JPS58189546A - Manufacture of detecting element of gaseous alcohol - Google Patents

Manufacture of detecting element of gaseous alcohol

Info

Publication number
JPS58189546A
JPS58189546A JP7216682A JP7216682A JPS58189546A JP S58189546 A JPS58189546 A JP S58189546A JP 7216682 A JP7216682 A JP 7216682A JP 7216682 A JP7216682 A JP 7216682A JP S58189546 A JPS58189546 A JP S58189546A
Authority
JP
Japan
Prior art keywords
oxide
component
oxides
alcohol
alcohol gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7216682A
Other languages
Japanese (ja)
Inventor
Shigeo Akiyama
茂夫 秋山
Masaharu Fujii
雅春 藤井
Toru Fujioka
藤岡 透
Katsuyoshi Goto
後藤 勝良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7216682A priority Critical patent/JPS58189546A/en
Publication of JPS58189546A publication Critical patent/JPS58189546A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a highly sensitive alcohol detecting element, by incorporating each oxide of Cr, Mg, Zr components and satisfying a prescribed equation in terms of the mol ratio of Zr component and also, calcining so that the average value of half-value width of specific two faces X-ray diffraction of the oxides is requlated to a specific range. CONSTITUTION:The titled element contains the oxides of Cr, Mg, Cr and each oxide is permissible to exist independently or mixedly in various oxidation forms according to the valency and in case when the mol ratio is expressed in Mc, Mm, Mz expressed in terms of each CrO3, MgO, ZrO2 the molar fraction MZ is shown by equation in figure and moreover, the oxides are so regulated that the average value of half-value width of each specific two faces of Cr, Zr oxides is in a specific range, and the average value of the half-value width of X-ray diffraction of 2, 0, 0 and 2, 2, 2 faces of magnesium oxide is 0.30-0.50 deg.. A pair of platinum electrodes is embedded in a mixture of said three oxides and high pressure molding is carried out. Then, a molded product is calcined in the range of 1,000-1,400 deg.C and the detecting element highly sensitive and stable only for gaseous alcohol is obtained.

Description

【発明の詳細な説明】 この発明はアルコールガス検知素子特に酸化クロム系の
アルコールガス検知素子の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an alcohol gas detection element, particularly a chromium oxide based alcohol gas detection element.

さらに具体的には雰囲気中に含まれるアルコールガス製
置が微量な範囲で抵抗変化を顕著に呈するアルコールガ
ス検知素子に関し、アルコールガスに対して感度の高い
素子を提供するものである。
More specifically, the present invention relates to an alcohol gas detection element that exhibits a significant change in resistance in the presence of a trace amount of alcohol gas contained in the atmosphere, and provides an element that is highly sensitive to alcohol gas.

発明の背景 一般に5n02  、ZnO,Fe2O3,In2O3
Background of the Invention Generally 5n02, ZnO, Fe2O3, In2O3
.

〜v03.CeO2等の金属酸化物半導体は、高温に加
熱した状態で水素ガス、メタンガス、ブタンガス等の燃
料ガスに接触すると敏感な抵抗変化を示すことが知られ
ている。この性質を利用してたとえば一定濃度以上の燃
料ガスの接触に起因して生ずる抵抗変化を電圧差に置換
した信号で検出する回路を備えたガス漏れ検出器が造出
され、ガス細れ事故を未然に防ぐのに貢献しているが、
上記の金属酸化物は繊理に使用する櫨々の調味料がら発
生するエタノールガスについても抵抗変化を示す性質が
あるので検出の信頼性に乏しく、検出ミスに依る実際上
のトラブルは未解決であった。
~v03. It is known that a metal oxide semiconductor such as CeO2 exhibits a sensitive resistance change when heated to a high temperature and comes into contact with a fuel gas such as hydrogen gas, methane gas, or butane gas. Utilizing this property, gas leak detectors have been created that are equipped with a circuit that detects resistance changes caused by contact with fuel gas of a certain concentration or higher using a voltage difference signal. Although it contributes to prevention,
The above-mentioned metal oxides have a property of showing resistance changes even in the case of ethanol gas generated from the seasoning used for textiles, so detection reliability is poor, and practical problems caused by detection errors remain unresolved. there were.

