JPS58189939A - Cathode assembly - Google Patents

Cathode assembly

Info

Publication number
JPS58189939A
JPS58189939A JP57073741A JP7374182A JPS58189939A JP S58189939 A JPS58189939 A JP S58189939A JP 57073741 A JP57073741 A JP 57073741A JP 7374182 A JP7374182 A JP 7374182A JP S58189939 A JPS58189939 A JP S58189939A
Authority
JP
Japan
Prior art keywords
heat shield
shield
heat
cathode
assembling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57073741A
Other languages
Japanese (ja)
Other versions
JPH0218533B2 (en
Inventor
Shigeo Sasaki
茂雄 佐々木
Toshiro Maruyama
敏郎 丸山
Masaru Manabe
真鍋 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57073741A priority Critical patent/JPS58189939A/en
Publication of JPS58189939A publication Critical patent/JPS58189939A/en
Publication of JPH0218533B2 publication Critical patent/JPH0218533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment

Abstract

PURPOSE:To reduce thermal strain, then prevent hydrogen embrittlement and shorten time for assembling as well as to aim at improvement in accuracy, by assembling each of constituent parts of a heat-shield with a hemming method, while making the thermal stress added each other so as to become zero and further simplifying the heat-shield in structure. CONSTITUTION:A first lug 5a of a projecting piece of an inside inner cylinder heat-shield 5, a second lug 6a of a projecting piece locking an outside inner cylinder heat-shield 6 and a front heat-shield 4, a third lug 6b of a projecting piece locking a rear heat-shield 7, and an outside cylinder hemming 6c bending the peripheral end part of the outside shield 6 into a lug form as well, a rectangular hole 7a being open to the rear heat-shield 7 and a groove 7b notched on the circumference of the rear shield are all formed up. Assembling of each constituent part of these heat-shields is performed by a hemming method whereby the thermal stress added each other is made so as to become zero. With this, not only thermal strain can be reduced but the shortening of time for assembling and assembling accuracy can be improved.

Description

【発明の詳細な説明】 この発明は、電子ビームを発生させる棒状陰極アッセン
ブリに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rod-shaped cathode assembly for generating an electron beam.

従来この種の装置として第1図に示すものがあった。図
において、(1)は先端面から電子ビームを放出する円
柱形の棒状陰極、(2)は棒状陰極(1)のまわりに同
軸に配置されたコイル状のフィラメント、(3)は棒状
陰極(1)およびフィラメント(2)から放射・伝達さ
れる熱を反射断熱し、棒状陰極(1)およびフィラメン
ト(2)の温度を均一にする熱シールドであり、前面熱
シールド(4)、内側円筒熱シールド(5)、外側円筒
熱シールド(6)、後面熱シールド(7)から構成され
る。(8ンは各円筒熱シールドの円周と前面熱シールド
(4)および後面熱シールド(7)を数個所、機械的に
固定する固定リブで前面熱シールド固定リブ(82)と
後面熱シールド固定リブ(8b)から成る。
A conventional device of this type is shown in FIG. In the figure, (1) is a cylindrical rod-shaped cathode that emits an electron beam from its tip, (2) is a coiled filament coaxially arranged around the rod-shaped cathode (1), and (3) is a rod-shaped cathode ( It is a heat shield that reflects and insulates the heat radiated and transmitted from the rod-shaped cathode (1) and filament (2), and uniformizes the temperature of the rod-shaped cathode (1) and filament (2). It consists of a shield (5), an outer cylindrical heat shield (6), and a rear heat shield (7). (No. 8 is a fixing rib that mechanically fixes the circumference of each cylindrical heat shield, the front heat shield (4), and the rear heat shield (7) at several places. The front heat shield fixing rib (82) and the rear heat shield are fixed at several places. Consisting of ribs (8b).

