JPS58188067A - Zinc air cell - Google Patents

Zinc air cell

Info

Publication number
JPS58188067A
JPS58188067A JP57072111A JP7211182A JPS58188067A JP S58188067 A JPS58188067 A JP S58188067A JP 57072111 A JP57072111 A JP 57072111A JP 7211182 A JP7211182 A JP 7211182A JP S58188067 A JPS58188067 A JP S58188067A
Authority
JP
Japan
Prior art keywords
zinc
consisted
concentration
battery
koh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57072111A
Other languages
Japanese (ja)
Other versions
JPH0136673B2 (en
Inventor
Akira Oota
璋 太田
Nobuharu Koshiba
信晴 小柴
Takao Yokoyama
孝男 横山
Fumio Oo
大尾 文夫
Korenobu Morita
森田 是宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57072111A priority Critical patent/JPS58188067A/en
Publication of JPS58188067A publication Critical patent/JPS58188067A/en
Publication of JPH0136673B2 publication Critical patent/JPH0136673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts

Abstract

PURPOSE:To provide a zinc air cell having good leakage resistance to excess discharge, good discharge performance, and short activation time by spacifying an electrolyte composition in a desired region. CONSTITUTION:An electrolyte composition existing inside a region surrounded by lines connecting A, B, C, and D in three- component system diagram indicated by weight percentage of potassium hydroxide (KOH), zinc oxide (ZnO), and water (H2O). A positive electrode 2 consists of a catalytic layer 2 and a nickel net 3 and has a thickness of 0.45mm.. The catalytic layer 2 is consisted of 50pts.wt. active carbon, 80pts.wt. manganese dioxide which is treated at 550 deg.C, 20pts.wt. acetylene black, and 25pts.wt. polytetrafluoroethylene (PTFK). A negative electrode 4 is consisted of amalgamated zinc powder having the weight corresponding to a theoretical capacity of 440mAh and 120mul of various kinds of electrolytes and small amount of thickening agent. A separator 5 is consisted of polypropylene porous film 6 and absorvent material 7.

Description

【発明の詳細な説明】 本発明は空気−亜鉛電池の改良に係り、特に近年、補聴
器用として注目されている小型の空気−亜鉛電池の改良
に関するもので、その目的は電解液組成をある一定範囲
内に規゛定することにエフ、過放電耐漏液性、放電特性
及び活性化時間の短かいすぐ几だ電池を提供することに
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in air-zinc batteries, and in particular to improvements in small-sized air-zinc batteries, which have been attracting attention for use in hearing aids in recent years. The purpose of this invention is to provide a battery that is easy to operate and has excellent overdischarge and leakage resistance, discharge characteristics, and short activation time.

従来から小型の空気−亜鉛電池は、容積当りの放電容量
が太きく、耐漏液性特に過放電時の漏液が少なく、床存
性にすぐ汎、電池を活性化した時の開路′電圧が高いこ
とが要望されてきている。
Conventionally, small air-zinc batteries have a large discharge capacity per volume, are resistant to leakage, especially less leakage during overdischarge, have good shelf life, and have low open circuit voltage when the battery is activated. There is a growing demand for higher standards.

しかしながら、現状1では電解液にあってはその基本的
な髪件のひとつである電気伝導度が重視され、電導度が
最高値を示す約30重量%近くの水酸化カリウム(KO
H)濃度が使用さ扛てきた。
However, in the current situation 1, emphasis is placed on electrical conductivity, which is one of the basic conditions for electrolytes, and potassium hydroxide (KO), which has a maximum electrical conductivity of approximately 30% by weight, is emphasized.
H) Concentration has been used.

本発明者らは、この電解液組成について鋭意研究した結
果、電導度とは関係ないところに空気−亜鉛電池にとっ
て優扛た特性全発揮する電解液組成を見いたすことがで
きた。
As a result of intensive research into this electrolyte composition, the present inventors were able to discover an electrolyte composition that exhibits all excellent characteristics for air-zinc batteries, regardless of conductivity.

