JPH0218533B2 - - Google Patents

Info

Publication number
JPH0218533B2
JPH0218533B2 JP7374182A JP7374182A JPH0218533B2 JP H0218533 B2 JPH0218533 B2 JP H0218533B2 JP 7374182 A JP7374182 A JP 7374182A JP 7374182 A JP7374182 A JP 7374182A JP H0218533 B2 JPH0218533 B2 JP H0218533B2
Authority
JP
Japan
Prior art keywords
heat shield
cathode
filament
rod
shaped cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7374182A
Other languages
Japanese (ja)
Other versions
JPS58189939A (en
Inventor
Shigeo Sasaki
Toshiro Maruyama
Masaru Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57073741A priority Critical patent/JPS58189939A/en
Publication of JPS58189939A publication Critical patent/JPS58189939A/en
Publication of JPH0218533B2 publication Critical patent/JPH0218533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment

Description

【発明の詳細な説明】 この発明は、電子ビームを発生させる棒状陰極
アツセンブリに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rod-shaped cathode assembly for generating an electron beam.

従来この種の装置として第1図に示すものがあ
つた。図において、1は先端面から電子ビームを
放出する円柱形の棒状陰極、2は棒状陰極1のま
わりに同軸に配置されたコイル状のフイラメン
ト、3は棒状陰極1およびフイラメント2から放
射・伝達される熱を反射断熱し、棒状陰極1およ
びフイラメント2の温度を均一にする熱シールド
であり、前面熱シールド4、内側円筒熱シールド
5、外側円筒熱シールド6、後面熱シールド7か
ら構成される。8は各円筒熱シールドの円周と前
面熱シールド4および後面熱シールド7を数個
所、機械的に固定する固定リブで前面熱シールド
固定リブ8aと後面熱シールド固定リブ8bから
成る。9はセラミツク板、10はウエネルト、1
1は陽極、12は電子ビーム、13はフイラメン
トサポートである。
A conventional device of this type is shown in FIG. In the figure, 1 is a cylindrical rod-shaped cathode that emits an electron beam from its tip, 2 is a coiled filament coaxially arranged around the rod-shaped cathode 1, and 3 is the electron beam radiated and transmitted from the rod-shaped cathode 1 and the filament 2. This is a heat shield that reflects and insulates the heat generated by the rod-shaped cathode 1 and the filament 2, and makes the temperature of the rod-shaped cathode 1 and filament 2 uniform. A fixing rib 8 mechanically fixes the circumference of each cylindrical heat shield, the front heat shield 4, and the rear heat shield 7 at several places, and is composed of a front heat shield fixing rib 8a and a rear heat shield fixing rib 8b. 9 is a ceramic board, 10 is a wehnelt, 1
1 is an anode, 12 is an electron beam, and 13 is a filament support.

第2図に棒状陰極先端面付近の拡大図を示す。
図において、Gは同軸に配置されたフイラメント
2と棒状陰極1との間〓、Dは前面熱シールド4
の孔径、H1はフイラメント2の先端部と前面熱
シールド4内面までの距離、H2はフイラメント
2の先端部と棒状陰極1の先端面までの距離であ
る。
Figure 2 shows an enlarged view of the vicinity of the tip of the rod-shaped cathode.
In the figure, G is the space between the filament 2 and the rod-shaped cathode 1 arranged coaxially, and D is the front heat shield 4.
, H 1 is the distance between the tip of the filament 2 and the inner surface of the front heat shield 4 , and H 2 is the distance between the tip of the filament 2 and the tip surface of the rod-shaped cathode 1 .

なお熱シールド3および固定リブ8は溶接性の
良いタンタルで構成されている。
The heat shield 3 and the fixing ribs 8 are made of tantalum, which has good weldability.

