JPS5818945B2 - Compound materials for polymer resins - Google Patents

Compound materials for polymer resins

Info

Publication number
JPS5818945B2
JPS5818945B2 JP54136756A JP13675679A JPS5818945B2 JP S5818945 B2 JPS5818945 B2 JP S5818945B2 JP 54136756 A JP54136756 A JP 54136756A JP 13675679 A JP13675679 A JP 13675679A JP S5818945 B2 JPS5818945 B2 JP S5818945B2
Authority
JP
Japan
Prior art keywords
resin
oil
polymer resin
resins
compatibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136756A
Other languages
Japanese (ja)
Other versions
JPS5661457A (en
Inventor
逸見荘三
今村敏英
佐野正勝
山口隆
山根木一廣
杉本平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kosan Co Ltd
Original Assignee
Fuji Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kosan Co Ltd filed Critical Fuji Kosan Co Ltd
Priority to JP54136756A priority Critical patent/JPS5818945B2/en
Publication of JPS5661457A publication Critical patent/JPS5661457A/en
Publication of JPS5818945B2 publication Critical patent/JPS5818945B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は分解留出油の精製により得られる高分子樹脂用
配合材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compounding material for polymer resins obtained by refining cracked distillate oil.

更に詳しく云えば、本発明は石油系芳香族エキストラク
ト並びに石油系重質残査に対して熱分解又は酸化脱水素
反応を行なう時に留出する分解留出油の精製により得ら
れる高分子樹脂用配合材に関する。
More specifically, the present invention provides a method for polymer resins obtained by refining cracked distillate distilled when thermal cracking or oxidative dehydrogenation is carried out on petroleum aromatic extracts and petroleum heavy residues. Regarding compound materials.

石油系留分からフルフラール、フェノール等で抽出した
芳香族エキストラクト並びに石油系重質残査の有効利用
のために、熱分解重縮合反応を行ったり、あるいは酸素
又は空気等の酸化剤によって酸化脱水素重縮合反応を行
ったりして、コークス製造用粘結剤、塗料用樹脂化物、
舗装剤あるいはゴム添加剤等を得る方法について当社は
研究を進め既にいくつか特許出願に行っている(例えば
特開昭48−31204、同53−10602、同55
−139407参照)。
In order to effectively utilize aromatic extracts and heavy petroleum residues extracted from petroleum fractions with furfural, phenol, etc., we perform pyrolysis polycondensation reactions or oxidative dehydrogenation using oxidizing agents such as oxygen or air. By performing polycondensation reactions, we produce binders for coke production, resin compounds for paints,
Our company is conducting research on methods for obtaining paving agents or rubber additives, and has already filed several patent applications (for example, JP-A-48-31204, JP-A-53-10602, JP-A-55).
-139407).

前記の芳香族エキストラクトあるいは石油系重質残査に
熱分解又は酸化脱水素反応を行う時には油(以下分解留
出油と呼ぶ)が留出してくるが、この分解留出油の量は
熱分解反応時で50%強、酸化脱水素重縮合反応時で2
5%程度に達する。
When the above-mentioned aromatic extract or petroleum heavy residue is subjected to thermal cracking or oxidative dehydrogenation, oil (hereinafter referred to as cracked distillate) is distilled out, but the amount of cracked distillate is Over 50% during decomposition reaction, 2 during oxidative dehydrogenation polycondensation reaction
It reaches about 5%.

従来、この分解留出油の評価は低く、燃料油としてC重
油ブレンド材とされていたに過ぎなかったので、その伺
加価値を高めた利用を図る事は経済的な面から重要であ
る。
Conventionally, this cracked distillate has had a low reputation and has only been used as a fuel oil as a C heavy oil blending material, so it is important from an economic standpoint to utilize it with increased added value.

従って本発明の目的は分解留出油の有効利用を図ること
にある。
Therefore, an object of the present invention is to utilize cracked distillate oil effectively.

本発明者等は分解留出油が芳香族性の高い留分を多量に
含むこと、特に酸化処理時に得られる留用油は極性が高
く、しかも化学的に安定な含酸素化合物を含む事に着目
して、フルフラール、フェノール又はこれに準する溶剤
で芳香族性留分や含酸素化合物を選択的に抽出したとこ
ろ、この精製油はエポキシ樹脂、ウレタン樹脂、アクリ
ル樹脂、塩化ゴム、塩化ビニル樹脂、アルキッド樹脂等
の高分子樹脂と良好な相溶性を有し、高分子樹脂用配合
材として使用できることを見出し本発明を完成した。
The present inventors focused on the fact that cracked distillate oil contains a large amount of highly aromatic fractions, and in particular, the distillate oil obtained during oxidation treatment is highly polar and contains chemically stable oxygen-containing compounds. Then, when aromatic fractions and oxygen-containing compounds were selectively extracted using furfural, phenol, or similar solvents, this refined oil was extracted from epoxy resins, urethane resins, acrylic resins, chlorinated rubber, vinyl chloride resins, The present invention was completed by discovering that it has good compatibility with polymer resins such as alkyd resins and can be used as a compounding material for polymer resins.