すなわち、水酸化カリウム(KOH)、酸化亜鉛(Zn
O)及び水(H2O)i各々重量%で示した第3図の三
成分組成図中、点ム、B、C,D’i結ふ線で囲1扛た
領域内の電解液組成を用いることで、前記の要望を満足
する空気−亜鉛電池の提供を可能にしたものである。
That is, potassium hydroxide (KOH), zinc oxide (Zn
O) and water (H2O) i are each shown in weight% in the ternary composition diagram in Figure 3, using the electrolyte composition within the area surrounded by the lines connecting dots M, B, C, and D'i. This makes it possible to provide an air-zinc battery that satisfies the above requirements.

以下、本発明を実施例により詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

電解液とし゛てKOH,ZnO及びH2Oの三成分から
なる各種溶液を調整した。具体的な調整方法はKOHと
H2Oからなる一定濃度の水溶液を作り、これ全各種濃
度に比重調整した後にZnOf溶解させて各組成となる
ように再調整した。
Various solutions consisting of three components, KOH, ZnO and H2O, were prepared as electrolytes. The specific adjustment method was to prepare an aqueous solution of KOH and H2O with a constant concentration, adjust the specific gravity to various concentrations, and then dissolve ZnOf and readjust to each composition.

調整した電解液の各組成成分濃度(重量%)を第1衣に
、また各電解液の全体的な状態を第1図に示した。
The concentration (weight %) of each component of the prepared electrolytic solution is shown in Figure 1, and the overall condition of each electrolytic solution is shown in Figure 1.

以下余白 第1図から明らかな如(KOHが低濃度の領域ではZn
Oが溶解しにくい。従って酸化亜鉛の不溶解部分は削除
している。この各組成の電解液を用いて大きさがR44
(直径11.6m+n、高さ6.4mm)の空気−亜鉛
電池全作成した。試験した電池の構成を第2図で説明す
ると、正極1は活性炭50重量部、550’(、で熱処
理した二酸化マンガン8ON量部、アセチレンブラック
20重量部及びポリテトラフルオロエチレン(PTFE
)25重量部からなる触媒層2七ニツケル網3とからな
り、その厚さは0.45 mmである。負極4は氷化亜
鉛粉末を主体としたもので、亜鉛の理論反応容量が44
0mAhになる重量と前記各種の電解液120μノと少
量の増粘材とで構成されている。七ツクレータ6はポリ
プロピレンの多孔膜6と含液材7とから構成されている
。なお、8はPTFIEの多孔膜、9は正極ケース、1
oは負極封口板、11は絶縁ガスケツ計、12は支持紙
、13は正極ケースに設けられた酸素数−ジ入れ用の空
気孔、14は作存時に空気孔13を閉塞し、活性時に開
孔するために剥離できる封口紙であって気体、水分の透
過しにくい素材で構成さ几ている。
As is clear from Figure 1 in the margin below (in the region of low KOH concentration, Zn
O is difficult to dissolve. Therefore, the insoluble portion of zinc oxide was removed. Using electrolytes of each composition, the size is R44.
(Diameter: 11.6 m+n, height: 6.4 mm) A complete air-zinc battery was fabricated. The configuration of the tested battery is explained in FIG. 2. The positive electrode 1 was made of 50 parts by weight of activated carbon, 8 parts of manganese dioxide heat-treated with 550', 20 parts by weight of acetylene black, and polytetrafluoroethylene (PTFE).
) 25 parts by weight of the catalyst layer 2 and the nickel mesh 3, the thickness of which was 0.45 mm. Negative electrode 4 is mainly made of frozen zinc powder, and has a theoretical zinc reaction capacity of 44
It consists of a weight of 0mAh, 120μ of the various electrolytes mentioned above, and a small amount of thickener. The seven craters 6 are composed of a polypropylene porous membrane 6 and a liquid-containing material 7. In addition, 8 is a porous membrane of PTFIE, 9 is a positive electrode case, 1
o is a negative electrode sealing plate, 11 is an insulating gasket meter, 12 is a support paper, 13 is an air hole provided in the positive electrode case for inserting oxygen, and 14 is an air hole that closes the air hole 13 when activated and opens when activated. It is a sealing paper that can be peeled off due to the holes, and is made of a material that is difficult for gas and moisture to pass through.