次に動作について説明する。第1図に示す部分
を真空に排気し、フイラメント2に直接通電して
フイラメント2を加熱する。フイラメント2をマ
イナス、棒状陰極1をプラスとして電圧を印加す
ると、棒状陰極1はフイラメント2からの熱電子
の衝撃で加熱される。さらに棒状陰極1をマイナ
ス、陽極11をプラスとして高電圧を印加すると
棒状陰極先端面から放射された熱電子は電子ビー
ム12を形成し、陽極孔を通り所期の目的に供せ
られる。
Next, the operation will be explained. The portion shown in FIG. 1 is evacuated to vacuum, and electric current is applied directly to the filament 2 to heat the filament 2. When a voltage is applied with the filament 2 as a negative voltage and the rod-shaped cathode 1 as a positive voltage, the rod-shaped cathode 1 is heated by the bombardment of thermionic electrons from the filament 2. Further, when a high voltage is applied with the rod-shaped cathode 1 set to negative and the anode 11 set to positive, the thermoelectrons emitted from the tip of the rod-shaped cathode form an electron beam 12, which passes through the anode hole and is used for the intended purpose.

各電極が接触しないことを前提に、投入された
フイラメント2を加熱する電力および棒状陰極1
を衝撃して加熱する電力で棒状陰極1の先端面が
効率良く高温に加熱するためには、第2図におけ
るG、H1、H2およびDが出来るだけ小さくした
幾何学配置になるので、熱シールド3の構成の中
で前面熱シールド4の孔付近あるいは内側円筒熱
シールド5の前面熱シールド4に近い部分が棒状
陰極1およびフイラメント2の輻射熱を多く受け
て最も高温になる。これらに蓄積された熱は熱伝
導で前面熱シールド4および内側円筒熱シールド
5全域が高温に加熱される。同様に後面熱シール
ド7は棒状陰極1およびフイラメント2の輻射熱
を受け、外側円筒熱シールド6は内側円筒熱シー
ルド5の放射熱を受け、各々高温になる。ところ
で各構成熱シールドは固定リブ8を介してスポツ
ト溶接で強固に固定されているが、固定リブ8を
介して熱が伝導することは少なく、各構成熱シー
ルドの温度は輻射伝熱で決まる。例えば、材料が
タングステンである棒状陰極1およびフイラメン
ト2を約2850Kに加熱した時、0.1tのタンタルで
作られた前面熱シールド4は約1800K、内側円筒
熱シールド5は約1950K、外側円筒熱シールド6
は約1700K、後面熱シールド7は約1750Kであ
る。熱シールド3が高温に加熱された場合、構造
上、前面熱シールド4と後面熱シールド7は径方
向に熱膨張し、内側円筒熱シールド5と外側円筒
熱シールド6は軸方向に熱膨張する。
Electric power to heat the inserted filament 2 and rod-shaped cathode 1 on the premise that the electrodes do not contact each other.
In order to efficiently heat the tip end surface of the rod-shaped cathode 1 to a high temperature with the electric power used to shock and heat the rod-shaped cathode 1, the geometrical arrangement is such that G, H 1 , H 2 and D in FIG. 2 are made as small as possible. In the structure of the heat shield 3, the vicinity of the hole in the front heat shield 4 or the portion of the inner cylindrical heat shield 5 near the front heat shield 4 receives a large amount of radiant heat from the rod-shaped cathode 1 and the filament 2 and becomes the highest temperature. The heat accumulated in these parts is heated to a high temperature throughout the front heat shield 4 and the inner cylindrical heat shield 5 by thermal conduction. Similarly, the rear heat shield 7 receives radiant heat from the rod-shaped cathode 1 and the filament 2, and the outer cylindrical heat shield 6 receives radiant heat from the inner cylindrical heat shield 5, each of which becomes high in temperature. By the way, each constituent heat shield is firmly fixed by spot welding via the fixing rib 8, but heat is rarely conducted via the fixing rib 8, and the temperature of each constituent heat shield is determined by radiant heat transfer. For example, when the rod cathode 1 and filament 2 made of tungsten are heated to about 2850K, the front heat shield 4 made of 0.1 t tantalum is heated to about 1800K, the inner cylindrical heat shield 5 is heated to about 1950K, and the outer cylindrical heat shield is heated to about 1950K. 6
is about 1700K, and the rear heat shield 7 is about 1750K. When the heat shield 3 is heated to a high temperature, due to its structure, the front heat shield 4 and the rear heat shield 7 thermally expand in the radial direction, and the inner cylindrical heat shield 5 and the outer cylindrical heat shield 6 thermally expand in the axial direction.

