JPS58190116A - Elastic convolver - Google Patents

Elastic convolver

Info

Publication number
JPS58190116A
JPS58190116A JP7311582A JP7311582A JPS58190116A JP S58190116 A JPS58190116 A JP S58190116A JP 7311582 A JP7311582 A JP 7311582A JP 7311582 A JP7311582 A JP 7311582A JP S58190116 A JPS58190116 A JP S58190116A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
substrate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7311582A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nishikawa
勝彦 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7311582A priority Critical patent/JPS58190116A/en
Publication of JPS58190116A publication Critical patent/JPS58190116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/30Time-delay networks
    • H03H9/42Time-delay networks using surface acoustic waves
    • H03H9/44Frequency dependent delay lines, e.g. dispersive delay lines

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To secure a necessary length of an output electrode even if a short piezoelectric substrate is used, by using a surface acoustic wave guide path including at least >=1 curve part to form an output electrode which extracts a convolution signal. CONSTITUTION:A substrate 1 is made of a material like LiNbO3, etc. having a large performance exponent M that shows the intensity of a nonlinear interaction. Then roller-screen type converters 2 and 3 which convert an electric signal into a surface acoustic wave are formed on the surface of the substrate 1, and at the same time beam compressors 4 and 5 are provided on an extending line in the propagating direction of the surface acoustic wave to decrease the beam width of the surface acoustic wave. Then two surface acoustic waves signals passed through the compressors 4 and 5 are made incident to a U-shaped convolution signal extracting electrode 6 through end surfaces opposite to each other. Thus a convolution signal having carrier angle frequency 2omega is obtained. In this case, an earth electrode 7 is provided along the electrode 6 to secure a reference potential.

Description

【発明の詳細な説明】 本発明は、互いに逆方向に伝搬する弾性表面波信号のコ
ンポリス−ジョンを音醤伝搬媒体の非線形効果を利用し
て取り出すエラスティック・コンボルバの構造に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an elastic convolver that extracts conpolis regions of surface acoustic wave signals propagating in opposite directions by utilizing the nonlinear effect of a sonic propagation medium.

近時、通信方式の1%度化の普請に伴ない、スプレッド
スペクトラム通信方式が注目をあびている。
Recently, spread spectrum communication methods have been attracting attention as communication methods have been promoted to 1% degree.

スプレッドスペクトラム通信方式は、情報の伝送に必要
な周波数帯埴輪に較べて非常に大きな(例えば1000
倍)周波数帯域に広げて伝送し、受信機で再び出動を行
なうもので、妨害波の除去効果が者しい。理想的に達成
しつる妨害波除去比は、信号の1チツプの継続時間Tと
送信信号の帯域幅Wの積で与えられるプロセス利得に等
しい。しかし今符号化波形が時間に対して不fあるいは
妨害者が子側できるように変化する場合には意図的な妨
害が可能となジ、プロセス利得の一部ないし全てが失わ
れることかめる。そこで例えばスプレッドスペクトラム
通信の1つである周波数ホッピングシステムでは各ベー
タピットを構成する一連のパルス列の各パルス毎にその
搬送波周波数を変化させる。受信者は変化のシーケンス
を予め知っているので、信号をII調することは可能で
ある。一方妨害者が妨害を行なうためには、全帯域にわ
たって妨害するか、あるいは次のパルスの搬送波周波数
はいくらかを予め推し醐る必要がある。
The spread spectrum communication method has a much larger frequency band (for example, 1,000
2) It transmits over a wide frequency band, and then sends it out again at the receiver, making it very effective in removing interference waves. The ideally achieved interference rejection ratio is equal to the process gain given by the product of the duration T of one chip of the signal and the bandwidth W of the transmitted signal. However, if the encoded waveform changes over time in such a way as to cause a disturbance or a disturbance to occur, intentional disturbance is possible, and some or all of the process gain can be seen to be lost. For example, in a frequency hopping system, which is one type of spread spectrum communication, the carrier wave frequency is changed for each pulse of a series of pulse trains forming each beta pit. Since the receiver knows the sequence of changes in advance, it is possible to tone the signal to II. On the other hand, in order for a jammer to cause interference, it is necessary to interfere over the entire band or to determine in advance what the carrier frequency of the next pulse will be.