本発明の配合材が対象とする高分子樹脂類はそれぞれ極
性が異なる。
The polymer resins targeted by the compound of the present invention have different polarities.

高分子樹脂の配合材に要求される性質は種々あげられる
が、とりわけ樹脂との良好な相溶性が重要である。
There are various properties required for polymer resin compounding materials, but particularly good compatibility with the resin is important.

即ち高分子樹脂と配合剤が相溶性をもつということは配
合材で可塑化された樹脂から配合材が滲出しないという
点で極めて重要である。
That is, the compatibility between the polymer resin and the compounding agent is extremely important in that the compounding material does not ooze out from the resin plasticized with the compounding material.

Flory、 P、 J 、 (J、Chem。Phy
s、9 660(1940)、同、10 51(194
2)、同12 ’425(1944))及びHugqi
nslM、L、(Anale N、Y、 Acad 。
Flory, P. J. (J. Chem. Phys.
s, 9 660 (1940), ibid., 10 51 (194
2), 12 '425 (1944)) and Hugqi
nslM, L, (Anale N, Y, Acad.

Sci、43 1(1942)、lの高分子溶液の熱力
学理論から、相溶性はその容積濃度と相互作用定数μに
よって規制されることが知られている。
Sci, 43 1 (1942), from the thermodynamic theory of polymer solutions, it is known that compatibility is regulated by the volume concentration and the interaction constant μ.

又溶解性指数(Solubility Paramet
er 、以下S、P、値と称する。
Also, the solubility index (Solubility Parameter)
er, hereinafter referred to as S, P, value.

)も相溶性に関わる定数であるが、s、p、値計算に用
いられる分子量と凝集エネルギー(分子の極性と深く関
係する。
) are also constants related to compatibility, but they are deeply related to the molecular weight and cohesive energy (molecular polarity) used in s, p, value calculations.

)こそ、分子の容積濃度と相互作用定数μに関係し、配
合材としては対応する樹脂に対して適当な分子量と凝集
エネルギー、即ち適当な容積濃度と相互作用定数μが必
要となる。
) is related to the volume concentration of molecules and the interaction constant μ, and the compounding material needs to have an appropriate molecular weight and cohesive energy for the corresponding resin, that is, an appropriate volume concentration and interaction constant μ.

云い換えれば、配合材は分子量分布が狭く、樹脂に対し
て適当な平均分子量と極性を持つことが要求されること
になる。
In other words, the compounded material is required to have a narrow molecular weight distribution and to have an average molecular weight and polarity appropriate to the resin.

通常の石油製品は分子量分布も広く、従ってその容積濃
度には相当の分布が推測され、又芳香族性の低い留分、
即ち樹脂との相互作用定数μの大きい飽和炭化水素を含
んでいるため、樹脂と相溶性を示さず、配合材となり得
ないことは明白である。
Ordinary petroleum products have a wide molecular weight distribution, so it is assumed that there is a considerable distribution of their volumetric concentrations.
That is, it is clear that since it contains a saturated hydrocarbon with a large interaction constant μ with the resin, it is not compatible with the resin and cannot be used as a compounding material.

本発明の樹脂用配合材の原料油である分解留出油は、反
応時にある程度の蒸留作用を受けているので、少量の軽
質留分を除けば分子量分布は狭く、又分解反応により留
出してくる油なのでより芳香族性の高い(芳香族性指数
faが高い)留分となっていることが期待される。
The cracked distillate oil, which is the raw material for the resin compounding material of the present invention, is subjected to some degree of distillation during the reaction, so the molecular weight distribution is narrow except for a small amount of light fraction, and the distillate oil is distilled out by the cracking reaction. Since it is a fruit oil, it is expected that the fraction will be more aromatic (higher aromaticity index fa).

更に酸素、空気等の酸化剤で酸化処理する時の留出油は
極性の高い、しかも化学的に安定な含酸素化合物を含む
Furthermore, the distillate oil when oxidized with an oxidizing agent such as oxygen or air contains highly polar and chemically stable oxygen-containing compounds.

しかし分解留出油は同時に相当量の飽和炭化水素をも含
むので、そのままでは樹脂との相溶性を示さない。
However, since cracked distillate oil also contains a considerable amount of saturated hydrocarbons, it does not exhibit compatibility with resins as it is.

