JPS58187900A - Method of storing solidified body of high level radioactive liquid waste - Google Patents

Method of storing solidified body of high level radioactive liquid waste

Info

Publication number
JPS58187900A
JPS58187900A JP7060382A JP7060382A JPS58187900A JP S58187900 A JPS58187900 A JP S58187900A JP 7060382 A JP7060382 A JP 7060382A JP 7060382 A JP7060382 A JP 7060382A JP S58187900 A JPS58187900 A JP S58187900A
Authority
JP
Japan
Prior art keywords
cooling
package
bit
air
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7060382A
Other languages
Japanese (ja)
Inventor
谷 雄太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7060382A priority Critical patent/JPS58187900A/en
Publication of JPS58187900A publication Critical patent/JPS58187900A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子力発電所等の原子力施設における高レベル
放射性廃液同化体の貯畝方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing high-level radioactive waste liquid assimilate in nuclear facilities such as nuclear power plants.

原子炉の使用済み燃料は再処理工場で処理され、その原
生ずる高放射能レベルの廃液はガラス固化体等として、
キャニスタと呼ばれる銅製容器に密封され、貯蔵される
。このキャニスタと固化体とを総称して同化パッケージ
というか、該固化パッケージはそイを自体高放射能レベ
ルであると共にガラス固化体中の核分裂性物質(F。
The spent fuel of the nuclear reactor is processed at a reprocessing plant, and the raw waste liquid with high radioactivity level is treated as vitrified material, etc.
It is sealed and stored in a copper container called a canister. This canister and the solidified body are collectively referred to as an assimilation package, and the solidified package itself contains a high level of radioactivity as well as fissile material (F) in the vitrified body.

P、)が崩壊し崩壊熱を発生する。該崩壊熱は高温とな
る場合もあるため、ガラス固化体が浴解し1こり、キャ
ニスタが破損して放射能漏洩等の事故発生のおそれがあ
る。そ11.故、固化パッケージは高度な安全性と信頼
性のもとに、除熱し貯蔵しておかなけnばならない。
P,) collapses and generates decay heat. Since the decay heat may reach a high temperature, there is a risk that the vitrified material may decompose in the bath, causing damage to the canister and causing accidents such as radioactivity leakage. Part 11. Therefore, solidified packages must be stored with heat removed under a high degree of safety and reliability.

従来の固化パッケージの冷却方法としては、自然空冷方
法、強制空冷(又6ま水冷)方法等、種々の方法がある
Conventional cooling methods for solidified packages include various methods such as natural air cooling, forced air cooling (or water cooling), and the like.

自然空冷方法では第1図に示すように、空気取入口(α
)よシ吸い込まnた冷却空気は冷却ビット(b)内に収
納された固化パッケージ(C)の発熱により温度上昇し
、ドラフト力により冷却ピッi・(6)中を上昇し6、
同化パッケージ(blを冷却した後大気中へ放出される
。しかし、この方法では孜射性物質が漏洩した場合直接
大気に放散さ71−J\気汚染の、原因ともなりかねな
いので、フィルタを使用する必要かあるが、フィルタを
使用するとAi前記ドラフトカにより発生する冷却空気
の流計が少なくなり、固化パッケージ(c)を充分に冷
却することができなくなる。その為、固化バック゛−7
(clは崩壊熱によシ過熱し易く、放射性物質がイ91
洩しやすくなり、安全上非常に大きな問題となる。
In the natural air cooling method, as shown in Figure 1, the air intake (α
) The temperature of the cooled air sucked in increases due to the heat generated by the solidification package (C) housed in the cooling bit (b), and rises through the cooling pitch (6) due to the draft force.
After the assimilation package (BL) is cooled, it is released into the atmosphere. However, with this method, if radioactive substances leak, they will be released directly into the atmosphere and may cause air pollution, so filters should be removed. Although it is necessary to use a filter, the amount of cooling air generated by the draft fan will decrease, making it impossible to sufficiently cool the solidification package (c).
(Cl is easily overheated by decay heat, and radioactive materials are
It can easily leak, creating a huge safety problem.