上記したように前面熱シールド5は後面熱シー
ルド7よりも温度が高いため熱膨張量も大きい
が、前面熱シールド固定リブ8aで内側円筒熱シ
ールド5および外側円筒熱シールド6とスポツト
溶接されているため、径方向の熱膨張量に対応し
て軸方向に歪んでしまう。又、内側円筒熱シール
ド5は外側円筒熱シールド6よりも温度が高いた
め熱膨張量も大きいので、前面熱シールド4を内
側から押す。その結果、前面熱シールド4は軸方
向に脹んだ形の歪みを起こす。
As mentioned above, the front heat shield 5 has a higher temperature than the rear heat shield 7 and therefore has a larger amount of thermal expansion, but it is spot welded to the inner cylindrical heat shield 5 and the outer cylindrical heat shield 6 at the front heat shield fixing rib 8a. Therefore, it is distorted in the axial direction corresponding to the amount of thermal expansion in the radial direction. In addition, since the inner cylindrical heat shield 5 has a higher temperature than the outer cylindrical heat shield 6 and therefore has a larger amount of thermal expansion, it pushes the front heat shield 4 from the inside. As a result, the front heat shield 4 is distorted in the axial direction in the form of a bulge.

この熱歪みを軽減するため前面熱シールド4の
板厚を厚くすると逆に固定リブ8あるいは他の構
成熱シールドに熱応力が加わり、固定リブ8が外
れたり破損すると共に他の構成熱シールドが熱歪
みを起こす。
If the thickness of the front heat shield 4 is increased to reduce this thermal distortion, thermal stress will be applied to the fixed rib 8 or other constituent heat shields, causing the fixed rib 8 to come off or be damaged, and the other constituent heat shields to be heated. cause distortion.

特に熱シールド3および固定リブ8にスポツト
溶接性の良い高融点材料であるタンタルを使用し
ているため、真空中に残留する水素分子によりタ
ンタルが水素脆性を起すので熱シールド3の劣化
が激しく、長時間の加熱で熱シールド3としての
原形をとどめない場合もある。
In particular, since tantalum, a high melting point material with good spot weldability, is used for the heat shield 3 and the fixing ribs 8, the hydrogen molecules remaining in the vacuum cause hydrogen embrittlement in the tantalum, resulting in severe deterioration of the heat shield 3. In some cases, the heat shield 3 may not retain its original shape due to long-term heating.

第3図に従来の熱シールド3の分解図を示す。
14は熱シールドサポートである。熱シールド3
の組立手順を下記に示す。
FIG. 3 shows an exploded view of a conventional heat shield 3.
14 is a heat shield support. heat shield 3
The assembly procedure is shown below.

(i) 前もつて組立てられている棒状陰極1と同軸
に後面熱シールド7と熱シールドサポート14
を固定する。
(i) A rear heat shield 7 and a heat shield support 14 are installed coaxially with the rod-shaped cathode 1 assembled at the front.
to be fixed.

(ii) 後面熱シールド7とスポツト溶接で円筒にし
た内側円筒熱シールド5を後面熱シールド固定
リブ8bを介して同軸にスポツト溶接する。
(ii) The rear heat shield 7 and the inner cylindrical heat shield 5 formed into a cylinder by spot welding are coaxially spot welded via the rear heat shield fixing rib 8b.

(iii) 棒状陰極1と同軸にフイラメント2をフイラ
メントサポート13で固定する。
(iii) Fix the filament 2 coaxially with the rod-shaped cathode 1 with a filament support 13.

(iv) 内側円筒熱シールド5と前面熱シールド4を
前面熱シールド固定リブ8aを介して同軸にス
ポツト溶接する。
(iv) The inner cylindrical heat shield 5 and the front heat shield 4 are coaxially spot-welded via the front heat shield fixing rib 8a.