(9)はセラミック板、(イ)はウヱネルト、(ロ)は
rih極、(2)は電子ビーム、0はフィラメントサポ
ートである。
(9) is a ceramic plate, (a) is a Wenert, (b) is a RIH pole, (2) is an electron beam, and 0 is a filament support.

第2図に棒状陰極先端面付近の拡大図を示す。Figure 2 shows an enlarged view of the vicinity of the tip of the rod-shaped cathode.

図において、Gは同軸に配置されたフィラメント(2)
と棒状陰極(1)との間−隙、Dは前面熱シールド(4
)の孔径、Hlはフィラメント(2)の先端部と前面熱
シールド(4)内面までの距離、H!はフィラメント(
2)の先端部と棒状陰極(1)の先端面までの距離であ
る。
In the figure, G is a coaxially arranged filament (2)
and the rod-shaped cathode (1), and D is the front heat shield (4).
), Hl is the distance between the tip of the filament (2) and the inner surface of the front heat shield (4), H! is the filament (
This is the distance between the tip of the rod-shaped cathode (1) and the tip of the rod-shaped cathode (1).

なお熱シールド(3)および固定リブ(8)は溶接性の
良いタンタルで構成されている。
Note that the heat shield (3) and the fixing rib (8) are made of tantalum, which has good weldability.

次に動作について説明する。第1図に示す部分を真空に
排気し、フィラメント(2)に直接通電してフィラメン
ト(2)を加熱する。フィラメント(2)をマイナス、
棒状陰極(1)をプラスとして電圧を印加すると、棒状
陰極(1)はフィラメント(2)からの熱電子の衝撃で
加熱される。さらに棒状陰極(1)をマイナス、陽極(
ロ)をプラスとして高電圧を印加すると棒状陰極先端面
から放射された熱電子は電子ビーム(6)を形成し、陽
極孔を通り所期の目的に供せられる。
Next, the operation will be explained. The part shown in FIG. 1 is evacuated, and electric current is applied directly to the filament (2) to heat the filament (2). Minus the filament (2),
When a voltage is applied with the rod-shaped cathode (1) as a positive voltage, the rod-shaped cathode (1) is heated by the bombardment of thermionic electrons from the filament (2). Furthermore, the rod-shaped cathode (1) is negative, and the anode (
When high voltage is applied with b) set to positive, thermionic electrons emitted from the tip of the rod-shaped cathode form an electron beam (6), which passes through the anode hole and is used for the intended purpose.

各電極が接触しないことを前提に、投入されたフィラメ
ント(2)を加熱する電力および棒状陰極(1)を衝撃
して加熱する電力で棒状陰極(1)の先端面が効率良く
高温に加熱するためには、第2図におけるG 、 Hl
s HzおよびDが出来るだけ小さくした幾何学配置に
なるので、熱シールド(3)の構成の中で前面熱シール
ド(4)の孔付近あるいは内側円筒熱シールド(5)の
前面熱シールド(4)に近い部分が棒状陰極(1)およ
びフィラメント(2)の輻射熱を多く受けて最も高温に
なる。これらに蓄積された熱は熱伝導で前面熱シールド
(4)および内側円筒熱シールド(5)全域が高温に加
熱される。同様に後面熱シールド(7)は棒状陰極(1
)およびフィラメント(2)の輻射熱を受け、外側円筒
熱シールド(6)は内側円筒熱シールド(5)の放射熱
を受け、各々高温になる。ところで各構成熱シールドは
固定リブ(8)を介してスポット溶接で強固に固定され
ているが、固定リブ(8)を介して熱が伝導することは
少な(、各構成熱シールドの温度は輻射伝熱で決まる。
Assuming that the electrodes do not touch, the tip of the rod-shaped cathode (1) is efficiently heated to a high temperature by the electric power that heats the inserted filament (2) and the electric power that impacts and heats the rod-shaped cathode (1). In order to do this, G in Fig. 2, Hl
Since the geometry is such that s Hz and D are as small as possible, in the configuration of the heat shield (3), the front heat shield (4) is placed near the hole in the front heat shield (4) or in the inner cylindrical heat shield (5). The part closest to the rod-shaped cathode (1) and the filament (2) receives a lot of radiant heat and reaches the highest temperature. The heat accumulated in these is heated to a high temperature throughout the front heat shield (4) and the inner cylindrical heat shield (5) by thermal conduction. Similarly, the rear heat shield (7) has a rod-shaped cathode (1
) and the filament (2), and the outer cylindrical heat shield (6) receives radiant heat from the inner cylindrical heat shield (5), each becoming high temperature. By the way, each constituent heat shield is firmly fixed by spot welding via the fixing rib (8), but there is little heat conduction via the fixing rib (8) (the temperature of each constituent heat shield is due to radiation). Determined by heat transfer.