父、強制空冷方法では第2図に示すようにフィルタ(d
+の下流に冷却ファン(g)を設け、空気取入1’l 
(α)より冷却空気を吸い込み、固化パッケージ(c)
を収納した冷却ピッ1−(b)内を強制的に上昇、通過
せしめ、フィルタ(d)を通過した後大気中へ放出して
いる。この場合、同化パッケージ(c)はF、P、の減
哀を待つ必要性から長期間(〜100年)に亘って貯蔵
しなければならず、冷却ファン(g)の動力が必要な為
運転コストの面で問題となる。父、強制水冷方法におい
ても同様であり、特に長期間の水質管理の必要性、及び
放射性物質が漏洩した場合大量に二次廃液が出る等、非
本発明は斯かる従来の固化パッケージの冷却JJ法の問
題点を除去する目的でなしたものであり、同化パソケー
7の貯藏室を密閉サイクルとなし、冷却空気を密閉サイ
クル内で自然循環させることにより、冷却空気を直凄犬
気l/c)Ji出することなく安全性を茜めると共に運
転経費を安価とし且つその廃熱を利用可能とした高レベ
ル放射性廃液固化体の貯蔵方法にが刀)るものである。
In the forced air cooling method, a filter (d) is used as shown in Figure 2.
A cooling fan (g) is installed downstream of +, and air intake 1'l
Inhale cooling air from (α) and solidify the package (c)
The liquid is forced to rise and pass through the cooling pit 1-(b) containing the liquid, and after passing through the filter (d), it is released into the atmosphere. In this case, the assimilation package (c) must be stored for a long time (up to 100 years) because it is necessary to wait for the decline of F and P, and the cooling fan (g) requires power and cannot be operated. This poses a problem in terms of cost. The same applies to forced water cooling methods, especially the necessity of long-term water quality control and the generation of a large amount of secondary waste liquid if radioactive materials leak, etc., which is not the case with the conventional method of cooling solidified packages. This was done for the purpose of eliminating the problem with the law, and by making the storage chamber of Assimilation Pasoké 7 into a closed cycle and allowing the cooling air to circulate naturally within the closed cycle, the cooling air can be directly heated to a high temperature. ) This is a method for storing high-level radioactive solidified liquid waste that improves safety without emitting radioactivity, reduces operating costs, and makes it possible to utilize the waste heat.

以「、本発明の実施例を図1a丁を参照しつつ説明する
Hereinafter, embodiments of the present invention will be described with reference to FIG. 1a.

第6図は本発明の実施例に使用する1、!!1化バソケ
ー/の冷却装置の一例を示すものであり、固化パッケー
ジ(1)を適数1固直列に収納し得る垂直な冷却ビット
(2)を、所要数互いに平行となるよう貯蔵用ラック(
3)内に設け、該貯蔵用ランク(3)ヲ3 ラフ ’)
 (3)の上部及び下部にブレナム(4)(5)カ形成
さ1するようパネルにて密閉して貯蔵庫(6)灸−構成
し、該貯蔵庫(6)外KA祠iα七ty15ブレナムc
4)、と上部ブレナム(5)とを導通する管路(7)を
設け2、該管路(7)の途中に熱交換器(8)を設けで
ある。
FIG. 6 shows 1,! used in the embodiment of the present invention. ! This figure shows an example of a cooling device for a unitized bath kettle, in which a required number of vertical cooling bits (2) capable of storing a suitable number of solidification packages (1) in series are arranged in storage racks (
3) Provided within the storage rank (3)
Blenheims (4) and (5) are formed in the upper and lower parts of (3) and sealed with panels so as to form a storage (6) moxibustion.
4), a pipe line (7) is provided which communicates with the upper blenheim (5), and a heat exchanger (8) is provided in the middle of the pipe line (7).