(v) 内側円筒熱シールド5の外側に外側円筒熱シ
ールド6を同軸に配し、スポツト溶接で円筒に
した後、その両端を後面熱シールド固定リブ8
bおよび前面熱シールド固定リブ8aを介して
それぞれ後面熱シールド7および前面熱シール
ド4にスポツト溶接する。
(v) An outer cylindrical heat shield 6 is placed coaxially on the outside of the inner cylindrical heat shield 5, made into a cylinder by spot welding, and then both ends are attached to rear heat shield fixing ribs 8.
b and the front heat shield fixing rib 8a are spot welded to the rear heat shield 7 and the front heat shield 4, respectively.

以上の手順説明から明らかなように、従来の熱
シールド3は各構成部材の組立に精度が要求され
るにもかかわらず組立治具の使用が困難な個所が
あると共に非常に複難な構成になつているため組
立時間がかかる。
As is clear from the above procedure explanation, the conventional heat shield 3 has a very complicated structure in which it is difficult to use an assembly jig in some places, even though precision is required in assembling each component. It takes time to assemble because it is curved.

従来の棒状陰極の熱シールド3は以上のように
構成されており、欠点を下記に列挙する。
The conventional rod-shaped cathode heat shield 3 is constructed as described above, and its drawbacks are listed below.

(i) 陰極の高温加熱で熱シールド3の中で特に前
面熱シールド4が熱歪みを起こし、他の電極と
接触する。
(i) The high temperature heating of the cathode causes thermal distortion in the heat shield 3, especially the front heat shield 4, which comes into contact with other electrodes.

(ii) 熱シールド3の材料を高融点で溶接性の良い
タンタルで構成する必要があるため、水素脆性
を起こし、寿命が短かい。
(ii) Since the material of the heat shield 3 must be made of tantalum, which has a high melting point and good weldability, it causes hydrogen embrittlement and has a short life.

(iii) 構成が複雑なため、組立時間が長くかつ組立
精度が悪い。
(iii) Due to the complicated configuration, assembly time is long and assembly accuracy is poor.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、スポツト溶接の組
立からヘミング組立に変えることにより、熱シー
ルドの熱歪みを軽減し、水素脆化を防止し、かつ
組立時間の短縮と精度の向上が計れる熱シールド
を有する棒状陰極アツセンブリを提供することを
目的としている。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method, and by changing from spot welding assembly to hemming assembly, it reduces thermal distortion of the heat shield, prevents hydrogen embrittlement, and It is an object of the present invention to provide a rod-shaped cathode assembly with a heat shield that can reduce assembly time and improve accuracy.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第4図において、5aは内側円筒熱シールド5
の突起片(以後、第1の耳と呼ぶ)、6aは外側
円筒熱シールド6と前面熱シールド4とを固定す
る突起片(以後、第2の耳と呼ぶ)、6bは外側
円筒熱シールド6と後面熱シールド7とを固定す
る突起片(以後、第3の耳と呼ぶ)、6cは外側
円筒熱シールド6の周端部を上記と同様に耳形状
にして曲折げた外側円筒ヘミング、7aは後面熱
シールド7に開けられた矩形状の孔、7bは後面
熱シールドの円周上に切欠けられた溝である。熱
シールドの各部品はモリブデンで構成されてい
る。
In FIG. 4, 5a is an inner cylindrical heat shield 5
(hereinafter referred to as a first lug), 6a is a protrusion piece that fixes the outer cylindrical heat shield 6 and the front heat shield 4 (hereinafter referred to as a second lug), 6b is an outer cylindrical heat shield 6 6c is an outer cylindrical hemming formed by bending the circumferential end of the outer cylindrical heat shield 6 into an ear shape in the same way as described above; 7a is an outer cylindrical hemming that fixes the rear heat shield 7 and A rectangular hole 7b formed in the rear heat shield 7 is a groove cut out on the circumference of the rear heat shield. Each part of the heat shield is constructed from molybdenum.

ここでヘミングとは板状の突起物(例えば上記
耳)を板孔あるいは板のへりに沿せて折曲げるこ
とにより両者を機械的に固定する方法である。
Here, hemming is a method of mechanically fixing the two by bending a plate-shaped protrusion (for example, the above-mentioned lug) along the plate hole or the edge of the plate.