発明の簡単な豐約 この発明の目的は雰囲気中に含まれるエタノールガスが
低濃度で著しい抵抗変化を呈するアルコールに選択性の
すぐれたアルコールガス検知素子を提供することにあっ
て、クロム成分とマグネシウム成分とジルコニウム成分
とから成り、クロム成分は酸化クロムを含み、マグネシ
ウム成分は酸化マグネシウムを含み、ジルコニウム成分
は酸化ジルコニウムを含み、かつクロム成分のモル比を
Mcl マグネシウム成分のモル比をM+n、  ジル
コニウム成分のモル比をMxとしたと11のモル分率が M冨 −001〜05の関係 (M m + M c ) 2 + ” ’式を構足し
、上記酸化マグネシウムが2.0.0と2.2.2曲の
X線回折の半価中の平均値が()30°〜050°であ
る金属酸化物の混合物を1000〜1400℃で焼成す
ることを特徴とするアルコールガス検知素子の製法を提
供するものである。
Brief Summary of the Invention The purpose of the present invention is to provide an alcohol gas detection element with excellent selectivity for alcohol, which exhibits a significant resistance change at low concentrations of ethanol gas contained in the atmosphere. The chromium component contains chromium oxide, the magnesium component contains magnesium oxide, the zirconium component contains zirconium oxide, and the molar ratio of the chromium component is Mcl, the molar ratio of the magnesium component is M+n, and the zirconium component Letting the molar ratio of 11 be Mx, the molar fraction of 11 satisfies the relationship (M m + M c ) 2 + '' with an M value of -001 to 05, and the above magnesium oxide is 2.0.0 and 2.0. 2. A method for manufacturing an alcohol gas sensing element, which comprises firing a mixture of metal oxides whose half value in two X-ray diffraction curves is ()30° to 050° at 1000 to 1400°C. This is what we provide.

この発明では金属酸化物の混合物がクロム成分とマグネ
シウム成分とジルコニウム成分とを有効成分として含有
して構成される。クロム成分には酸化クロム、マグネシ
ウム成分には酸化7グネシウム、ジルコニウム成分には
酸化ジルコニウムを含み、これらの酸化物は単独に混ぜ
合わさって混    ゛合物を構成するのみを意味する
ものではなく酸化マグネシウムと酸化クロムとが焼成段
階で生成されるマグネシウムクロメイトの形をとり、こ
れに酸化ジルコニウムが混ぜ合わさって構成される混合
物を含む。マグネシウム、クロム成分は上記の如く相互
に反応して生成されるマグネシウムクロメイトが一部含
まれていてもよく又は全部でもよい。さらに一部が元素
の形で存在していてもよく、酸化物以外の化合物の形態
をとっていてもよい。
In the present invention, the metal oxide mixture is constituted by containing a chromium component, a magnesium component, and a zirconium component as active ingredients. The chromium component includes chromium oxide, the magnesium component includes 7gnesium oxide, and the zirconium component includes zirconium oxide, and these oxides do not mean that they can be mixed alone to form a mixture; and chromium oxide in the form of magnesium chromate produced during the calcination step, mixed with zirconium oxide. The magnesium and chromium components may partially or entirely contain magnesium chromate produced by mutual reaction as described above. Furthermore, a portion may exist in the form of an element, or may take the form of a compound other than an oxide.