そこで本発明者等は分解留出油をフルフラール、フェノ
ール又はこれに準する溶剤で抽出処理したところ選択的
に芳香族性の高い留分及び含酸素化合物が得られ、この
精製油は樹脂との相互作用定数μの小さい留分に富み、
樹脂と良好な相溶性を有し、エポキシ樹月穎 ウレタン
樹脂、アクリル樹脂、塩化ゴム、塩化ビニル樹脂、アル
キッド樹脂等の配合材となりうろことを見出した。
Therefore, the present inventors extracted cracked distillate oil with furfural, phenol, or similar solvents, and selectively obtained highly aromatic fractions and oxygen-containing compounds. Rich in fractions with small interaction constant μ,
It has been found that it has good compatibility with resins and can be used as a compounding material for epoxy urethane resins, acrylic resins, chlorinated rubber, vinyl chloride resins, alkyd resins, etc.

以下本発明による樹脂用配合材を順次説明する。The resin compounding materials according to the present invention will be sequentially explained below.

(1)原料分解留出油 反応温度290℃にてフルフラールで抽出した平均分子
量320の芳香族エキストラクトに空気を吹き込んで酸
化脱水素重縮合反応を行った時に留出した分解留出油の
蒸溜データ(表I)−膜性状並びにゲル−クロ分析結果
(表■)を示す。
(1) Raw material cracked distillate oil Distillation of cracked distillate oil distilled when air was blown into an aromatic extract with an average molecular weight of 320 extracted with furfural at a reaction temperature of 290°C to perform an oxidative dehydrogenation polycondensation reaction. Data (Table I) - Membrane properties and gel-chromatic analysis results (Table ■) are shown.

※ 日本ゴム、協会誌、第50 巻、第1O号p669記載 の方法による。* Nippon Rubber, association magazine, 50th Volume, No. 1O, p669 According to the method.

表Iの蒸留データよりこの留出油は少量の軽質留分を除
けば沸点範囲がかなり狭(、分子量分布が狭い事がわか
る。
The distillation data in Table I shows that this distillate has a fairly narrow boiling point range (and narrow molecular weight distribution), except for a small amount of light fraction.

又表■のゲルクロ分析結果は相当量の芳香族留分を含ん
でいる事を示し、本発明の原料油として望ましい事がわ
かる。
Furthermore, the gel chromatography analysis results shown in Table 3 indicate that the oil contains a considerable amount of aromatic fraction, which indicates that it is desirable as a raw material oil for the present invention.

又酸価の値が低い事から含酸素化合物はエーテル或いは
エステル結合が主であることが推測される。
Furthermore, since the acid value is low, it is inferred that the oxygen-containing compound mainly has ether or ester bonds.

このエーテル或いはエステル結合をもつ含酸素化合物は
極性が高く樹脂と良好な相溶性を有することが期待され
る。
This oxygen-containing compound having an ether or ester bond is expected to have high polarity and good compatibility with the resin.

この例以外の分解留出油についても、例えば熱分解反応
時のものについては含酸素化合物が含まれないとか、又
石油系重質残渣を原料としたものについては芳香族留分
が多少少ないとかの差はあるが、上記に示す留出油とほ
ぼ同様の性質を有し、本発明の配合材を得るための原料
油として十分であった。
Regarding cracked distillate oil other than this example, for example, those obtained from thermal cracking reactions do not contain oxygen-containing compounds, and those made from petroleum heavy residues may contain somewhat less aromatic fractions. Although there were some differences, it had almost the same properties as the distillate oil shown above, and was sufficient as a raw material oil for obtaining the compounded material of the present invention.

ところで、この留出油は従来の潤滑油の精製条件では本
発明の配合材となり得る精製油を得ることはできない。
By the way, this distillate oil cannot be obtained as a refined oil that can be used as a compounding material of the present invention under conventional lubricating oil refining conditions.

即ち、従来の潤滑油精製に於ける抽出条件では、抽出残
物である潤滑油の精製に主眼をおいているために抽出温
度を高(し、相互作用定数μの大きい芳香族性の低い留
分までフルフラール又はフェノール等の溶剤中に溶解抽
出してしまうので、得られる抽出油は全体として樹脂と
の相溶性を欠くことになってしまうのである。
In other words, in the conventional extraction conditions for lubricating oil refining, the main focus is on refining the lubricating oil, which is the extraction residue, so the extraction temperature is raised (and a low aromatic residue with a large interaction constant μ) is used. Since the oil is dissolved and extracted in a solvent such as furfural or phenol, the resulting extracted oil lacks compatibility with the resin as a whole.

従ってフルフラール、フェノール等の溶剤による抽出条
件(特に抽出温度が問題になる。
Therefore, extraction conditions (particularly extraction temperature) using solvents such as furfural and phenol become a problem.

)が樹脂用配合材としての精製油を得るための最も大事
な要件となる。
) is the most important requirement for obtaining refined oil as a compounding material for resins.

(2)分解留出油の精製及び樹脂との相溶性(1)に示
した分解留出油を原料とし、フルフラールにて抽出精製
実験を行った。
(2) Purification of cracked distillate oil and compatibility with resin Using the cracked distillate oil shown in (1) as a raw material, an extraction and purification experiment was conducted using furfural.