また、上記妨害波除去効果以外にも送信波形を任意に変
化させうる通信システムは多くのメリットを有する。こ
のよりな拳情によシ、スプレッドスペクトラム信号を受
信するデバイス(コリレータ)はプログラマブルである
ことが強く望まれており、エラスティック・コンボルバ
はその構造の簡単さ、高性能などの点から極めて注目さ
れている。
In addition to the interference wave removal effect described above, a communication system that can arbitrarily change the transmission waveform has many advantages. In line with this trend, it is strongly desired that the device (correlator) that receives the spread spectrum signal be programmable, and the elastic convolver is attracting a lot of attention due to its simple structure and high performance. has been done.

エラスティック・コンボルバは、リチウムナイオベー)
 (LiNbO5)などの圧電媒体上を互いに逆方向に
2つの弾性表面波信号を伝搬させ、これら2信号のコン
ポリエージ璽ン出力を得るものである。このコンポリ凰
−シ冒ン信号を得るには、弾性表面波に対する媒体の何
らかの物理的非線形周波数を共にωとすると出力信号は
2ωの搬送波周波数を有し、その出力検出用電極として
L一様な金属薄膜が用いられる。必要な金属薄膜電極の
長さし1ま受信する信号のlテップの長さをτ(Mc)
Elastic convolver is lithium niobe)
Two surface acoustic wave signals are propagated in opposite directions on a piezoelectric medium such as (LiNbO5), and a composite output of these two signals is obtained. To obtain this composite signal, if some physical nonlinear frequencies of the medium for surface acoustic waves are both ω, the output signal has a carrier frequency of 2ω, and L is uniformly used as the output detection electrode. A thin metal film is used. The required length of the metal thin film electrode is 1. The length of l step of the signal to be received is τ (Mc).
.

弾性表面波速度t−サ(m/ s−e )とすると、υ
Tより大でなければならない。υは通常4000〜4o
o。
If the surface acoustic wave velocity is t-sa (m/s-e), then υ
Must be greater than T. υ is usually 4000~4o
o.

(#l/、e、 )であるから比較的長い信号例えばτ
=50μMeの16号のコンボリューションを得るため
にはLとして15〜20C11が必要となる。従来知ら
れている出力電極の形状は弾性表向波の伝搬方向に沿っ
てia衣の矩形であった。それゆえ上記信号長を取り扱
うためには圧電基板の長さは15〜204以上必要で、
したがって結晶基板の入手が困難であシ、また、たとえ
入手できたとしても極めて高薗である。さらに製造に際
しても、マスク製作の困難さ、製作中の破損のしやすさ
等多くの問題点を有していた。
(#l/, e, ), so a relatively long signal, for example τ
In order to obtain a convolution of No. 16 with =50 μMe, 15 to 20C11 is required as L. The shape of a conventionally known output electrode is a rectangle that extends along the propagation direction of a surface acoustic wave. Therefore, in order to handle the above signal length, the length of the piezoelectric substrate must be 15 to 204 or more.
Therefore, it is difficult to obtain a crystal substrate, and even if it can be obtained, it is extremely expensive. Furthermore, there have been many problems in manufacturing, such as difficulty in mask manufacturing and ease of damage during manufacturing.

本発明の目的は上記欠点を改善したすなわち従来に比べ
て短かい圧電基板を用いるにも拘らず、必要なコンポリ
ューシ璽ン出力電極長さを有する工2スティック・コン
ボルバを提供するととKある。
An object of the present invention is to improve the above-mentioned drawbacks, that is, to provide a two-stick convolver which has the necessary length of convolution output electrodes despite using a shorter piezoelectric substrate than the conventional one.

本発明によれば、圧電基板上に、弾性表面波信号を励振
する第1および第2のすだれ状変換器と、前記両賞換器
からの弾性表面波信号を互いに逆方向に伝搬させ、基板
の非線形作用を利用して前記2信号のコンボリューショ
ン信号を取シ出す出力電極を具えたエラスティック・コ
ンボルバにおいて、前記出力電極が少なくとも1ケ所以
上の曲線部を含む弾性表面波導波路から成ることを特徴
とする構造となっている。
According to the present invention, the first and second interdigital transducers that excite surface acoustic wave signals are disposed on the piezoelectric substrate, and the surface acoustic wave signals from the two award converters are propagated in opposite directions to each other. In the elastic convolver, the output electrode is provided with an output electrode that extracts a convolution signal of the two signals using the nonlinear effect of It has a characteristic structure.