酸化物の形顔をとる場合、その酸化物は、その構成元素
が複数種類の原子価をもつことに起因して檜々の酸化形
態をとる場合も含む。これらいくつかの酸化形態が存在
する酸化物についてはいずれかの鹸化形態のものが単独
で存在する場合のほか複数IiI類の酸化形態のものが
併せて存在する場合も含む。なお、ここで言う鹸化形態
には格子欠陥などに起因して非化学量論的組成をもつも
のも含まれる。
When the oxide takes the form of an oxide, the oxide also includes cases where the oxide takes the oxidized form of cypress because its constituent elements have multiple types of valences. These oxides that exist in several oxidized forms include not only cases in which one of the saponified forms exists alone, but also cases in which a plurality of oxidized forms of IiI class exist together. Note that the saponification form referred to here includes those having non-stoichiometric compositions due to lattice defects and the like.

そして以上のクロム成分とマグネシウム成分とジルコニ
ウム成分は各成分のモル比を各々Mc。
For the above chromium component, magnesium component, and zirconium component, the molar ratio of each component is Mc.

Mm  、Mxとしたとき M冨 −1=0.(It〜o5 (Mへ+” c ) 2 + M z の関係式にあるモル分率を満足せねばならない。When Mm, Mx M-tomi -1=0. (It~o5 (To M+”c) 2+Mz The mole fraction in the relational expression must be satisfied.

この場合マグネシウムクロメイトの取扱いにあたっては
酸化マグネシウムと酸化クロムは等モルで含まれている
ものとして計算する。
In this case, when handling magnesium chromate, calculations are made assuming that magnesium oxide and chromium oxide are contained in equimolar amounts.

さらにマグネシウム成分に含まれる酸化マグネシウムは
2,0.0と2.2.2面のX線回折の半価中の平均値
が0.3o〜o、so’でなければならない。
Furthermore, the average value of the half value of the X-ray diffraction of the 2,0.0 and 2.2.2 planes of the magnesium oxide contained in the magnesium component must be 0.3o to o,so'.

すなわち以上の条件の−を欠くと補償用素子として及び
単独使用のアルコールガス素子としてもいずれにも性能
上間融があるからである。さらに具体的に説明するとた
とえば燃料ガスを構成するノタンガス、メタンガスおよ
び水系ガスが接触すると抵抗変化を呈する既知の金鵬酸
化物から成るガス検知素子は上記のガス以外のアルコー
ルガスに対しても同様に抵抗変化を示すために燃料ガス
のガス細れを検出する検知素子として用いた場合には、
!&Il理中に生ずるアルコールガスのガス濃度に応じ
て抵抗変化を呈し、#4輻につながる。そこでこの[M
を回避する補償用集子として用いるアルコールガス検知
素子はアルコールガスについての抵抗変化いわゆるアル
コールガス感度については上記燃料ガスの検知素子より
も大であって、かつアルコールガスと燃料ガスについて
変化する抵抗値には大差がなければならないからである
。つまり、この条件を拘足するアルコールガス検知素子
は上記の如き組成を有する金属酸化物の混合物から得ら
れるのである。
That is, if one of the above conditions is not satisfied, there will be problems in terms of performance both as a compensating element and as an alcohol gas element used alone. To explain more specifically, for example, a known gas detection element made of Kinho oxide, which exhibits a resistance change when it comes into contact with notane gas, methane gas, and water-based gases that make up fuel gas, has similar resistance to alcohol gases other than the above gases. When used as a detection element to detect gas thinning of fuel gas to indicate changes,
! The resistance changes depending on the concentration of alcohol gas generated during the process, leading to #4 radiation. So this [M
The alcohol gas detection element used as a compensating collector to avoid the change in resistance with respect to alcohol gas, so-called alcohol gas sensitivity, is greater than the above-mentioned fuel gas detection element, and the resistance value changes with respect to alcohol gas and fuel gas. This is because there must be a large difference. In other words, an alcohol gas detection element that satisfies this condition can be obtained from a mixture of metal oxides having the above composition.