次に動作について説明する。陰極部に加熱電力
が投入されたとき、前記したように棒状陰極1と
フイラメント2の加熱部に対して幾何学的に最と
も近接した前面熱シールド4に輻射熱が入熱して
高温になり、径方向に熱膨張するが、外側円筒ヘ
ミング6cで外側円筒熱シールド6は熱膨張の変
動を吸収できるスプリング機構を有しているの
で、両部品間で熱応力の発生がなくなる。
Next, the operation will be explained. When heating power is applied to the cathode section, as described above, radiant heat enters the front heat shield 4, which is geometrically closest to the heating section of the rod-shaped cathode 1 and the filament 2, and becomes high temperature. However, since the outer cylindrical heat shield 6 at the outer cylindrical hemming 6c has a spring mechanism that can absorb fluctuations in thermal expansion, no thermal stress is generated between the two parts.

さらに従来の前面熱シールド4と内側円筒熱シ
ールド5を固定していた前面熱シールド固定リブ
8aを除去したので、高温に加熱されたととき軸
方向に熱膨張する内側円筒熱シールド5の円周端
面と前面熱シールド4の内壁面が接触しないよう
に配慮しておきさえすれば相互間に熱応力が加わ
ることがない。
Furthermore, since the front heat shield fixing rib 8a that fixed the conventional front heat shield 4 and the inner cylindrical heat shield 5 has been removed, the circumferential end surface of the inner cylindrical heat shield 5 that thermally expands in the axial direction when heated to a high temperature. As long as care is taken to prevent the inner wall surfaces of the front heat shield 4 and the front heat shield 4 from coming into contact with each other, no thermal stress will be applied between them.

以上より、前面熱シールド4の熱歪みはほとん
どなくなる。事実、従来と同様に陰極部を約
2850Kに設定し、800hr以上の連続運転を行なつ
た後、熱シールド3各部の熱歪みを測定した結
果、熱歪み量はほぼ零であつた。又、熱シールド
の各部品をモリブデンで構成することができ、そ
のため水素脆性はなかつた。
As described above, thermal distortion of the front heat shield 4 is almost eliminated. In fact, as before, the cathode section is approximately
After continuous operation for 800 hours or more at a temperature of 2850K, the thermal strain of each part of the heat shield 3 was measured, and the amount of thermal strain was almost zero. Also, each part of the heat shield could be made of molybdenum, so there was no hydrogen embrittlement.

第4図に従い、従来と同様に熱シールド3の組
立手順を以下に列挙する。
According to FIG. 4, the procedure for assembling the heat shield 3 will be listed below in the same manner as in the prior art.

(i) 前もつて組立てられている棒状陰極1と同軸
に後面熱シールド7と熱シールドサポート14
を固定する。
(i) A rear heat shield 7 and a heat shield support 14 are installed coaxially with the rod-shaped cathode 1 assembled at the front.
to be fixed.

(ii) ヘミングで円筒にした内側円筒熱シールド5
の第1の耳5aを後面熱シールド7の矩形状の
孔7aに挿入し、ヘミングで固定する。
(ii) Inner cylindrical heat shield 5 made into a cylinder by hemming
Insert the first ear 5a into the rectangular hole 7a of the rear heat shield 7 and fix it by hemming.

(iii) 棒状陰極1と同軸にフイラメント2をフイラ
メントサポート13で固定する。
(iii) Fix the filament 2 coaxially with the rod-shaped cathode 1 with a filament support 13.

(iv) ヘミングで円筒にした外側円筒熱シールド6
と前面熱シールド4とを第2の耳6aを使つて
ヘミングで固定する。
(iv) Outer cylindrical heat shield 6 made into a cylinder by hemming
and the front heat shield 4 are fixed by hemming using the second ears 6a.

(v) 後面熱シールド7の切欠け溝7bに第3の耳
6bを挿入し、ヘミングで固定する。
(v) Insert the third lug 6b into the notched groove 7b of the rear heat shield 7 and fix it by hemming.

