooling water temperature. Adjust the ##I refrigerant wheel in the regenerative condenser (1) by increasing or decreasing the rotation speed to increase or decrease the heat#fluid supply*yit to the medium temperature heat source generator (7).

この上う櫂;、凝縮器(3)(二隠入する冷却水の温度
レベルC;よって再生凝縮器(1)へ異なる温度レベル
の熱$[体Y供給Tるようにし、かつ冷却水温度の上昇
したとき(二は熱#l’jlt体供給tyk−増すこと
(二より冷媒蒸気発生曽l増やして再生凝縮器+11内
の圧力、温度を高め、冷媒蒸気の凝縮itv略一定C;
維持するように調整し、逆シー冷却水温度の下降したと
き(二は熱源流体供給tt’減すること(二より、冷媒
蒸気の凝縮Itt略一定(:なるようC二調整できるの
で、蒸発器+81(:、導入される凝縮冷媒液も殆んど
一定C:維持することが可能となり、冷却水温が変動し
ても蒸発器(81及び吸収器ul内の圧力、温度は殆ん
ど変化しないこととなり、安定した吸収ヒートポンプの
熱出力を得ることができ、かつ所望温度の被加熱流体を
取り出せる。
On top of this, the temperature level of the cooling water entering the condenser (3) is When (2) heat #l'jlt body supply tyk-increase (2) refrigerant vapor generation sol increases to raise the pressure and temperature in the regeneration condenser +11, and the refrigerant vapor condensation itv approximately constant C;
When the reverse sea cooling water temperature decreases (2), the heat source fluid supply tt' decreases (2), the refrigerant vapor condensation Itt is approximately constant (: C2 can be adjusted so that the evaporator +81 (:, the condensed refrigerant liquid introduced can also be maintained almost constant C:, and even if the cooling water temperature fluctuates, the pressure and temperature inside the evaporator (81 and absorber UL) will hardly change. Therefore, stable heat output of the absorption heat pump can be obtained, and the fluid to be heated at the desired temperature can be taken out.

尚、温度検出器r5の信号C二より制御器(至)を介し
てポンプ(至)の回転数Y制御して蒸発器(8)への熱
源流体供給凌χ調節することが望ましい。
It is preferable to control the rotational speed Y of the pump (to) via the controller (to) based on the signal C2 of the temperature detector r5 to adjust the supply of heat source fluid to the evaporator (8).

第2因は1本発明の他の実施例を示す図で、第1図に示
した構成要素と同様のものは同一の図番Y付している。
The second factor is 1. This figure shows another embodiment of the present invention, and components similar to those shown in FIG. 1 are designated with the same figure number Y.

第1図口承した実施例においては5SfI類の異なる温
度レベルの熱源流体が得られる場合ン示したものであり
、県2図C二示す実施例C;おいては2種類の異なるm
rKレベルの熱源流体が得られる場合を示すものである
0g2因において(91はM源流体を蒸発器181i:
、供給した後低温熱源発生器(61(二供給するようC
二収納された熱MA管であり、+27)は熱源管(50
ニ設けた制御弁である。
Figure 1 shows a case in which heat source fluids of different temperature levels of Class 5SfI can be obtained in the oral example, and Example C shown in Figure 2 shows two different types of heat source fluids.
At 0g2 factor (91 indicates the case where the heat source fluid of rK level is obtained, the M source fluid is transferred to the evaporator 181i:
, after supplying the low temperature heat source generator (61 (2C) to supply
There are two heat MA tubes stored, +27) and a heat source tube (50
This is a control valve provided with two.

而して、夏藺等のようt:冷却水温が上昇して設定温;
W以上になると温度検出器・241の信号(−より制御
器((1)!介してポンプ+23t−作動せしめると共
C二冷却水温の上昇(二応じて制御弁r27)の開度を
増加させて中温熱源発生器(7;への熱#流体供給at
’増すよ引;1節する。また、冬期等冷却水温が十分に
低い場合(二はgンプ・ゴ1の作動wQl出する。
Then, like summer, the cooling water temperature rises and the set temperature;
When the temperature exceeds W, the signal from the temperature detector 241 (-) increases the opening of the control valve r27 when the pump is activated via the controller ((1)!). heat #fluid supply to medium temperature heat source generator (7;
'Increase; one verse. In addition, when the cooling water temperature is sufficiently low, such as during winter, (2) the operation wQl of Gump Go 1 is output.