又単独使用のアルコールガス素子の検知能力はアルコー
ルガス外のガス稙についての変化する抵抗値と比べて大
差がなく近接していると検出ミスかあって信頼性に乏し
い。したかってアルコールガス外のガス柚についての抵
抗値と比べて大差かなければならずこの抵抗値の差が大
であればアルコールガスに対する選択性が商いものでな
ければならないからで、この条件を満足するアルコール
ガス検知素子は上記の如き組成を有する金属酸化物の混
合物から得られるのである。
In addition, the detection ability of an alcohol gas element used alone is not much different from the changing resistance value of gases other than alcohol gas, and if they are in close proximity, detection errors may occur, resulting in poor reliability. Therefore, there must be a large difference in resistance value compared to the resistance value for gases other than alcohol gas, and if this difference in resistance value is large, the selectivity for alcohol gas must be reasonable, and this condition is satisfied. The alcohol gas detection element is obtained from a mixture of metal oxides having the composition as described above.

欠きクロム成分について述べるとこの成分に含まれる酸
化7oへ 、 は特定条件下ではさらにアルコール感度
と選択性の向上に効果的である。
Regarding the chromium-depleted component, the 7O oxide contained in this component is effective in further improving alcohol sensitivity and selectivity under specific conditions.

すなわちクロム成分に含まれる酸化クロムは1゜0.4
と1.0.10mのX線回折の半価値の平均値が010
〜o、ao″であるとクロム成分に制限を加えない場合
と比べてアルコール感度と選択性に優れたアルコールガ
ス検知素子が得られる。
In other words, the chromium oxide contained in the chromium component is 1°0.4
and 1.0.10m X-ray diffraction half-value average value is 010
~o, ao'', an alcohol gas detection element with excellent alcohol sensitivity and selectivity can be obtained compared to a case where no restriction is imposed on the chromium component.

さらにはマグネシウム成分とクロム成分に上記の如き条
件を加えて構成された金属酸化物の混合物から得られる
アルコールガス検知素子の上記の毒血的性能は上記混合
物中に含まれるジルコニウム成分の特定条件下ではさら
に向上する。すなわらジルコニウム成分に含まれる酸化
ジルコニウムの1.1.1とa、o、oIi[lの半価
値の平均値が0.15〜0.50°の場合にアルコール
ガス感度及び選択性にさらにすぐれたアルコールガス検
知素子が得られる。
Furthermore, the above-mentioned toxic performance of the alcohol gas detection element obtained from the mixture of metal oxides made by adding the above-mentioned conditions to the magnesium component and the chromium component is achieved under the specific conditions of the zirconium component contained in the above-mentioned mixture. Let's get even better. In other words, when the average half value of 1.1.1 and a, o, oIi[l of zirconium oxide contained in the zirconium component is 0.15 to 0.50°, the alcohol gas sensitivity and selectivity are further improved. An excellent alcohol gas detection element can be obtained.

L紀組成の混合物は無水下で、あるいは水添下で混ぜ合
わして得られる。水添下で混合する場合には91t1i
I4酸化物の総′Iji瀘12に対して3〜25CCの
割合で水を添加するのが適当である。ヌこの混合は焼成
によってガス化するたとえばポリビニルアルコールある
いはセルロースナトのバインダの存在下でなされてもよ
い。この場合は金属酸化物間の結合力が鳥く形状の安定
したアルコールガス検知素子を得ることができる点で効
果がある。
A mixture of L period composition can be obtained by mixing in anhydrous or hydrogenated conditions. 91t1i when mixing under hydrogenation
It is appropriate to add water in a proportion of 3 to 25 CC based on the total Iji filter 12 of I4 oxide. This mixing may be done in the presence of a binder, such as polyvinyl alcohol or cellulose, which is gasified by calcination. This case is effective in that it is possible to obtain an alcohol gas sensing element with a stable shape in which the bonding force between the metal oxides is uniform.

水添下で混合して得られた混合物は乾燥を経て粉末の性
状にする。
The mixture obtained by mixing under hydrogenation is dried to form a powder.

この混合物は金型に充填され次に成形される。This mixture is filled into a mold and then shaped.