例えば、材料がタングステンである棒状陰極(1)およ
びフィラメント(2)を約2850Kに加熱した時、o
、1  のタンタルで作られ1こ前面熱シールド(4)
は約1800K 1内側円筒熱シールド(5)は約19
50K 、外側円筒熱シールド(6)は約1700K 
1後面熱シールド(7)は約1750にである。
For example, when a rod-shaped cathode (1) and a filament (2) made of tungsten are heated to about 2850K, o
, 1 front heat shield made of tantalum (4)
is approximately 1800K 1 Inner cylindrical heat shield (5) is approximately 19
50K, outer cylindrical heat shield (6) approximately 1700K
1 rear heat shield (7) is approximately 1750 mm.

熱シールド(3)が高温に加熱された場合、構造上、前
面熱シールド(4)と後面熱シールド(7)は径方向に
熱膨張し、内側円筒熱シールド(5)と外側円筒熱シー
ルド(6)は軸方向に熱膨張する。
When the heat shield (3) is heated to a high temperature, due to its structure, the front heat shield (4) and the rear heat shield (7) thermally expand in the radial direction, causing the inner cylindrical heat shield (5) and the outer cylindrical heat shield ( 6) thermally expands in the axial direction.

上記したように前面熱シールド(5)は後面熱シールド
(7)よりも温度が高いため熱膨張量も大きいが、前面
熱シールド固定リブ(81)で内側円筒熱シールド(5
)および外側円筒熱シールド(6)とスポット澄液され
ているため、径方向の熱膨張量に対応して軸方向に歪ん
でしまう。又、内側円筒熱シールド(5)は外側円筒熱
シールド(6)よりも温度が高いため熱膨張量も大きい
ので、前面熱シールド(4)を内側から押す。その結果
、前面熱シールド(4)は軸方向に脹んだ形の歪みを起
こす。
As mentioned above, the front heat shield (5) has a higher temperature than the rear heat shield (7) and therefore has a larger amount of thermal expansion. However, the front heat shield fixing rib (81)
) and the outer cylindrical heat shield (6), it is distorted in the axial direction corresponding to the amount of thermal expansion in the radial direction. Furthermore, since the inner cylindrical heat shield (5) has a higher temperature than the outer cylindrical heat shield (6) and has a larger amount of thermal expansion, it pushes the front heat shield (4) from the inside. As a result, the front heat shield (4) is distorted in the form of an axial bulge.

この熱歪みを軽減するため前面熱シールド(4)の板厚
を厚くすると逆に固定リブ(8)あるいは他の構成熟シ
ールドに熱応力が加わり、固定リブ(8)が外れたり破
損すると共に他の構成熱シールドが熱歪みを起こす。
If the thickness of the front heat shield (4) is increased to reduce this thermal distortion, thermal stress will be applied to the fixing rib (8) or other component shields, causing the fixing rib (8) to come off or break and cause other damage. The configuration of the heat shield causes thermal distortion.