以下、本発明について実施例を示す図面を参照しながら
説明する。図は本発明によるエラスティック・コンボル
バの一実施例を示す0図において1は圧電基板で、後で
のべるように非線形相互作用の強さを表わす性能指数M
の大きな材料例えばLiNb0.などが望ましい材料で
ある。この圧電基板の表面に、電気信号を弾性表面波に
変換するすだれ状変換器2および3、それらの弾性表面
波が伝搬する方向の延長上に、弾性表向波のビーム幅を
狭小ならしめるビーム圧紬器4および5、さらに圧縮さ
れた29$性表向波ビームを導波し、それら2信号のコ
ンボリューションを取プ出すだめの出力電極6が形成さ
れている。これらのパターン(すだれ状変換器ビーム圧
縮器、出力電極等)はいずれも導電性の薄膜から成り、
通常フォトリングラフィ技術を用いて製作される。その
製作プロセスは当業者によく知られているので省略する
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to drawings showing embodiments. The figure shows an example of the elastic convolver according to the present invention.
For example, LiNb0. etc. are desirable materials. On the surface of this piezoelectric substrate, there are interdigital transducers 2 and 3 that convert electrical signals into surface acoustic waves, and a beam that narrows the beam width of the surface acoustic waves on the extension of the direction in which the surface acoustic waves propagate. Compressors 4 and 5, and an output electrode 6 for guiding the compressed $29 surface wave beam and extracting the convolution of these two signals are formed. All of these patterns (interdigital transducer beam compressor, output electrode, etc.) are made of conductive thin films;
Usually produced using photolithography technology. The manufacturing process is well known to those skilled in the art and will therefore be omitted.

さてすだれ状電極2,3によって励振された同じ角周波
数ωをもつ2つの弾性表面波信号は、それぞれビーム幅
圧縮器4および5によって、そのビーム幅が圧縮される
。ビーム幅圧縮器として本実施例ではホーン型の圧紬器
を用いているが、他のタイプ例えばマルチ・ストリップ
・カプラを応用した圧輪器、等測を用いてもよい。さら
に球面波状弾性表面波を励振する湾曲すだれ状変換器を
用いるか、あるいは直接狭ビーム幅の弾性表面波を能率
よく励振するチャープすだれ状変換器などを用いればビ
ーム幅圧縮器を省くことも可能である。このような弾性
表面波信号の狭ビーム化が必要な理由は次の通りである
。すなわち、よく知られているように弾性表面波コンボ
ルバの終端開放出力電圧Vo (RMS値)は、2人力
音響パワー密度P1a/W、P、a/Wの積に比例し、
次式で表わされる。
Now, the beam widths of the two surface acoustic wave signals having the same angular frequency ω excited by the interdigital electrodes 2 and 3 are compressed by beam width compressors 4 and 5, respectively. Although a horn-type compressor is used as the beam width compressor in this embodiment, other types such as a compressor using a multi-strip coupler, etc. may also be used. Furthermore, the beam width compressor can be omitted by using a curved interdigital transducer that excites spherical surface acoustic waves, or by using a chirped interdigital transducer that directly excites narrow beam width surface acoustic waves efficiently. It is. The reason why it is necessary to narrow the beam of the surface acoustic wave signal is as follows. That is, as is well known, the open-ended output voltage Vo (RMS value) of a surface acoustic wave convolver is proportional to the product of two human acoustic power densities P1a/W, P, and a/W.
It is expressed by the following formula.

Vo =垢(P、* −Pea )’    (1)こ
\で、Mは非線形基板材料の性能指数、Pea 。
Vo=Pea (P, *-Pea)' (1) Here, M is the figure of merit of the nonlinear substrate material, Pea.

Pemは人力音響パワー、Wはビーム幅である。上式か
ら明らかな如くWを狭くすれば、コンボリューション出
力電圧Voを増大させることができる。
Pem is the human acoustic power, and W is the beam width. As is clear from the above equation, by narrowing W, the convolution output voltage Vo can be increased.

通常狭小化された弾性表面波のビーム幅は表面波波長の
3倍程度である。
Normally, the beam width of a narrowed surface acoustic wave is about three times the wavelength of the surface acoustic wave.