金型内に充填された混合物中には対を組んだ白金線の如
き電極が埋込まれ成形される。成形は高圧でなされる。
Paired electrodes such as platinum wires are embedded in the mixture filled in the mold and molded. Molding is done under high pressure.

この圧力は一定の形状に固化される圧で、1t/cj〜
3t/dが適当である。
This pressure is the pressure that solidifies into a certain shape, and is 1 t/cj ~
3t/d is appropriate.

It/fよりも低圧で成形するとアルコールガス感度が
低く、3【/dを越えると同様の傾向を示す。成形品の
形状について一例を挙げると直径2騙高さ3■の円柱子
が採用される。
When molding is performed at a pressure lower than It/f, the alcohol gas sensitivity is low, and when it exceeds 3 [/d, a similar tendency is exhibited. To give an example of the shape of the molded product, a cylinder with a diameter of 2 cm and a height of 3 cm is used.

次ぎこの成形品に施される焼成について説明すると焼成
は1000〜1400℃好ましくは1270〜1370
℃が適当である。焼U:2温度の高低は、アルコール感
度の高低に影響を与える。すなわちman度が1400
℃を越えるとアルコールガス感度が低下してたとえば対
にして用いる鰹料ガスのガス検知息子に対する補償用素
子としてのアルコール検知能がなく、1000″C&こ
至らない温度区域でも同様の傾向を示す。この様な温度
範囲の中で1270〜1370℃に焼成温度を制限して
焼成するとアルコールガス感度ならびに選択性ともに一
足したアルコールガス検知素子を得ることかできる。焼
成時間は2〜4時間で十分である。
Next, to explain the firing that is applied to this molded product, the firing is performed at a temperature of 1000 to 1400°C, preferably 1270 to 1370°C.
°C is appropriate. Baking U: 2 The height of the temperature affects the height of the alcohol sensitivity. In other words, the man degree is 1400
When the temperature exceeds 1000°C, the alcohol gas sensitivity decreases, and there is no alcohol detection function as a compensating element for the bonito material gas detection sensor used as a pair, and the same tendency occurs even in the temperature range below 1000''C. If the firing temperature is limited to 1,270 to 1,370°C within such a temperature range, an alcohol gas detection element with excellent alcohol gas sensitivity and selectivity can be obtained.A firing time of 2 to 4 hours is sufficient. be.

この様な焼成条件を経て得られるアルコールガス検知素
子は多孔質の性状をとる。
The alcohol gas sensing element obtained through such firing conditions has porous properties.

以上の如く金属酸化物の混合物から焼成を経て得られる
この発明に係るアル」−ルガス検知素子はアルコールガ
ス感度が高く、かつ他のガス植について変化する抵抗値
に大差を有し、アルコールカスを除外するための補償用
素子として、かつアルコールガスを検出するための単独
使用の素子として有用なのである。
As described above, the alcohol gas sensing element according to the present invention, which is obtained by firing a mixture of metal oxides, has high sensitivity to alcohol gas, has a large difference in resistance value compared to other gases, and detects alcohol residue. It is useful as a compensation element for exclusion and as a stand-alone element for detecting alcohol gas.

以下、この発明の実施例を挙げ、得られた素子のアルコ
ールガス感度及び選択性について測定した結果を挙げる
。なお各実施例及び対応する比較餉に係る素子は次の如
き条件で製作した。
Examples of the present invention will be described below, and the results of measuring the alcohol gas sensitivity and selectivity of the obtained devices will be listed. The devices of each example and the corresponding comparison were manufactured under the following conditions.