特に熱シールド(3)および固定リブ(8)にスポット
溶接性の良い高融点材料であるタンタルを使用している
ため、真空中に残留する水素分子によりタンタルが水素
脆性を起すので熱シールド(3)の劣化が激しく、長時
間の加熱で熱シールド(3)としての原形をとどめない
場合もある。
In particular, since tantalum, a high melting point material with good spot weldability, is used for the heat shield (3) and fixing ribs (8), hydrogen molecules remaining in vacuum can cause hydrogen embrittlement in tantalum. ) may deteriorate so severely that the heat shield (3) may not retain its original shape after prolonged heating.

第8図に従来の熱シールド(3)の分解図を示す。FIG. 8 shows an exploded view of a conventional heat shield (3).

α尋は熱シールドサポートである。熱シールド(3)の
組立手順を下記に示す。
Alpha fathom is a heat shield support. The assembly procedure for the heat shield (3) is shown below.

(1)前もって組立てられている棒状陰極(1)と同軸
に後面熱シールド(7)と熱シールドサポートθ◆を固
定する。
(1) Fix the rear heat shield (7) and heat shield support θ◆ coaxially with the previously assembled rod-shaped cathode (1).

(Ill)  後面熱シールド(7)とスポット溶接で
円筒にした内側円筒熱シールド(5)を後面熱シールド
固定リブ(8b)を介して同軸にスポット溶接する。
(Ill) The rear heat shield (7) and the inner cylindrical heat shield (5) formed into a cylinder by spot welding are coaxially spot welded via the rear heat shield fixing rib (8b).

(ill)  棒状陰極(1)と同軸にフィラメント(
2)をフィラメントサポート(6)で固定する。
(ill) A filament (
2) is fixed with a filament support (6).

(IV)  内側円筒熱シールド(6)と前面熱シール
ド(4)を前面熱シールド固定リブ(8a)を介して同
軸にスポット溶接する。
(IV) The inner cylindrical heat shield (6) and the front heat shield (4) are coaxially spot-welded via the front heat shield fixing rib (8a).

(v)内側円筒熱シールド(5)の外側に外側円筒熱シ
ールド(6)を同軸に配し、スポット溶接で円筒にした
後、その両端を後面熱シールド固定リブ(8b)および
前面熱シールド固定リブ(8a)を介してそれぞれ後面
熱シールド(7)および前面熱シールド(4)にスポッ
ト溶接する。
(v) Arrange the outer cylindrical heat shield (6) coaxially on the outside of the inner cylindrical heat shield (5), make it into a cylinder by spot welding, and then fix both ends to the rear heat shield fixing rib (8b) and the front heat shield. Spot weld to the rear heat shield (7) and front heat shield (4) respectively via the ribs (8a).

以上の手順説明から明らかなように、従来の熱シールド
(3)は各構成部材の組立に精度が要求されるにもかか
わらず組立治具の使用が困難な個所があると共に非常に
複雑な構成になっているため組立時間がかかる。
As is clear from the above procedure description, the conventional heat shield (3) requires precision in assembling each component, but there are places where it is difficult to use assembly jigs, and the structure is extremely complicated. Because of this, it takes time to assemble.

従来の棒状陰極の熱シールド(3)は以上のように構成
されており、欠点を下記に列挙する。
The conventional rod-shaped cathode heat shield (3) is constructed as described above, and its drawbacks are listed below.

(1)陰極の高温加熱で熱シールド(3)の中で特に前
面熱シールド(4)が熱歪みを起こし、他の電極と接触
する。
(1) Due to the high temperature heating of the cathode, the front heat shield (4) in particular among the heat shields (3) is thermally distorted and comes into contact with other electrodes.

(If)  熱シールド(3)の材料を高融点で溶接性
の良いタンタルで構成する必要があるため、水素脆性を
起こし、寿命が短かい。
(If) Since the material of the heat shield (3) must be made of tantalum, which has a high melting point and good weldability, it causes hydrogen embrittlement and has a short life.