抽出条件と得られた精製油の得率、並びに樹脂としてエ
ポキシ当量190のビスフェノール・エピクロルヒドリ
ン型のエポキシ樹脂を選んで相溶性を試験した結果を表
■に示す。
The extraction conditions, the yield of the refined oil obtained, and the results of a compatibility test using a bisphenol-epichlorohydrin type epoxy resin with an epoxy equivalent of 190 as the resin are shown in Table 2.

なおここで用いたエポキシ樹脂はエピクロルヒドリンと
ビスフェノールとの縮合物で次の一般式 市販のエポキシ樹脂はn=2〜12であるが特にnによ
って限定されるものでない。
The epoxy resin used here is a condensation product of epichlorohydrin and bisphenol, and the commercially available epoxy resin has the following general formula, where n=2 to 12, but is not particularly limited by n.

本件発明の配合剤はプレポリマーの形態で配合した後、
アミン等の硬化剤によって高分子化(硬化)して供用さ
れるものである。
After the compounding agent of the present invention is compounded in the form of a prepolymer,
It is used after being polymerized (cured) with a curing agent such as amine.

※ 精製油と樹脂を等重量部、150℃にて10分間攪
拌混合して冷却後400倍顕微鏡で観察S:完全溶解、
■:不溶 表■の結果から得られる精製油は第■抽出条件のものま
で樹脂に可溶であるが、精製油の得率を考慮すると抽出
条件としては第■抽出条件(溶剤比2.0、抽出温度5
0.0℃)を採用することが望ましい。
*Equal weight parts of refined oil and resin were stirred and mixed at 150°C for 10 minutes, cooled, and then observed under a 400x microscope.S: Completely dissolved;
■: Insoluble table The refined oil obtained from the results of ■ is soluble in resin under the extraction conditions of No. , extraction temperature 5
0.0°C) is desirable.

なお(1)に示した留出油以外の分解留出油についても
、抽出条件を種々検討したが、条件によって精製油の得
率が異なる程度でほぼ同様の結果であった。
Various extraction conditions were investigated for cracked distillate oils other than the distillate oil shown in (1), but the results were almost the same, with the yield of refined oil varying depending on the conditions.

又熱可塑性アクリル樹脂、油変性ウレタン樹脂及び塩化
ビニル樹脂との相溶性試験を行なった。
In addition, compatibility tests with thermoplastic acrylic resin, oil-modified urethane resin, and vinyl chloride resin were conducted.

その結果を次表■に示す。なおここで用いたアクリル樹
脂は一般に次式で示されるアクリルモノマーを重合させ
て得られるものである。
The results are shown in the following table ■. The acrylic resin used here is generally obtained by polymerizing an acrylic monomer represented by the following formula.

上式中、R1−R4はH、アルキル基、活性基(−NH
2、C0OH、−OH等)を含む側鎖であり、本件では
典型的なスチレン/アクリルアミド/エチルアクリレー
ト共重合体系について配合剤の検討を行った。
In the above formula, R1-R4 are H, an alkyl group, an active group (-NH
2, COOH, -OH, etc.), and in this case, we investigated compounding agents for a typical styrene/acrylamide/ethyl acrylate copolymer system.

ウレタン樹脂はインシアネート基(−NGO)と水酸基
(−oir)よりなるウレタン結合(−0CONH−)
で形成されるポリウレタン樹脂が代表的であ″るが、本
件ではTDI()ルエンジイソシアネート)を、2〜3
価のアルコールでつないだ次式に示されるプレポリマー
を使用した。
Urethane resin has a urethane bond (-0CONH-) consisting of an incyanate group (-NGO) and a hydroxyl group (-oir).
Typical examples include polyurethane resins formed from polyurethane resin, but in this case, TDI (ruene diisocyanate) is used in
A prepolymer of the following formula linked with a dihydric alcohol was used.

□この様なプレポリマーは、NCOが空気中の水
分と尿素結合をつくって反応し高分子化するので湿気硬
化性ポリウレタン樹脂と呼ばれる。
□Such a prepolymer is called a moisture-curing polyurethane resin because NCO reacts with moisture in the air to form urea bonds and becomes a polymer.

又TDIを油でつないだ油変性ポリウレタン樹脂等のプ
レポリマーも、異なる機構で硬化する。
Also, prepolymers such as oil-modified polyurethane resins in which TDI is bonded with oil are cured by a different mechanism.

本件では対象樹脂として油変性ポリウレタン樹脂を用い
た。
In this case, oil-modified polyurethane resin was used as the target resin.

また塩化ビニル樹脂は代表的プラスチックであり、アセ
チレンと塩酸又はエチレンから製造されている。
Vinyl chloride resin is a typical plastic and is manufactured from acetylene and hydrochloric acid or ethylene.