このように、従来の熱シールド3はスポツト溶
接を主体に組立てられていることと比較して、本
発明はヘミングで組立てられているので、特別な
技能者が不必要であり、組立時間が著しく短縮さ
れると共に、簡易治具の使用で精度も保証され
る。
In this way, compared to the conventional heat shield 3, which is assembled mainly by spot welding, the present invention is assembled by hemming, so there is no need for special technicians and the assembly time is significantly reduced. In addition to being shortened, accuracy is also guaranteed by using a simple jig.

なお、上記実施例では前面熱シールド4を平板
プレス加工したものを示したが、第5図に示すよ
うに同心状の段を設けたプレス加工を行なうこと
により径方向の熱膨張が吸収できる機能を付加す
れば熱歪みは一層軽減できる。又、第6図に示す
ように前面熱シールド4と外側円筒熱シールド6
を一体プレス加工することにより、熱放射面を大
きくし、熱歪みを小さくする構成にしても良い。
説明上、材料の寸法および陰極温度等について具
体的数字を示したが、これにより本発明の基本機
能が制約されないのは勿論である。
In the above embodiment, the front heat shield 4 was formed by pressing into a flat plate, but as shown in FIG. Thermal distortion can be further reduced by adding . In addition, as shown in FIG. 6, a front heat shield 4 and an outer cylindrical heat shield 6 are provided.
It is also possible to create a structure in which the heat radiation surface is enlarged and thermal distortion is reduced by integrally press-working the parts.
For the purpose of explanation, specific numbers are shown for the dimensions of the materials, the cathode temperature, etc., but it goes without saying that the basic functions of the present invention are not limited by these numbers.

以上のように、この発明によれば熱シールドの
各部品をモリブデンにより形成し、その組立をヘ
ミングで行ない、相互に加わる熱応力が零になる
ように構成したので、熱歪みが少なく他電極と接
触せず、また水素脆性のない長寿命の陰極アツセ
ンブリが得られる。さらに熱シールドの構成を単
純で精度が出しやすい構成にしたので、組立に特
殊な技能者がいらず、組立時間が大巾に短縮さ
れ、陰極が安価にできる効果がある。
As described above, according to the present invention, each part of the heat shield is made of molybdenum, and is assembled by hemming, so that the thermal stress applied to each other is zero, so there is little thermal distortion and it can be easily connected to other electrodes. A long-life cathode assembly without contact and without hydrogen embrittlement is obtained. Furthermore, since the structure of the heat shield is simple and easy to achieve precision, no special technicians are required for assembly, the assembly time is greatly shortened, and the cathode can be made at a lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電子ビーム発生用熱陰極の一例
で、棒状陰極形の構成を示す断面図、第2図は第
1図に示す棒状陰極の一部を拡大した断面図、第
3図は従来の熱シールドを分解した立体図、第4
図はこの発明の一実施例である熱シールドを分解
した立体図、第5図はこの発明の他の実施例であ
る熱シールドを分解した立体図、第6図はこの発
明のさらに他の実施例である熱シールドを示す斜
視図である。 1は棒状陰極、2はフイラメント、3は熱シー
ルド、4は前面熱シールド、5は内側円筒熱シー
ルド、6は外側円筒熱シールド、7は後面熱シー
ルド、5a,6a,6bは突起片、6cはヘミン
グ、7aは孔、7bは溝、12は電子ビームであ
る。なお図中、同一符号は同一、又は相当部分を
示す。
Figure 1 is an example of a conventional hot cathode for electron beam generation, and is a cross-sectional view showing the configuration of a rod-shaped cathode, Figure 2 is an enlarged cross-sectional view of a part of the rod-shaped cathode shown in Figure 1, and Figure 3 is an enlarged cross-sectional view of a part of the rod-shaped cathode shown in Figure 1. 3D view of conventional heat shield, No. 4
The figure is an exploded three-dimensional view of a heat shield that is one embodiment of this invention, FIG. 5 is an exploded three-dimensional view of a heat shield that is another embodiment of this invention, and FIG. FIG. 2 is a perspective view of an example heat shield. 1 is a rod-shaped cathode, 2 is a filament, 3 is a heat shield, 4 is a front heat shield, 5 is an inner cylindrical heat shield, 6 is an outer cylindrical heat shield, 7 is a rear heat shield, 5a, 6a, 6b are protruding pieces, 6c 7a is a hole, 7b is a groove, and 12 is an electron beam. In the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極と、この陰極のまわりに配置されたフイ
ラメントと、上記陰極およびフイラメントからの
放射・伝達される熱を反射断熱し上記陰極とフイ
ラメントとの温度を均一にする前面熱シールド、
内側円筒熱シールド、外側円筒熱シールドおよび
後面熱シールドからなる熱シールドとを備えた陰
極アツセンブリにおいて、上記内側円筒熱シール
ドおよび上記外側円筒熱シールドはそれぞれ軸方
向後端側に突起片をと突設し、また上記後面熱シ
ールドには上記内側円筒熱シールドの突起片が挿
入する孔および上記外側円筒熱シールドの突起片
が係止する切欠溝が形成され、前面熱シールドは
上記外側円筒熱シールドの軸方向前端側に形成さ
れた突起片により係止され、かつこれら各熱シー
ルドはモリブデンによつて形成されたことを特徴
とする陰極アツセンブリ。
1. A cathode, a filament arranged around the cathode, and a front heat shield that reflects and insulates the heat radiated and transmitted from the cathode and filament to uniformize the temperature of the cathode and filament.
In a cathode assembly equipped with a heat shield consisting of an inner cylindrical heat shield, an outer cylindrical heat shield, and a rear heat shield, each of the inner cylindrical heat shield and the outer cylindrical heat shield has a projection piece protruding from the rear end side in the axial direction. In addition, the rear heat shield is formed with a hole into which the protrusion piece of the inner cylindrical heat shield is inserted and a notch groove into which the protrusion piece of the outer cylindrical heat shield is engaged, and the front heat shield is formed with a hole into which the protrusion piece of the inner cylindrical heat shield is inserted. What is claimed is: 1. A cathode assembly, wherein the cathode assembly is locked by a protruding piece formed on the front end side in the axial direction, and each of these heat shields is made of molybdenum.
JP57073741A 1982-04-30 1982-04-30 Cathode assembly Granted JPS58189939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073741A JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073741A JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Publications (2)