(ili)  構成が複雑なため、組立時間が長くかつ
組立精度が悪い。
(ili) Since the configuration is complicated, assembly time is long and assembly accuracy is poor.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、スポット溶接の組立からヘミング
組立に変えることにより、熱シールドの熱歪みを軽減し
、水素脆化を防止し、かつ組立時間の短縮と精度の向上
が計れる熱シールドを有する棒状陰極アブセンブリを提
供することを目的としている。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method, and by changing from spot welding assembly to hemming assembly, it reduces thermal distortion of the heat shield, prevents hydrogen embrittlement, and It is an object of the present invention to provide a rod-shaped cathode assembly with a heat shield that reduces assembly time and improves accuracy.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図において、(5鳳)は内側円筒熱シールド(5)
の突起片(以後、第1の耳と呼ぶ)、(6a)は外側円
筒熱シールド(6)と前面熱シールド(4)とを固定す
る突起片(以後、第2の耳と呼ぶ)、(6b)は外側円
筒熱シールド(6)と後面熱シールド(7)とを固定す
る突起片(以後、第8の耳と呼ぶ)、(6c)は外側円
筒熱シールド(6)の周端部を上記と同様に耳形状にし
て曲折げた外側円筒ヘミング、(7m)は後面熱シール
ド(7)に開けられた矩形状の孔、(7b)は後面熱シ
ールドの円周上に切欠けられた溝である。熱シールドの
各部品はモリブデンで構成されている。
In Figure 4, (5) is the inner cylindrical heat shield (5)
(hereinafter referred to as the first ear), (6a) is a protrusion piece (hereinafter referred to as the second ear) that fixes the outer cylindrical heat shield (6) and the front heat shield (4), ( 6b) is a protruding piece (hereinafter referred to as the 8th ear) that fixes the outer cylindrical heat shield (6) and the rear heat shield (7), and (6c) is the protruding piece that fixes the outer cylindrical heat shield (6) and the rear heat shield (7). The outer cylindrical hemming is bent into an ear shape in the same way as above, (7m) is a rectangular hole drilled in the rear heat shield (7), and (7b) is a groove cut on the circumference of the rear heat shield. It is. Each part of the heat shield is constructed from molybdenum.

ここでヘミングとは板状の突起物(例えば上記耳)を板
孔あるいは板のへりに治せて折曲げることにより両者を
機械的に固定する方法である。
Here, hemming is a method of fixing the two mechanically by bending a plate-shaped protrusion (for example, the above-mentioned lug) into a hole in the plate or the edge of the plate.

次に動作について説明する。陰極部に加熱電力が投入さ
れたとき、前記したように棒状陰極(1)とフィラメン
ト(2)の加熱部に対して幾何学的に最とも近接した前
面熱シールド(4)に輻射熱が入熱して高温になり、径
方向に熱膨張するが、外側円筒ヘミング(6c)で外側
円筒熱シールド(6)は熱膨張の変動を吸収できるスプ
リング機構を有しているので、両部品間で熱応力の発生
がなくなる。
Next, the operation will be explained. When heating power is applied to the cathode section, radiant heat enters the front heat shield (4), which is geometrically closest to the heating section of the rod-shaped cathode (1) and filament (2), as described above. However, since the outer cylindrical heat shield (6) at the outer cylindrical hemming (6c) has a spring mechanism that can absorb fluctuations in thermal expansion, thermal stress is reduced between the two parts. will no longer occur.

さらに従来の前面熱シールド(4)と内側円筒熱シール
ド(5)を固定していた前面熱シールド固定リブ(4a
)を除去したので、高温に加熱されたとき軸方向に熱膨
張する内側円筒熱シールド(5)の円周端面と前面熱シ
ールド(4)の内壁面が接触しないように配慮しておき
さえすれば相互間に熱応力が加わることがない。
Furthermore, the front heat shield fixing rib (4a) used to fix the conventional front heat shield (4) and inner cylindrical heat shield (5).
) has been removed, care must be taken to prevent the circumferential end surface of the inner cylindrical heat shield (5), which thermally expands in the axial direction when heated to a high temperature, from contacting the inner wall surface of the front heat shield (4). In this case, no thermal stress is applied between them.