第1表に示す各種電解液組成、すなわち47種の電池の
放電性能全180Ωの負荷を使用し、20℃の環境下で
連続放電全行ない終止電圧0,9Vまでに得られた電気
容量で調べた。また過放電漏液は180Ωり負荷で連続
族′亀を行ない放電開始から3o日後の漏液の有無全ク
レゾールレッドの変色の有無によって調べた。さらに電
池の活性化時間をみるために封口紙全取り除いた後、1
分後の開路電圧を調べた。このそれぞれの結果全第2表
に示した。また電解液の各組成成分の濃度領域を明確に
するため、第1図の三成分組成図の部分拡大図全用意し
、こ扛に調査した各電池の特性値全挿入して良好な特性
を示す領域を盛り込んだ三成分組成図を第3図として作
成した。
Using the various electrolyte compositions shown in Table 1, that is, the discharge performance of 47 types of batteries, using a total load of 180 Ω, the electric capacity obtained up to a final voltage of 0.9 V during continuous discharge in an environment of 20°C was investigated. Ta. In addition, over-discharge leakage was investigated by conducting a continuous series test under a load of 180Ω and checking for leakage or discoloration of all cresol red 30 days after the start of discharge. Furthermore, in order to check the activation time of the battery, after removing all the sealing paper,
The open circuit voltage after 1 minute was checked. All the results are shown in Table 2. In addition, in order to clarify the concentration range of each component of the electrolyte, we have prepared a partial enlarged view of the three-component composition diagram in Figure 1, and have inserted all the characteristic values of each battery investigated to determine good characteristics. A three-component composition diagram incorporating the indicated regions was created as Figure 3.

第   2   表 第2表及び第3図から明らかなように、放電性能はKO
Hの濃度、特に水酸基イオン濃度に支配さnてlA6゜
第3図に亜鉛理論容量の約90%以上、すなわち400
mAh以上の放電容量性能が得られる領域をドツト部分
イで示した。KOHの濃度が概ね35重量%以上の濃度
領域では400mAh  以上の放電容量が確保できる
。一方過放電漏液は漏液の無い部分金水平平行線口で示
したようにKOHが42.6重量%以上の濃度領域で顕
著に認められる。これらの関係は定かではないが、次の
ような機構が推定される。すなわち、亜鉛の放電反応は Zn +2(:IH−+ Zn(OH) 2 + 2e
−=−−−−−−−・(11Z n−1−40H−? 
Zn02z + 2H’20+215−−・(21のふ
たつが、この電解液組成領域の中で起へことが推定さ几
る。特にKOH濃度が低いと(1)の反応が支配的に進
み、濃度が濃い領域では(2)の反応が支配的に進む。
Table 2 As is clear from Table 2 and Figure 3, the discharge performance is KO
It is determined by the concentration of H, especially the concentration of hydroxyl ions.
The region where discharge capacity performance of mAh or more can be obtained is indicated by a dotted circle. In a concentration range where the KOH concentration is approximately 35% by weight or more, a discharge capacity of 400 mAh or more can be secured. On the other hand, overdischarge leakage is noticeable in the KOH concentration range of 42.6% by weight or more, as shown by the horizontal parallel lines in the area where there is no leakage. Although these relationships are not clear, the following mechanism is presumed. That is, the discharge reaction of zinc is Zn +2(:IH-+ Zn(OH) 2 + 2e
−=−−−−−−・(11Z n−1−40H−?
Zn02z + 2H'20+215-- (21) It is presumed that the two reactions occur within this electrolyte composition region. In particular, when the KOH concentration is low, reaction (1) proceeds dominantly, and the concentration increases. In the dark region, reaction (2) proceeds dominantly.

すなわち、KOH濃度の低い領域では水の消費反応が進
み、電解液中のH2Oが減少するため、放電に寄与する
電解液量が低下して光分な放電容量が得られにくい。し
かし、遊離の電解液は生じ壜いため、過放電時に空気孔
からの漏液はしにくくなる。一方KOH濃度が高い領域
では、電解液が消費されないため放電が末期まで可能で
放電容量は増加するが、水が消費されにくい一2Lめ、
放電中の反応物の体積膨張との相乗作用で過放電を行な
うと空気孔からの漏液が発生すると考えられる。
That is, in a region where the KOH concentration is low, the water consumption reaction progresses and H2O in the electrolyte decreases, so the amount of electrolyte that contributes to discharge decreases, making it difficult to obtain a sufficient discharge capacity. However, since free electrolyte is not produced, it becomes difficult for the electrolyte to leak from the air holes during overdischarge. On the other hand, in the region where the KOH concentration is high, the electrolyte is not consumed and discharge is possible until the final stage, increasing the discharge capacity, but water is less consumed and the
It is thought that overdischarge, combined with the volumetric expansion of reactants during discharge, causes liquid leakage from the air holes.