ビーム幅圧篭器4および5を通過し九2弾性表面波信号
は、U字形のコンボリューション信号取り出し用電極6
に、互いに反対側の端面から入射する。この′#jL極
6は同時に表面波に対する導波路としての機能をも兼ね
具えているので、表面波はこの導波路に沿って伝搬し、
両表面波は互いに重なり合う。すると基板材料の表面波
に対する非疎:L ’/3ン侶号が電極6に生ずる。基
準電位としては出力m極6に沿って並設された接地電極
7が選ばれる。実施例において接地電極7は電極6の片
側のみに設置されているが、両側に設けてもよく、また
4&の製面上で電極6と対向する位tK設置してもよい
The surface acoustic wave signals passing through the beam width intensifiers 4 and 5 are converted into a U-shaped convolution signal extraction electrode 6.
The light enters from opposite end faces. Since this '#jL pole 6 also has the function of a waveguide for surface waves, the surface waves propagate along this waveguide,
Both surface waves overlap each other. Then, the non-sparity of the substrate material relative to the surface waves: L'/3 ratio occurs at the electrode 6. A ground electrode 7 arranged in parallel along the output m-pole 6 is selected as the reference potential. In the embodiment, the ground electrode 7 is installed only on one side of the electrode 6, but it may be installed on both sides, or it may be installed at a position facing the electrode 6 on the surface of the 4&.

従米知られているエラスティック・コンボルバは、2個
の入力変換器と出力11L極が一直線上に配置された構
造を有していた。したがってより長い継続時間の1g号
のコンポリ、−7ヨンを得るためには出力電極の長さを
それに比例して延ばす必要があり、そのためにはより大
きな圧電基板を必要とした。これに対して上記実施例に
示すU字形導波路を用いれば、導波路を形成するに必要
な実効的基板長さは1/2以下に短縮される。同様に曲
線導波部を2ケ所有する例えばS字型導波路を用いれば
1/3以下に短縮される。
The known elastic convolver had a structure in which two input transducers and an output 11L pole were arranged in a straight line. Therefore, in order to obtain a 1g component with a longer duration, the length of the output electrode had to be increased proportionately, which required a larger piezoelectric substrate. On the other hand, if the U-shaped waveguide shown in the above embodiment is used, the effective substrate length required to form the waveguide can be reduced to 1/2 or less. Similarly, if an S-shaped waveguide having two curved waveguides is used, for example, the length can be reduced to 1/3 or less.

出力′電極6のより望ましい条件は、コンボリューショ
ンの効率が場所によらず一定であることである。したが
って(1)式の右辺が導波電極6のあらゆる位置で一定
であることが必要である。しかるに性能化数Mは一般に
基板のカット及び弾性表面波の伝搬方向によって異なる
。し九がってこれを補正するには電極6の幅Wを伝搬方
向に沿って変化させ、M/Wを一定に保持すればよい。
A more desirable condition for the output electrode 6 is that the convolution efficiency be constant regardless of location. Therefore, it is necessary that the right side of equation (1) is constant at all positions of the waveguide electrode 6. However, the performance improvement number M generally varies depending on the cut of the substrate and the propagation direction of the surface acoustic wave. Therefore, in order to correct this, it is sufficient to change the width W of the electrode 6 along the propagation direction and keep M/W constant.

例えば基板1をYカッ) LzNbO,とし、すだれ状
変換器2および3によって励賑され九弾性表面波の伝搬
方向を2軸とすれば、この2方向に伝搬する表面波に対
するMはX方向伝搬の場合の約3倍である。
For example, if the substrate 1 is Y (Y) LzNbO, and the propagation directions of the nine surface acoustic waves excited by the interdigital transducers 2 and 3 are two axes, then M for the surface waves propagating in these two directions is the X direction propagation. This is about three times as large as in the case of .

したがって曲シ導波電極部8の電極幅は直線部の電極幅
の約1/3にするのが望ましい。
Therefore, it is desirable that the electrode width of the curved waveguide electrode section 8 be approximately 1/3 of the electrode width of the straight section.