以上より、前面熱シールド(4)の熱歪みはほとんどな
くなる。事実、従来と同様に陰極部を約2850Kに設
定し、800hr以上の連続運転を行なった後、熱シー
ルド(3)各部の熱歪みを測定した結果、熱歪み量はほ
ぼ零であった。又、熱シールドの各部品をモリブデンで
構成することができ、そのため水素脆性はなかった。
As described above, thermal distortion of the front heat shield (4) is almost eliminated. In fact, as in the conventional case, the cathode section was set at about 2850K, and after continuous operation for 800 hours or more, the thermal strain of each part of the heat shield (3) was measured, and the amount of thermal strain was almost zero. Also, each part of the heat shield could be made of molybdenum, so there was no hydrogen embrittlement.

第4図に従い、従来と同様に熱シールド(3)の組立手
順を以下に列挙する。
According to FIG. 4, the steps for assembling the heat shield (3) are listed below in the same manner as in the conventional method.

(1)前もって組立てられている棒状陰極(1)と同軸
に後面熱シールド(7)と熱シールドサポートo4を固
定する。
(1) Fix the rear heat shield (7) and heat shield support o4 coaxially with the previously assembled rod-shaped cathode (1).

(11)  ヘミングで円筒にした内側円筒熱シールド
(5)の第1の耳(5a)を後面熱シールド(7)の矩
形状の孔(7a)に挿入し、ヘミングで固定する。
(11) Insert the first ear (5a) of the inner cylindrical heat shield (5) made into a cylinder by hemming into the rectangular hole (7a) of the rear heat shield (7), and fix by hemming.

(III)  棒状陰極(1)と同軸にフィラメント(
2)をフィラメントサポート(至)で固定する。
(III) A filament (
2) Fix with filament support (to).

09  ヘミングで円筒にした外側円筒熱シールド(6
)と前面熱シールド(4)とを第2の耳(6a)を使っ
てヘミングで固定する。
09 Outer cylindrical heat shield made into a cylinder by hemming (6
) and the front heat shield (4) by hemming using the second ear (6a).

(v)後面熱シールド(7)の切欠は溝(7b)に第8
の耳(6b)を挿入し、ヘミングで固定スる。
(v) The notch of the rear heat shield (7) is located in the groove (7b).
Insert the ears (6b) and secure with hemming.

このように、従来の熱シールド(3)はスポット溶接を
主体に組立てられていることと比較して、本発明はヘミ
ングで組立てられているので、特別な技能者が不必要で
あり、組立時間が著しく短縮されると共に、簡易治具の
使用で精度も保証される。
In this way, compared to the conventional heat shield (3), which is assembled mainly by spot welding, the present invention is assembled by hemming, so there is no need for special technicians and the assembly time is reduced. The time is significantly shortened, and accuracy is guaranteed by using a simple jig.

なお、上記実施例では前面熱シールド(4)を平板プレ
ス加工したものを示したが、第6閃に示すように同心状
の段を設けたプレス加工を行なうことにより径方向の熱
膨張が吸収できる機能を付加すれば熱歪みは一層軽減で
きる。又、第6図に示すように前面熱シールド(4)と
外側円筒熱シールド(6)を一体プレス加工することに
より、熱放射面を大きくし、熱歪みを小さくする構成に
しても良い。
In the above example, the front heat shield (4) was formed by pressing a flat plate, but as shown in the 6th flash, by performing pressing with concentric steps, thermal expansion in the radial direction can be absorbed. Thermal distortion can be further reduced by adding additional functions. Alternatively, as shown in FIG. 6, the front heat shield (4) and the outer cylindrical heat shield (6) may be integrally pressed to increase the heat radiation surface and reduce thermal distortion.