本件では軟質PVC(ポリ塩化ビニル)用可塑剤として
の検討を行ったものである。
In this case, we investigated its use as a plasticizer for soft PVC (polyvinyl chloride).

※ アクリル及びウレタン樹脂の場合には、本発明に於
ける精製油と各等重量部を、又塩化ビニル樹脂の場合に
は塩化ビニル樹脂80重量部に対し本発明に於ける精製
油20重量部を150℃にて10分間攪拌混合して冷却
後400倍顕微鏡で観察。
*In the case of acrylic and urethane resins, equal parts by weight of the refined oil in the present invention, and in the case of vinyl chloride resin, 20 parts by weight of the refined oil in the present invention for 80 parts by weight of the vinyl chloride resin. The mixture was stirred and mixed at 150°C for 10 minutes, cooled, and observed under a 400x microscope.

S二完全溶解、PS:部分溶解、■:不溶結果は先の表
■に示したエポキシ樹脂の場合と全く同様であり、以下
に説明する高分子樹脂配合材として最も大切な要件であ
る相溶性を十分に示し、本発明に於ける精製油は高分子
樹脂用配合材として非常に有用である事がわかる。
S: completely dissolved, PS: partially dissolved, ■: insoluble The results are exactly the same as in the case of the epoxy resin shown in the previous table ■, and the compatibility is the most important requirement for a polymer resin compound material explained below. It can be seen that the refined oil in the present invention is very useful as a compounding material for polymer resins.

(3)精製油の一般性状 (2)で示した第1〜第■抽出条件でそれぞれ得られた
精製油の一般性状を表Vに示す。
(3) General properties of refined oil Table V shows the general properties of the refined oils obtained under the first to second extraction conditions shown in (2).

※ JIS−に2540 タービン油の熱安定性試験
(170℃x12Hr)によった。
* Based on JIS-2540 turbine oil thermal stability test (170°C x 12 hours).

(4)精製油及び原料のゲル−クロ分析、元素分析及び
芳香族性指数 (3)に示した各精製油のゲル−クロ分析、元素分析及
び芳香族性指数faと、比較のために平均分子量320
の芳香族エキストラクトについての同様の分析結果とを
表■に示す。
(4) Gel-chromatic analysis, elemental analysis, and aromaticity index of refined oil and raw materials Gel-chromatic analysis, elemental analysis, and aromaticity index fa of each refined oil shown in (3), and the average for comparison. Molecular weight 320
Similar analysis results for aromatic extracts are shown in Table 3.

本発明に於いて、対象とする樹脂は大体高粘度の液体か
固体であり、従ってそれらの樹脂の供用時には作業性を
良くしたり、成型性を良くするために、又接着剤として
使用する場合には被着体の表面を十分に濡らすために、
樹脂の粘度を低下させることが必要である。
In the present invention, the target resins are generally high viscosity liquids or solids, and therefore, when these resins are used, they are used to improve workability, improve moldability, or when used as adhesives. In order to sufficiently wet the surface of the adherend,
It is necessary to reduce the viscosity of the resin.

(2)で述べたビスフェノール・エピクロルヒドリン型
のエポキシ樹脂の場合には、使用時に硬化剤としてのア
ミン類を添加するので、その粘度は低下するが、この硬
化剤は配合比が決まっているので、樹脂の粘度を自由に
調節するわけにはいかない。
In the case of the bisphenol-epichlorohydrin type epoxy resin mentioned in (2), amines are added as a curing agent during use, which lowers its viscosity, but since the mixing ratio of this curing agent is fixed, It is not possible to freely adjust the viscosity of the resin.

そのためこの種のエポキシ樹脂の粘度低下方法としては
溶剤を添加するとか、温度を上昇させる方法がとられて
いる。
Therefore, methods for reducing the viscosity of this type of epoxy resin include adding a solvent or increasing the temperature.

然しなから、溶剤添加法は使用後溶剤を完全に追い出さ
ないと気化発泡して、機械的強度が低下する等の問題が
あり、又温度上昇法は樹脂の使用可能時間を短縮し現場
作業を難かしくする。
However, the solvent addition method has problems such as vaporization and foaming if the solvent is not completely expelled after use, resulting in a decrease in mechanical strength, and the temperature increase method shortens the usable time of the resin and makes on-site work easier. make it difficult

本発明による精製油を配合材として使用する方法は上記
三方法の欠点を補ない非常に有用である。
The method of using refined oil as a blending material according to the present invention is very useful since it compensates for the drawbacks of the above three methods.

(5)各種樹脂との相溶性 (3)に示した第■抽出条件で得られた精製油を減圧蒸
溜して5つの留分に分けた。
(5) Compatibility with various resins The refined oil obtained under the extraction conditions No. 1 shown in (3) was distilled under reduced pressure and divided into five fractions.