一方、封ロ紙ケ@9除いた空気孔開孔後の開路電圧は、
ZnO濃度に支配され、ZnO濃度が薄い場合には斜線
部/・で示す如く1.40v以」二全示し、逆に濃くな
ると、開路電圧は低下する。この理由は極めて簡単で、
亜鉛の単極電位がほぼZnO濃度にり1応しているため
で、ZnOの低濃度領域では亜鉛の電位は卑になること
による。
On the other hand, the open circuit voltage after opening the air hole excluding the sealing paper @9 is:
It is controlled by the ZnO concentration, and when the ZnO concentration is low, the voltage exceeds 1.40 V as shown by the hatched area, and conversely, when it becomes high, the open circuit voltage decreases. The reason for this is extremely simple;
This is because the unipolar potential of zinc is approximately proportional to the ZnO concentration, and the potential of zinc becomes base in a low ZnO concentration region.

一般にZnOの添加は、アルカリ系の密封電池ではよく
行なわ扛ている。こnは保存中に発生する亜鉛からの水
素ガス発生を抑制するためで、通常卒 r重址%以」二の酸化亜鉛全顎えるのが一般的である。
Generally, ZnO is often added to alkaline sealed batteries. This is to suppress the generation of hydrogen gas from zinc during storage, and it is common to use less than 2% zinc oxide.

空気−亜鉛電池では、酸素数v入れのための空気孔を封
口紙で押える程度の封口状態であり、若干の水素ガスが
透過することがらZnOの濃度をそれ程高める必要はな
く、むしろ酸化亜鉛の濃度を低減することが開路電圧の
観点、すなわち封口紙を取り除いた後使用可能に至る活
性化の時間が短くなり、電池の使用にあたっては有効に
なる。
In an air-zinc battery, the air holes for introducing oxygen v are sealed with sealing paper, and some hydrogen gas passes through, so there is no need to increase the ZnO concentration that much. Reducing the concentration is effective in terms of open circuit voltage, ie, the time required for activation to become usable after removing the sealing paper, which is effective when using the battery.

この活性化の、時間を1分内とすれば、ZnOの濃度は
3.f5重量%がほぼ最大限界となる。また下限濃度を
0.2重量%としたのは少量のZnOを加えることによ
り、亜鉛からの水素ガス発生が著しく低減することによ
る。
If the activation time is within 1 minute, the ZnO concentration will be 3. f5 weight % is almost the maximum limit. The lower limit concentration was set at 0.2% by weight because the addition of a small amount of ZnO significantly reduces hydrogen gas generation from zinc.

これら放電容量、過放電漏液の有無及び開路電圧の良否
と電池活性化時間の長短を総合的に検討すると、第3図
の三成分組成図において点人、B。
Comprehensively examining the discharge capacity, the presence or absence of overdischarge leakage, the quality of the open-circuit voltage, and the length of the battery activation time, it is found that in the three-component composition diagram of Figure 3, point person, B.

C,Dを結ぶ線で囲まれた領域内の組成の電解液を使用
した電池は、極めて優秀な総合性能を示す。
A battery using an electrolytic solution having a composition within the area surrounded by the line connecting C and D exhibits extremely excellent overall performance.