Publication Number Publication Date
JPS58189939A JPS58189939A (en) 1983-11-05
JPH0218533B2 true JPH0218533B2 (en) 1990-04-25

Family

ID=13526965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073741A Granted JPS58189939A (en) 1982-04-30 1982-04-30 Cathode assembly

Country Status (1)

Country Link
JP (1) JPS58189939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69226687T2 (en) * 1991-10-16 1999-04-15 Sony Corp Method for producing an SOI structure with a DRAM
JP5011383B2 (en) * 2007-05-16 2012-08-29 電気化学工業株式会社 Electron source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549570A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Bar-type hot-cathode assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549570A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Bar-type hot-cathode assembly

Also Published As

Publication number Publication date
JPS58189939A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
US5077777A (en) Microfocus X-ray tube
US4081762A (en) Gas laser with a laser capillary positioned in a discharge tube
JP4230565B2 (en) X-ray tube
JPH0218533B2 (en)
JP4781156B2 (en) Transmission X-ray tube
US20210050174A1 (en) Cathode assembly for electron gun
US3813571A (en) Insulated cathode gun device
JP3996442B2 (en) Electron gun
JPS5826767B2 (en) Rod hot cathode assembly
US6635978B1 (en) Electron tube with axial beam and pyrolitic graphite grid
KR100680659B1 (en) Electron gun
RU2189085C2 (en) Cathode design and electron gun for cathode- ray tubes
JPH11283543A (en) Cathode structure for x-ray tube
KR920008501Y1 (en) Direct type cathode structure
JP2588288B2 (en) Impregnated cathode structure
US20240096583A1 (en) Cathode heater assembly and method of manufacture
JPH1125893A (en) X-ray tube
KR920002589Y1 (en) Cathode assembly of crt
JPH0115971B2 (en)
JPH11219670A (en) Electron gun
KR920007413B1 (en) Structure of dispenser type cathode
US3207942A (en) Cavity resonator structure for klystrons
JP3015572B2 (en) Linear cathode
JP2019220268A (en) Electron gun
JPH0714522A (en) Electron gun