この各留分についてその一般的性状及びエポキシ樹脂と
の相溶性を検討した結果を表■に示す。
The results of examining the general properties and compatibility with epoxy resins for each fraction are shown in Table 3.

表■から、原料油自体がもともと分子量分布の狭い油で
あるため得られた各留分の性状には大きな差はないが、
エポキシ樹脂との相溶性は全て良(、配合材となりうろ
ことがわかる。
From Table ■, it can be seen that since the raw material oil itself is originally an oil with a narrow molecular weight distribution, there is no big difference in the properties of each fraction obtained.
The compatibility with the epoxy resin is good (it can be seen that it can be used as a compounding material).

同様に前記の5つの留分について熱可塑性アクリル樹脂
、油変性ウレタン樹脂及び塩化ビニル樹脂との相溶性試
験を行なった。
Similarly, compatibility tests with thermoplastic acrylic resins, oil-modified urethane resins, and vinyl chloride resins were conducted on the five fractions mentioned above.

その結果を次表■に示す。The results are shown in the following table ■.

相溶性試験方法及び記号Sの意味は実施例3と同様。The compatibility test method and the meaning of the symbol S are the same as in Example 3.

結果は各樹脂に対し各留分とも十分な相溶性を示してい
る。
The results show that each fraction has sufficient compatibility with each resin.

一般にアクリル樹脂等高分子樹脂に使用される可塑剤で
あるDEP(ジエチルフタレート)、DOP(ジオクチ
ルフタレート)等はその樹脂に対する相互作用定数μが
一定であり、且つ容積濃度も一定であるので相溶しさえ
すれば相溶性に於ける問題は少ないが本発明に於ける鉱
油系の配合材の場合、精製油はある範囲の分子量分布を
もつので全体として一時的な相溶性を示しても、全分子
量分布にわたっての相溶性がない場合、即ち一部の分子
量のもの、%に軽質留分は樹脂と相溶しないという事が
多々あり、゛その結果Blooming 現象を起こす
事が多い。
Plasticizers such as DEP (diethyl phthalate) and DOP (dioctyl phthalate), which are generally used in polymer resins such as acrylic resins, have a constant interaction constant μ with respect to the resin and a constant volume concentration, so they are compatible. However, in the case of the mineral oil-based compounding material used in the present invention, refined oil has a molecular weight distribution within a certain range, so even if temporary compatibility is shown as a whole, there is no problem with compatibility. When there is no compatibility across the molecular weight distribution, that is, some molecular weights and light fractions are often incompatible with the resin, which often results in the blooming phenomenon.

上記の試験結果は、本発明に於ける精製油が分子量分布
の全部にわたって樹脂との十分な相溶性をもつ事を示し
ており、Blooming等の現象を起こさない事の証
左ともなっている。
The above test results show that the refined oil in the present invention has sufficient compatibility with the resin over the entire molecular weight distribution, and also proves that phenomena such as blooming do not occur.

(6)エポキシ樹脂の粘度調整 (3)に記載した第■抽出条件で得られた精製油とエポ
キシ当量190のエポキシ樹脂とを混合比を変えて溶解
させ、各々の混合物について粘度変化を測定した結果を
表■及び第1図に示す。
(6) Adjusting the viscosity of epoxy resin The refined oil obtained under the extraction conditions described in (3) and the epoxy resin with an epoxy equivalent of 190 were dissolved at different mixing ratios, and the viscosity change of each mixture was measured. The results are shown in Table 3 and Figure 1.

※ 測定温度は25.0℃ 第1図の本発明による精製油とエポキシ樹脂との混合物
の粘度測定値の直線性から、両者の相溶性と十分な可塑
効果がわかる。
*Measurement temperature was 25.0°C. The linearity of the viscosity measurement of the mixture of refined oil and epoxy resin according to the present invention shown in Figure 1 shows the compatibility and sufficient plasticizing effect of the two.

(7)熱可塑性アクリル樹脂の粘度調整 (6)と同様に熱可塑性アクリル樹脂について、(3に
記載した第■抽出条件で得られた精製油を使用して粘度
調整を行なった結果を第X及び第2図に示す。
(7) Adjusting the viscosity of thermoplastic acrylic resin in the same way as in (6). and shown in FIG.

※ 測定温度は25.0℃ (6)のエポキシ樹脂と同様に両者の相溶性と十分な可
塑効果がわかる。
*The measurement temperature was 25.0°C. As with the epoxy resin (6), it is clear that the two are compatible and have a sufficient plasticizing effect.

(8)油変性ウレタン樹脂の粘度調整 (6)及び(7)と同様に油変性ウレタン樹脂について
、(3)に記載した第■鑵1条件で得られた精製油を使
用して粘度調整を行なった結果を表M及び第3図に示す
(8) Adjustment of viscosity of oil-modified urethane resin Similarly to (6) and (7), adjust the viscosity of oil-modified urethane resin using the refined oil obtained under the condition No. 1 described in (3). The results are shown in Table M and FIG.