冷却空気は貯蔵庫(6)及び管路(7)内に密封状態と
なって収容さイしておシ、固化パッケージ(1)のガラ
ス固化体内のF、P、が崩壊し崩壊熱を発生すると、冷
却ピッl−(2)内の冷却空気が加熱さイt1該冷却ビ
ット(2)内を上昇し、同化パンケージ(1)を冷却し
つつ」二部ブレナム(4)に至る。
The cooling air is stored in the storage (6) and the pipe (7) in a sealed state, and when F and P in the vitrified body of the solidification package (1) collapse and generate decay heat. , the cooling air in the cooling pit (2) rises through the heating tube (2) and reaches the two-part blenheim (4) while cooling the assimilation pancage (1).

」二部ブレナム「4)に集まる加熱された冷却2気は管
路(7)内に入り、熱交換器(8)において冷却水と熱
交換して冷却さイル1更に下方に流イ1.下部プレナム
(5)に至る。下部ブレナム(5)に集まった冷却空気
は再び冷却ビット(2)内((入り、固化パッケージ(
1)を冷却しつつ自らは加熱さ1tて上昇し」二部ブレ
ナム(4)に至る。
The heated cooling air that collects in the two-part Blenheim ``4'' enters the pipe (7), exchanges heat with the cooling water in the heat exchanger (8), and flows further downward into the cooling coil 1. The cooling air collected in the lower plenum (5) enters the cooling bit (2) again and is transferred to the solidification package (
While cooling 1), it heats up and rises by 1t, reaching the second part of Blenheim (4).

このようにして冷却空気は下部ブレナム(5)−→冷却
ピッl−(2)→土部ブレナム(4)→管路(7)→下
部プレナム(5)の順に自然対流し、外気へ放出さイL
ることかない。固化パッケージ(1)からの熱Cま熱交
換器(8)により回収さイl、地域暖房等に使用さイす
る。
In this way, the cooling air undergoes natural convection in the order of lower plenum (5) -> cooling pit (2) -> Dobe blennium (4) -> pipe (7) -> lower plenum (5) and is released to the outside air. I L
It's not enough. The heat from the solidification package (1) is recovered by the heat exchanger (8) and used for district heating, etc.

第4図は本発明の実施例に使用する同化ハソケージ冷却
装置の他の例を示すものであり、固化パッケージ(1)
を直列に収納し得る冷却ビット(2)を所要数備えた貯
蔵用ランク(3)を、上部及び下部にブレナム(4) 
(5)が形成さV% 、rtっ側部に流路(9)が形成
さIt、るようパネルにて密閉して貯蔵庫(6)k構成
し、該貯蔵庫(6)の側壁(10)に冷却パネル(1]
)を設けである。
FIG. 4 shows another example of the assimilation cage cooling device used in the embodiment of the present invention, in which the solidification package (1)
A storage rank (3) equipped with the required number of cooling bits (2) that can store the cooling bits (2) in series, and a Blenheim (4) at the top and bottom.
(5) A channel (9) is formed on the side of the storage (6), which is sealed with a panel to form a storage (6), and a side wall (10) of the storage (6) is formed. cooling panel (1)
) is provided.

冷却空気は貯蔵庫(6)内に密封されているので、下部
ブレナム(5)の冷却空気は冷却ビット(2)内の固化
パッケージ(1)から熱を奪い、昇温して冷1]jビツ
ト(2)内を上昇し上部ブレナム(4)に至る。」二部
フレナム(4)に集まる昇温した冷却空気は貯蔵   
□庫(6)の側壁(10に設けられた冷却パネル(11
)により冷却されつつ流路(9)内を下方に流イt1 
下部ブレナム(5)に至る。下部ブレナム(5)に集っ
1こ冷却空気;マ再ひ冷却ビット(2)内に入り、同化
パソヶ〜シ(1)を冷却しつつ自らは加〃1さイ尤て−
に昇し1冒C1+ブレナム(4)に至る。
Since the cooling air is sealed in the storage (6), the cooling air in the lower blenheim (5) takes heat from the solidified package (1) in the cooling bit (2), increases the temperature, and cools the cooling bit (1). (2) and rises within it to reach the upper Blenheim (4). ” The heated cooling air that collects in the second part frenum (4) is stored.
□Cooling panel (11) installed on the side wall (10) of the storage (6)
) flows downward in the channel (9) while being cooled by t1
Leading to the lower Blenheim (5). The cooling air gathers in the lower blemish (5); it then enters the cooling bit (2) and cools the assimilation machine (1) while heating itself.
It rises to 1C1 + Blenheim (4).