マグネシウム成分として酸化マグネシウム、クロム成分
として酸化クロム、ジルコニウム成分として酸化ジルコ
ニウムを表記の割合で無水下で混合して金llI4酸化
物の混合物とした。ここで各成分について2thIのX
線回折における平均値は表記のとおりであった。この混
合物から15mF秤量し、成形金型に充填し、これに白
金線の電極を対に組んだ埋込むとともに2t/dの圧で
成形し、直径2■高さ3閤の円柱状成形品を得た。焼成
条件としては特に焼成温度について種々設定して行った
Magnesium oxide as a magnesium component, chromium oxide as a chromium component, and zirconium oxide as a zirconium component were mixed in the indicated ratios under anhydrous conditions to obtain a mixture of gold llI4 oxides. Here, X of 2thI for each component
The average value in line diffraction was as indicated. Weighed 15 mF from this mixture, filled it into a mold, embedded a pair of platinum wire electrodes, and molded it at a pressure of 2 t/d to form a cylindrical molded product with a diameter of 2 x height of 3 lbs. Obtained. Various firing conditions were used, especially the firing temperature.

その設定した焼成m反は表記のとおりであった。The set firing m was as indicated.

なお、アルコールガス感度は下式で求めた。The alcohol gas sensitivity was determined using the formula below.

Hair  −io、1 □−〜× 100 aIr ここでRa1rはアルコールガス不存在空気中での抵抗
値で、io、lはアルコールガスが0.1容量ンo含む
空気中での抵抗値で、素子温度を450℃に設定したと
きの値である。
Hair -io, 1 □-~× 100 aIr Here, Ra1r is the resistance value in air without alcohol gas, io, l are the resistance values in air containing 0.1 volume of alcohol gas, and the element This value is when the temperature is set to 450°C.

選択性についてはエタノールガス、イソブタンメタン、
水素が0.1容量%含む各々の空気中での抵抗値を測定
してエタノールガスの接触に起因し゛C綾化した抵抗値
に対してインブタン、メタン、水素の接触に起因して便
化した抵抗値を比べて評価した。なおそれぞれの素子の
抵抗値は450℃番こ加熱された値である。
Regarding selectivity, ethanol gas, isobutanemethane,
The resistance value in air containing 0.1% by volume of hydrogen was measured, and the resistance value was changed due to contact with ethanol gas, whereas the resistance value was changed due to contact with inbutane, methane, and hydrogen. Evaluation was made by comparing the resistance values. Note that the resistance value of each element is the value after heating to 450°C.

因みに以上の実施例と比較例に係る素子をアルコールガ
ス感度及び選択性について調べると実施例1乃至15で
は酸化ジルコニウムのモル分率が001乃至05であっ
て、酸化マグネシウム所定の曲の半価中の平均値が0.
30〜050°、であって焼成条件を1000〜140
0℃で設定するとアルコールガス感度及び選択性に優れ
たアルコールガス検知素子を得ることができることが明
白である。
Incidentally, when examining the alcohol gas sensitivity and selectivity of the devices according to the above Examples and Comparative Examples, in Examples 1 to 15, the mole fraction of zirconium oxide was 001 to 05, and the mole fraction of zirconium oxide was 0.001 to 0.05, which was 0.5% in the half value of magnesium oxide. The average value of is 0.
30~050°, firing conditions 1000~140°
It is clear that when the temperature is set at 0° C., an alcohol gas detection element with excellent alcohol gas sensitivity and selectivity can be obtained.

Claims (1)