※ 測定温度は25.0°C (6)及び(7)と同様に、両者の相溶性と十分な可塑
効果がわかる。
*The measurement temperature was 25.0°C. Similar to (6) and (7), the compatibility and sufficient plasticizing effect of both can be seen.

以上の結果から本発明による精製油が高分子樹脂用配合
材として非常に有用である事がわかる。
The above results show that the refined oil according to the present invention is very useful as a compounding material for polymer resins.

(9)エポキシ当量190のエポキシ樹脂に配合材とし
て本発明による精製油〔(2)に示す第■抽出条件で得
られるもの〕を、又比較のために配合材として、平均分
子量320の芳香族エキストラクトを使用して、アミン
系硬化剤にて作成した試験片の引張速度を測定した結果
並びに外観滲出(B loom ing )について観
測した結果を示す(表■、X■)。
(9) An epoxy resin having an epoxy equivalent of 190 was mixed with the refined oil according to the present invention [obtained under the extraction conditions shown in (2) under No. The results of measuring the tensile speed of a test piece prepared with an amine curing agent using the extract and the results of observing the appearance oozing (B looming) are shown (Tables ■ and X■).

なお参考のために、従来よりエポキシ樹脂配合物として
知られているタールエポキシについても、同様の試験結
果を示す(表xiv)。
For reference, similar test results are also shown for tar epoxy, which has been conventionally known as an epoxy resin compound (Table xiv).

※1 配合材の添加量は主剤であるエポキシ樹脂100
部に対する。
*1 The amount of compounding material added is 100% of the epoxy resin, which is the main ingredient.
against the department.

※2 引張り試験はJIS K6911による。*2 Tensile test is based on JIS K6911.

芳香族エキストラクトを配合剤とした方は試験片は不透
明で濁りをもち滲出を起こすなど、相互溶解していない
事が明白であった。
When the aromatic extract was used as a compounding agent, the test piece was opaque, cloudy, and oozed, indicating that they were not mutually dissolved.

そのため10部を添加したところ、無添加の場合に近い
引張強度を有し、可塑効果を示さず、添加量が多くなる
と、不均質部分の破断が起こり、急激にその強度が低下
する現象を示した。
Therefore, when 10 parts of the additive was added, the tensile strength was close to that of the case without the additive, and no plasticizing effect was exhibited.If the amount added was large, fractures occurred in the non-uniform parts, and the strength suddenly decreased. Ta.

しかし、本発明による精製油を配合材として使用した方
はエポキシ樹脂と良好な相溶性を有するので、試験片は
透明で均質であり、少量の添加量で十分な可塑効果を有
し、かつ添加量の増加に対して、引張強度の低下が見ら
れず、良好である事がわかった。
However, when the refined oil according to the present invention is used as a compounding material, it has good compatibility with the epoxy resin, so the test piece is transparent and homogeneous, and a small amount of addition has a sufficient plasticizing effect. It was found that the tensile strength did not decrease as the amount increased, and the results were good.

この傾向は、従来使用されているタールエポキシについ
ても同様で本発明に於ける配合材が高分子樹脂用配合材
として良好であり、かつコールタールの様に発癌性物質
(例えば3・4−ペンツピレン)を含まない点で代替品
としても非常に有用である事がわかる。
This tendency is the same for conventionally used tar epoxy, and the compounded material in the present invention is good as a compounded material for polymer resins, and it is also effective against carcinogenic substances such as coal tar (for example, 3,4-pentupyrene). ), it can be seen that it is very useful as a substitute.

以上述べた様に本発明は従来燃料油、それも安価なC重
油ブレンド材としてしか評価できなかった、分解留出油
をフルフラール又はフェノール並びにそれに準する溶剤
にて選択的に芳香族性の高い油をあるいは極性の高い、
しかも化学的に安定な含酸素化合物を抽出精製する事に
より、安価でしかも相溶性良好な高分子樹脂用配合材を
提供したものである。
As described above, the present invention selectively converts cracked distillate oil, which has conventionally been evaluated only as an inexpensive C heavy oil blending material, into a highly aromatic fuel oil using furfural, phenol, or similar solvents. oil or highly polar,
Furthermore, by extracting and purifying chemically stable oxygen-containing compounds, we have provided a compounding material for polymer resins that is inexpensive and has good compatibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエポキシ樹脂について、第2図はアクリル樹脂
について、また第3図はウレタン樹脂について、それぞ
れ本発明による配合材との混合割合とその粘度との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the mixing ratio of the compounding material according to the present invention and its viscosity for an epoxy resin, FIG. 2 for an acrylic resin, and FIG. 3 for a urethane resin.