以上説明したごとく、本発明によれは従来に比べ半分以
下の長さの圧電基板を用いて必要なコンボリューション
電極長さを有するエラスティック・コンボルバを実現で
きるので、結晶基板の低価格化、製作の容易さ等その工
業的価値は啄めて大なるものがある。
As explained above, according to the present invention, it is possible to realize an elastic convolver having the required convolution electrode length using a piezoelectric substrate that is less than half the length of the conventional piezoelectric substrate, thereby reducing the cost and manufacturing of the crystal substrate. Its industrial value, such as its ease of use, is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に基づくエラスティック・コンボルバの一実
施例を示す、1は圧電基板、2,3は入力用すだれ状変
換器、4.5は弾性表向波のビーム幅圧縮器、6はコン
ボリューション信号取り出し用電極、8は接地電極であ
る。
The figure shows an embodiment of the elastic convolver according to the present invention. 1 is a piezoelectric substrate, 2 and 3 are interdigital transducers for input, 4.5 is a beam width compressor for surface acoustic waves, and 6 is a converter. The electrode for taking out the evolution signal, 8 is a ground electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)圧電基板上に、弾性表面波信号を励振する第1お
よび第2のすだれ状変換器と、前記両変換器からの弾性
表面波信号を互いに逆方向に伝搬させ、基板の非線形作
用を利用して前記2信号のコンポリニー7目ン信号を織
シ出す出力′#tfiを具えたエラスティック・コンボ
ルバにおいて、前記出力電極が少なくとも1ケ所以上の
曲線部を含む弾性表面波導波路から成ることを特徴とす
るエラスティック・コンボルバ。
(1) First and second interdigital transducers that excite surface acoustic wave signals are placed on a piezoelectric substrate, and the surface acoustic wave signals from both transducers are propagated in opposite directions to suppress the nonlinear action of the substrate. In the elastic convolver equipped with an output '#tfi for weaving a composite signal of the two signals, the output electrode is composed of a surface acoustic wave waveguide including at least one curved portion. Features an elastic convolver.
(2)前記出力11L極の幅をW、基板材料の弾性表面
波に対する非線形性能指数をMとし友とき、前記出力電
極の長さ方向に沿ってM/Wが一足となるようにWを定
めたことを特徴とする特許請求範囲第1項記載の工2ス
ティック・コンボルバ。
(2) Let W be the width of the output 11L pole and M be the nonlinear figure of merit for surface acoustic waves of the substrate material, and then set W so that M/W is one foot along the length direction of the output electrode. A two-stick convolver according to claim 1, characterized in that:
JP7311582A 1982-04-30 1982-04-30 Elastic convolver Pending JPS58190116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311582A JPS58190116A (en) 1982-04-30 1982-04-30 Elastic convolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311582A JPS58190116A (en) 1982-04-30 1982-04-30 Elastic convolver

Publications (1)

Publication Number Publication Date
JPS58190116A true JPS58190116A (en) 1983-11-07

Family

ID=13508939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311582A Pending JPS58190116A (en) 1982-04-30 1982-04-30 Elastic convolver

Country Status (1)

Country Link
JP (1) JPS58190116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264809A (en) * 1985-05-14 1986-11-22 金星エレクトロン株式会社 Elastic surface wave apparatus
JP2007044979A (en) * 2005-08-09 2007-02-22 Kawakami Sangyo Co Ltd Method and apparatus for producing plastic bubble sheet with lamination film laminated on back film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264809A (en) * 1985-05-14 1986-11-22 金星エレクトロン株式会社 Elastic surface wave apparatus
JP2007044979A (en) * 2005-08-09 2007-02-22 Kawakami Sangyo Co Ltd Method and apparatus for producing plastic bubble sheet with lamination film laminated on back film

Similar Documents

Publication Publication Date Title
US6674215B1 (en) Elastic wave device
US3990023A (en) Elastic surface wave device
JPH06188676A (en) Correlator
JPH05304436A (en) Surface acoustic wave device
EP0602660A2 (en) Surface acoustic wave device and communication system using it
US4405874A (en) Surface acoustic wave (saw) devices having series-connected inter-digital transducers
JPS58190116A (en) Elastic convolver
US5530410A (en) Acoustic frequency mixing devices using potassium titanyl phosphate and its analogs
US5448125A (en) Surface skimming bulk wave generation in KTiOPO4 and its analogs
CA1178667A (en) Surface acoustic wave (saw) devices
JPH09107269A (en) Acoustic wave filter with filter shaping element, and its manufacture
JPS59122109A (en) Elastic convolver
JPH0451088B2 (en)
JP3068035B2 (en) Surface acoustic wave device
JP2985457B2 (en) Acousto-optic tunable wavelength filter
JP3101445B2 (en) Surface acoustic wave convolver
RU1804646C (en) Convolver
JPH08222992A (en) Surface acoustic wave convolver
EP0747850B1 (en) Surface acoustic wave device and communication system using the same
JPH01252015A (en) Surface acoustic wave transducer
JP2001267876A (en) Surface acoustic wave device
Shibayama et al. UHF Range Surface Acoustic Wave Filters Using Uni-direcxional Interdigital Transducers
JP2004363824A (en) Surface acoustic wave filter
Yamaguchi et al. Waveguide-type saw filter using energy focusing interdigital transducers
JPS58196712A (en) Elastic convolver