【特許請求の範囲】 ill  クロム成分とマグネシウム成分とジルコニウ
ム成分とから成り、クロム成分は酸化クロムを含み、マ
グネシウム成分は酸化マグネシウムを含み、ジルコニウ
ム成分は酸化ジルコニウムを含みかつクロム成分のモル
比をMc  、マグネシウム成分のモル比をMm 、ジ
ルコニウム成分のモル比をMx としたときMxのモル
分率が を満足し、上記酸化マグネシウムが2.0.Oと2 、
2 、2doのX線回折の半価中の平均値が、0.30
〜0.50’である金属酸化物の混合物を、1000〜
1400℃で焼成することを特徴とするアルコールガス
検知素子の負性。 (21酸化yoムか1.0.4と1.0.10由のX線
回折の半価中の平均値が010〜0.30゜であること
を特徴とする特許請求の範囲第1項記載のアルコールガ
ス検知素子の製法。 (31酸化ジルコニウムが1.1.1と3.0゜0 t
h](D X 線回折)半価rl+ ノ平均値が0.1
5〜0.50’であること管特徴とする特許請求の範囲
第1項又は第2項記載のアルコールガス検知素子の製法
。 (4)  焼成の温度条件が1270〜1370℃であ
ることを特徴とする第1項乃至第3項いずれか記載のア
ルコールガス検知素子の製法。
[Claims] ill Consists of a chromium component, a magnesium component, and a zirconium component, the chromium component includes chromium oxide, the magnesium component includes magnesium oxide, the zirconium component includes zirconium oxide, and the molar ratio of the chromium component is Mc , where the molar ratio of the magnesium component is Mm and the molar ratio of the zirconium component is Mx, the molar fraction of Mx satisfies the following, and the magnesium oxide is 2.0. O and 2,
2, the average value in half value of X-ray diffraction of 2do is 0.30
A mixture of metal oxides that is ~0.50'
Negativity of an alcohol gas detection element characterized by firing at 1400°C. (Claim 1) characterized in that the average half value of X-ray diffraction of 21 oxide 1.0.4 and 1.0.10 is 010 to 0.30°. The manufacturing method of the alcohol gas detection element described above. (31 zirconium oxide is 1.1.1 and 3.0°0
h] (D X-ray diffraction) half value rl+ average value is 0.1
The method for producing an alcohol gas detection element according to claim 1 or 2, characterized in that the tube has a diameter of 5 to 0.50'. (4) The method for manufacturing an alcohol gas sensing element according to any one of items 1 to 3, wherein the firing temperature condition is 1270 to 1370°C.
JP7216682A 1982-04-28 1982-04-28 Manufacture of detecting element of gaseous alcohol Pending JPS58189546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7216682A JPS58189546A (en) 1982-04-28 1982-04-28 Manufacture of detecting element of gaseous alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7216682A JPS58189546A (en) 1982-04-28 1982-04-28 Manufacture of detecting element of gaseous alcohol

Publications (1)

Publication Number Publication Date
JPS58189546A true JPS58189546A (en) 1983-11-05

Family

ID=13481379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7216682A Pending JPS58189546A (en) 1982-04-28 1982-04-28 Manufacture of detecting element of gaseous alcohol

Country Status (1)

Country Link
JP (1) JPS58189546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849180A (en) * 1985-02-12 1989-07-18 New Cosmos Electric Co., Ltd. Alcohol selective gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849180A (en) * 1985-02-12 1989-07-18 New Cosmos Electric Co., Ltd. Alcohol selective gas sensor

Similar Documents

Publication Publication Date Title
US3957691A (en) Catalyst for treating exhaust gas from engine vehicles
KR101220312B1 (en) Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition
JPS5853862B2 (en) Flammable gas detection element
US5497139A (en) Temperature sensor and its manufacturing method
US3955929A (en) Gas detecting sensor
JPS6218865B2 (en)
JP3053865B2 (en) Sensor for detecting carbon monoxide
JPS58189546A (en) Manufacture of detecting element of gaseous alcohol
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JPH0443233B2 (en)
JP2010225903A (en) Composition for thermistor, thermistor element, and method of manufacturing the same
JPS5817428B2 (en) Gasken Chisoshi
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JP3569810B2 (en) High temperature thermistor
KR910001859B1 (en) Humidity-sensing component composition
JP4850330B2 (en) THERMISTOR COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND THERMISTOR DEVICE
JPS6049148B2 (en) Manufacturing method of metal oxide sintered body for flammable gas sensor element
Jansen et al. Acid catalysts based on Cu/Ru alumina: Conversion of butyraldehyde to dibutyl ether
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
US6270693B1 (en) Thermistor composition
JPS5950352A (en) Detection element for nox
KR0140493B1 (en) Temperature sensor and its manufacturing method
CA1133231A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS5919849A (en) Manufacture of gas detection element
JPH037912B2 (en)