Claims (1)

【特許請求の範囲】 1 石油系重質残査、又は平均分子量150〜8500
石油系留分からフルフラール、フェノール或いはこれに
準する溶剤で抽出した芳香族性に富む留分を、250〜
500℃の温度にて、熱分解重縮合反応、又は酸素、空
気等の酸化剤で酸化処理する時に留出する分解留出油を
フルフラール、フェノール又はこれに準する溶剤で抽出
処理して得られる高分子樹脂用配合材。 2 高分子樹脂がエポキシ樹脂である特許請求の範囲第
1項に記載の高分子樹脂用配合剤。 3 高分子樹脂がウレタン樹脂である特許請求の範囲第
1項に記載の高分子樹脂用配合剤。 4 高分子樹脂がアクリル樹脂である特許請求の範囲第
1項に記載の高分子樹脂用配合剤。 5 高分子樹脂が塩化ビニル樹脂である特許請求の範囲
第1項に記載の高分子樹脂用配合剤。
[Claims] 1. Petroleum-based heavy residue or average molecular weight 150-8500
Aromatic fractions extracted from petroleum fractions with furfural, phenol, or similar solvents are
Obtained by extracting cracked distillate, which is distilled out during thermal decomposition polycondensation reaction or oxidation treatment with an oxidizing agent such as oxygen or air, at a temperature of 500°C using furfural, phenol, or a similar solvent. Compound material for polymer resin. 2. The compounding agent for a polymer resin according to claim 1, wherein the polymer resin is an epoxy resin. 3. The compounding agent for a polymer resin according to claim 1, wherein the polymer resin is a urethane resin. 4. The compounding agent for a polymer resin according to claim 1, wherein the polymer resin is an acrylic resin. 5. The compounding agent for a polymer resin according to claim 1, wherein the polymer resin is a vinyl chloride resin.
JP54136756A 1979-10-23 1979-10-23 Compound materials for polymer resins Expired JPS5818945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54136756A JPS5818945B2 (en) 1979-10-23 1979-10-23 Compound materials for polymer resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54136756A JPS5818945B2 (en) 1979-10-23 1979-10-23 Compound materials for polymer resins

Publications (2)

Publication Number Publication Date
JPS5661457A JPS5661457A (en) 1981-05-26
JPS5818945B2 true JPS5818945B2 (en) 1983-04-15

Family

ID=15182758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54136756A Expired JPS5818945B2 (en) 1979-10-23 1979-10-23 Compound materials for polymer resins

Country Status (1)

Country Link
JP (1) JPS5818945B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139407A (en) * 1979-04-18 1980-10-31 Fuji Kosan Kk Resinified material for paint and paint composition containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139407A (en) * 1979-04-18 1980-10-31 Fuji Kosan Kk Resinified material for paint and paint composition containing the same

Also Published As

Publication number Publication date
JPS5661457A (en) 1981-05-26

Similar Documents

Publication Publication Date Title
US3714110A (en) Oil extended polyurethanes based on hydroxy terminated diene polymers
Bouchareb et al. Effects of epoxidized sunflower oil on the mechanical and dynamical analysis of the plasticized poly (vinyl chloride)
Borrero-López et al. Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics
Yoo et al. Synthesis and characterization of farnesene-based polymers
US3420915A (en) Phenol modified hydrocarbon resins and blends thereof with epoxy resin,polyurethane or polythiol
KR20150037452A (en) Asphalt modifier and modified asphalt composition comprising the same
US10717898B2 (en) Directly polymerized cashew nut shell liquid (CNSL) and bitumen compositions comprising the same
WO1988005446A1 (en) Ricinoleate modified hydrocarbon polyols
US3303151A (en) Polymerization process
Yao et al. Preparation of cardanol based epoxy plasticizer by click chemistry and its action on poly (vinyl chloride)
Zhang et al. Chemical modification of neoprene rubber by grafting cardanol, a versatile renewable materials from cashew industry
DE2815495A1 (en) PROCESS FOR PRODUCING BITUMINA MODIFIED WITH POLYMER
Fink et al. Polyurethane elastomers based on amphiphilic poly (caprolactone)‐b‐poly (butadiene)‐b‐poly (caprolactone) triblockcopolyols
JPS5818945B2 (en) Compound materials for polymer resins
CN103773016B (en) A kind of pitch polyolefine water-proof material
KR102140124B1 (en) Modified asphalt composition
US2823192A (en) Polyvinyl chloride resin plasticized with triethylene glycol di-metatoluate
US2480296A (en) Ethylene polymer compositions
JP5123461B2 (en) Aliphatic-aromatic copolymer petroleum resin composition having excellent storage stability and method for producing the same
KR102306375B1 (en) Plasticizer for mastics, plastisols and adhesives
US3305503A (en) Wax extended urethane polymers
US3401136A (en) Dipentene polymer compositions
JPS6237663B2 (en)
US1263813A (en) Manufacture of resins.
US3415769A (en) Ethylene-alpha-olefin elastomer compositions