また保存性もKOHの濃度が高くなる程1、蒸気圧力;
低下して乾燥しなくなるため、従来主に使用されていた
KO’H濃度約30重量%の溶液よりも向上する。
In addition, the higher the concentration of KOH, the higher the storage stability1, the higher the vapor pressure;
Since the concentration of KO'H decreases and does not dry, this is improved compared to solutions with a KO'H concentration of approximately 30% by weight, which have been mainly used in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はKOH−ZnO−H20系電解液の三成分組成
図、第2図は本発明の実施例における空気−亜鉛電池の
構成を示す半裁側面図、第3図は各組成の電解液を用い
た電池の特性値を挿入した三成分組成図である。 1・・・・・・正極、4・・・・・・負極、6・・・・
・・セノくレータ、9・・・・・・正極ケース、13・
・・・・・酸素取り入れ用の空気孔。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 〆nO(重量%) 第2図
Figure 1 is a three-component composition diagram of a KOH-ZnO-H20 electrolyte, Figure 2 is a half-cut side view showing the configuration of an air-zinc battery in an embodiment of the present invention, and Figure 3 is a diagram showing electrolytes of each composition. It is a three-component composition diagram in which characteristic values of the battery used are inserted. 1...Positive electrode, 4...Negative electrode, 6...
... Senokureta, 9... Positive electrode case, 13.
...Air hole for oxygen intake. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 〆nO (weight%) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 正極活物質に酸素、負極活物質に亜鉛、電解液に水酸化
カリウム、酸化亜鉛及び水の三成分からなる液をそれぞ
れ用い、電池ケースに酸素取り入れ孔を有した電池であ
って、前記電解液として水酸化カリウム、酸化亜鉛及び
水を各々重量%で示した第3図の三成分組成図中、点ム
、B 、C、Dを結ぶ線で囲まれた領域内の組成音用い
た空気−亜鉛電池。
A battery that uses oxygen as a positive electrode active material, zinc as a negative electrode active material, and a solution consisting of three components of potassium hydroxide, zinc oxide, and water as an electrolytic solution, and has an oxygen intake hole in the battery case, wherein the electrolytic solution is In the three-component composition diagram of Figure 3, which shows potassium hydroxide, zinc oxide, and water in weight percent, the composition sound within the area surrounded by the line connecting dots B, C, and D is air. zinc battery.
JP57072111A 1982-04-28 1982-04-28 Zinc air cell Granted JPS58188067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072111A JPS58188067A (en) 1982-04-28 1982-04-28 Zinc air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072111A JPS58188067A (en) 1982-04-28 1982-04-28 Zinc air cell

Publications (2)

Publication Number Publication Date
JPS58188067A true JPS58188067A (en) 1983-11-02
JPH0136673B2 JPH0136673B2 (en) 1989-08-01

Family

ID=13479937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072111A Granted JPS58188067A (en) 1982-04-28 1982-04-28 Zinc air cell

Country Status (1)

Country Link
JP (1) JPS58188067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172946A (en) * 2022-09-08 2022-10-11 香港理工大学深圳研究院 Electrolyte, secondary zinc-air battery and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172946A (en) * 2022-09-08 2022-10-11 香港理工大学深圳研究院 Electrolyte, secondary zinc-air battery and preparation method

Also Published As

Publication number Publication date
JPH0136673B2 (en) 1989-08-01

Similar Documents

Publication Publication Date Title
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
CA2184792C (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
US6228536B1 (en) Lithium-ion battery cell having an oxidized/reduced negative current collector
US3306776A (en) Galvanic primary cell
CN115172661B (en) Pole piece, electrode component, battery monomer, battery and power consumption device
Pavlov et al. Nickel-zinc batteries with long cycle life
Sarakonsri et al. Primary batteries
CN108539187A (en) Alkaline secondary cell
JPS58188067A (en) Zinc air cell
US20230031554A1 (en) Dual electrolyte approach to increase energy density of aqueous metal-based batteries
JPH11339865A (en) Air electrode and air cell
JPH08162155A (en) Nonaqueous electrolytic battery
KR100773952B1 (en) Anode active material for mercury-free air zinc cell and mercury-free air zinc cell comprising the same
CN1332893A (en) Reduced leakage metal-air electrochemical cell
JP2517936B2 (en) Air zinc battery
JP2581450Y2 (en) Cylindrical alkaline battery
JPH06203886A (en) Button type air-zinc battery
JPH08279355A (en) Button type alkaline battery
JP3005962B2 (en) Cobalt air secondary battery
JP2004079242A (en) Alkali storage battery
KR100413735B1 (en) Ni-secondary battery comprising gel alkaline electrolyte
JPH0555987B2 (en)
JPS63124367A (en) Alkaline zinc storage battery
CN117253997A (en) Negative electrode piece, preparation method thereof and nickel-hydrogen battery