説明上、材料の寸法および陰極温度等について具体的数
字を示したが、これにより本発明の基本機能が制約され
ないのは勿論である。
For the purpose of explanation, specific numbers are shown for the dimensions of the materials, the cathode temperature, etc., but it goes without saying that the basic functions of the present invention are not limited by these numbers.

以上のように、この発明によれば熱シールドの各部品の
組立をヘミングで行ない、相互に加わる熱応力が零にな
るように構成したので、熱歪みが少なく他電極と接触し
ない長寿命の陰極アッセンブリが得られる。さらに熱シ
ールドの構成を単純で精度が出しやすい構成にしたので
、組立に特殊な技能者がいらず、組立時間が大巾に短縮
され、陰極が安価にできる効果がある。
As described above, according to the present invention, each part of the heat shield is assembled by hemming, and the thermal stress applied to each other is reduced to zero, so that a long-life cathode with little thermal distortion and no contact with other electrodes can be obtained. An assembly is obtained. Furthermore, since the structure of the heat shield is simple and easy to achieve precision, no special technicians are required for assembly, the assembly time is greatly shortened, and the cathode can be made at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子ビーム発生用熱陰極の一例で、棒状
陰極形の構成を示す断面図、第2図は第1図に示す棒状
陰極の一部を拡大した断面図、第3図は従来の熱シール
ドを分解した立体図、第4図はこの発明の一実施例であ
る熱シールドを分解した立体図、第5図はこの発明の他
の実施例である熱シールドを分解した立体図、第6図は
この発明のさらに他の実施例である熱シールドを示す斜
視図である。 (1)は棒状陰極、(2)はフィラメント、(3)は熱
シールド、(4)は前面熱シールド、(5)は内側円筒
熱シールド、(6)は外側円筒熱シールド、(7)は後
面熱シールド、(5a )(6a )(6b)は突起片
、(6c)はヘミング、(7a)は孔、(7b)は溝、
@は電子ビームである。 なお図中、同一符号は同一、又は相当部分を示す。 代理人 葛野信− 第1図
Figure 1 is an example of a conventional hot cathode for electron beam generation, and is a cross-sectional view showing the configuration of a rod-shaped cathode, Figure 2 is an enlarged cross-sectional view of a part of the rod-shaped cathode shown in Figure 1, and Figure 3 is an enlarged cross-sectional view of a part of the rod-shaped cathode shown in Figure 1. 4 is an exploded 3D view of a conventional heat shield, FIG. 4 is an exploded 3D view of a heat shield that is an embodiment of this invention, and FIG. 5 is an exploded 3D view of a heat shield that is another embodiment of this invention. , FIG. 6 is a perspective view showing a heat shield according to still another embodiment of the present invention. (1) is a rod cathode, (2) is a filament, (3) is a heat shield, (4) is a front heat shield, (5) is an inner cylindrical heat shield, (6) is an outer cylindrical heat shield, and (7) is a Rear heat shield, (5a), (6a), (6b) are protruding pieces, (6c) is hemming, (7a) is hole, (7b) is groove,
@ is an electron beam. In the figures, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1) 1lfk 極と、この陰極のまわりに配置され
たフィラメントと、この陰極およびフィラメントからの
放射・伝達される熱を反射断熱し上記陰極とフィラメン
トの温度を均一にする役目を有し、前面熱シールド、内
側円筒熱シールド、外側円筒熱シールドおよび後面熱シ
ールドの各構成要素から成立つ熱シールドとで構成され
る陰極アッセンブリにおいて、上記熱シールドの各構成
要素を折曲げ工法で組立てられたことを特徴とした陰極
アッセンブリ。
(1) A 1lfk pole, a filament arranged around this cathode, and a front surface that has the role of reflecting and insulating the heat radiated and transmitted from this cathode and filament and making the temperature of the cathode and filament uniform. In a cathode assembly consisting of a heat shield consisting of a heat shield, an inner cylindrical heat shield, an outer cylindrical heat shield, and a rear heat shield, each of the above heat shield components is assembled using a bending method. A cathode assembly featuring:
(2)前面熱シールドを段付ブレス加工したことを特徴
とする特許請求の範囲第1項記載の陰極アッセンブリ。
(2) The cathode assembly according to claim 1, wherein the front heat shield is provided with a stepped press.
(3)前面熱シールドと外側円筒熱シールドを一体にし
たことを特徴とする特許請求の範囲第1項記載の陰極ア
ッセンブリ。
(3) The cathode assembly according to claim 1, wherein the front heat shield and the outer cylindrical heat shield are integrated.
(4)熱シールドの構成材料をモリブデンとしたことを
特徴とする特許請求の範囲第1項記載の陰極アッセンブ
リ。
(4) The cathode assembly according to claim 1, wherein the constituent material of the heat shield is molybdenum.
JP57073741A 1982-04-30 1982-04-30 Cathode assembly Granted JPS58189939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073741A JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073741A JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Publications (2)