以上のよう(=、本発明は、此種吸収ヒートポンプの再
生凝縮器C二例えば太陽熱利用温水等の熱源流体を供給
する中温島原発生器Y形成し、該発生器への熱源流体供
給量t%凝縮器I:流入する冷却水温χ検知する検出器
の信号篭;より調節する一制a機構’t’Iliえたも
のであるから、安定した教程ヒートポンプの熱出力を得
ることができ、所望温度の被加熱流体ン得ることができ
る。
As described above (=, the present invention forms a regeneration condenser C2 of this type of absorption heat pump and a medium-temperature Shimabara generator Y that supplies a heat source fluid such as hot water using solar heat, and the amount of heat source fluid supplied to the generator is t%. Condenser I: The inflowing cooling water temperature χ is detected by the detector's signal cage; it is equipped with a one-control mechanism for more adjustment, so it is possible to obtain a stable heat pump heat output and maintain the desired temperature. Heated fluid can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び112図は本発明の実施例Y示す回路構成概
略説明図である。 (1)・・・両生凝縮器、(3)−・・凝縮器、(6ト
・・低温熱源発生器、(7)・・・中温熱、原発生器、
(8)・・・蒸発器、1G・・・吸収器、C211,@
・・・循環ポンプ、(至)・・・温度検出器、(至)・
−制御器、27)・・・制御弁。
1 and 112 are schematic explanatory diagrams of circuit configurations showing embodiment Y of the present invention. (1)...amphibious condenser, (3)--condenser, (6th...low-temperature heat source generator, (7)...medium-temperature heat source generator,
(8)...Evaporator, 1G...Absorber, C211, @
...Circulation pump, (to)...Temperature detector, (to)・
-Controller, 27)...Control valve.

Claims (1)

【特許請求の範囲】[Claims] +1)  排温水等の熱#流体が供給される低温熱源発
生器と中温熱源発生器と冷却水が流通する凝縮器とン形
成した再生a!縮器、排温水等の熱源流体が供給される
蒸発器、冷媒を吸収する際:;発生する熱(二より熱源
流体温度以上の被加熱流体ン取り出せるようにした吸収
器及び溶液熱費換器を配管接続し、前記凝縮器Cfi人
する冷却水温間χ検翅する検出器と、該検出器の信号C
二より前記中温熱源発生器への熱隙流体供給壜tm節す
る制御機構tWiえて成る吸収ヒートポンプ。
+1) Regeneration a! formed by a low-temperature heat source generator to which heat fluid such as waste hot water is supplied, a medium-temperature heat source generator, and a condenser through which cooling water flows. condenser, evaporator to which heat source fluid such as waste hot water is supplied, and when absorbing refrigerant: heat generated (absorber and solution heat exchanger capable of extracting heated fluid whose temperature is higher than the heat source fluid temperature) A detector is connected to the condenser Cfi to measure the temperature of the cooling water, and the signal C of the detector is connected to the condenser Cfi.
2. An absorption heat pump comprising a control mechanism for supplying gap fluid to the medium temperature heat source generator.
JP7408882A 1982-04-30 1982-04-30 Absorption heat pump Pending JPS58190667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7408882A JPS58190667A (en) 1982-04-30 1982-04-30 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7408882A JPS58190667A (en) 1982-04-30 1982-04-30 Absorption heat pump

Publications (1)

Publication Number Publication Date
JPS58190667A true JPS58190667A (en) 1983-11-07

Family

ID=13537069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7408882A Pending JPS58190667A (en) 1982-04-30 1982-04-30 Absorption heat pump

Country Status (1)

Country Link
JP (1) JPS58190667A (en)

Similar Documents

Publication Publication Date Title
CA1257777A (en) Heat pump systems
JPS58190667A (en) Absorption heat pump
JPH0621736B2 (en) Absorption refrigerator
JP3381094B2 (en) Absorption type heating and cooling water heater
JPS62106268A (en) Absorption refrigerator
JPH0621734B2 (en) Absorption refrigerator
JP3158518B2 (en) Absorption heat pump controller
JPS58136956A (en) Absorption heat pump
JPS61140757A (en) Absorption heat pump device
JP2744036B2 (en) Absorption refrigerator
JPS6148063B2 (en)
JPS6093271A (en) Controller for absorption heat pump
JPS61197965A (en) Absorption refrigerator
JPS5989962A (en) Absorption heat pump device
JPS58203364A (en) Absorption heat pump
JPH0444177B2 (en)
JP2777452B2 (en) Absorption refrigerator
JPS6222968A (en) Single double effect absorption refrigerator
JPH05280831A (en) Absorber
JPS61235653A (en) Absorption refrigerator
JPS6144260A (en) Controller for absorption heat pump
JPS6213970A (en) Single double effect absorption refrigerator
JPS5944559A (en) Controller for absorption type cold and hot water machine
JPS61125144U (en)
JPS59200165A (en) Controller for absorption heat pump