Publication Number Publication Date
JPS58189939A true JPS58189939A (en) 1983-11-05
JPH0218533B2 JPH0218533B2 (en) 1990-04-25

Family

ID=13526965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073741A Granted JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Country Status (1)

Country Link
JP (1) JPS58189939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437762A (en) * 1991-10-16 1995-08-01 Siemens Aktiengesellschaft Method and apparatus for semiconductor memory
WO2008140080A1 (en) * 2007-05-16 2008-11-20 Denki Kagaku Kogyo Kabushiki Kaisha Electron source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549570A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Bar-type hot-cathode assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549570A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Bar-type hot-cathode assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437762A (en) * 1991-10-16 1995-08-01 Siemens Aktiengesellschaft Method and apparatus for semiconductor memory
WO2008140080A1 (en) * 2007-05-16 2008-11-20 Denki Kagaku Kogyo Kabushiki Kaisha Electron source
EP2148354A1 (en) * 2007-05-16 2010-01-27 Denki Kagaku Kogyo Kabushiki Kaisha Electron source
JPWO2008140080A1 (en) * 2007-05-16 2010-08-05 電気化学工業株式会社 Electron source
EP2148354A4 (en) * 2007-05-16 2011-09-07 Denki Kagaku Kogyo Kk Electron source
JP5011383B2 (en) * 2007-05-16 2012-08-29 電気化学工業株式会社 Electron source
US8436524B2 (en) 2007-05-16 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Electron source

Also Published As

Publication number Publication date
JPH0218533B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
JP4230565B2 (en) X-ray tube
JPS58189939A (en) Cathode assembly
US20210050174A1 (en) Cathode assembly for electron gun
JP4781156B2 (en) Transmission X-ray tube
JPS5826767B2 (en) Rod hot cathode assembly
KR100680659B1 (en) Electron gun
JP2003346671A (en) Electron gun
RU2189085C2 (en) Cathode design and electron gun for cathode- ray tubes
JPH0115971B2 (en)
JPH1125893A (en) X-ray tube
JP2588288B2 (en) Impregnated cathode structure
JPH10321119A (en) Thermoelectron emitting filament and thermoelectron emitting device
JP2607612Y2 (en) Spot type cathode device
JPS6011539Y2 (en) Cathode structure for cathode ray tube
KR100261736B1 (en) Cathode structure for cathode ray tube
JP2023124004A (en) heat shield
KR920007413B1 (en) Structure of dispenser type cathode
JP2022073155A (en) Energy line tube
JP2019220268A (en) Electron gun
KR0121240Y1 (en) Cathode structure of an electron gun
JPH0766747B2 (en) Impregnated cathode
JP2020187963A (en) Magnetron
JP2018181410A (en) X-ray tube
JPH0714522A (en) Electron gun
JPH09107687A (en) Thermoelectronic generator