このようにして冷却空気は下部プレナム(5)→1令、
1.11ピッl−(2)−→−」一部プレナム(4)→
流路(9)→1・−)部ブレナム75)のl1l(↓に
自然対流し、固化・ζツケージ(1)から除熱する。
In this way, the cooling air flows from the lower plenum (5) to the 1st instar.
1.11 Pill-(2)-→-"Partial plenum(4)→
Natural convection occurs in the flow path (9)→1・-) section Blenheim 75) (↓), and heat is removed from the solidification/ζ cage (1).

なお、本発明の高レベル放射性廃液同化体の貯蔵す法は
上述の実施例に限定されるものではなく、本発明の要旨
を逸脱しない範囲内において種々変更を加え得ることは
勿論である。
It should be noted that the method of storing high-level radioactive waste liquid assimilate according to the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

以上述べたように本発明の高レベル放射性廃液同化体の
貯賊力法によ71.は、 (1)  冷却ビット内の固化パッケージの除熱に使用
した冷却空気を冷却して再び固化・きソケージの冷却に
使用する密閉循環系としたので、フィルタを使用する必
要がなくなシ固化・きツケージを効率よく冷却すること
ができる。
As described above, 71. (1) A closed circulation system is used in which the cooling air used to remove heat from the solidified package in the cooling bit is cooled and solidified again, and is used to cool the sock cage, eliminating the need to use a filter and improving solidification.・Able to efficiently cool the wood cage.

(n)  同化パッケージを冷却し1こ冷却空気は直接
大気へ放出することなく再循環させる1こめ、固化パッ
ケージ力・ら放射性物質が漏洩した場合でも、安全性が
確保さ1%る。
(n) By cooling the assimilation package and recirculating the cooling air without directly releasing it into the atmosphere, safety is ensured by 1% even if radioactive materials leak from the solidification package.

([lD  自然対流を利用するので冷却ファン運転の
ための動力を必要としない。従って、運転コストが安く
なシ、長期間同化パッケージを貯蔵する場合に好適であ
る。熱交換器で[吏用−4−る間接冷却媒体を水とした
場合、その為のjミンプが必要になる可能性があるが、
その場合でiE転コスト(ま冷却ファンの運転経費より
も安価となる。
([LD) Since natural convection is used, no power is required to operate the cooling fan. Therefore, the operating cost is low and it is suitable for storing assimilation packages for a long period of time. -4- If water is used as the indirect cooling medium, there is a possibility that a jminp for that purpose will be required.
In that case, the iE conversion cost (well, it will be cheaper than the operating cost of the cooling fan).

LIV)  熱交換器を併設すれば同化パッケージ力・
らの廃熱を例えば地域暖房又は給水予熱等にイ1j用す
ることが可能となる。
LIV) If a heat exchanger is installed, assimilation package power
This makes it possible to use the waste heat for, for example, district heating or water supply preheating.

等の種々の優れた効果を発揮する。It exhibits various excellent effects such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ま従来の同化パッケージの冷却に使用する装置
の説明図、第2図は従来の固化パッケージの冷却に使用
する装置の他の例の説明図、第6図は本発明の方法に使
用する固化パッケージの冷却装置の一例を示す説明図、
第4図(ま本発明の方法に使用する固化パッケージの冷
却装置の他の例を示す説明図である。 図中、(1)は固化パッケージ、(2)は冷却ビット、
(4)(5)はプレナム、(7)は管路、(8)は熱交
換器、(!l)は流路、01)は冷却パネルを示す。 特許出願人 石川島播磨重工業株式会社
FIG. 1 is an explanatory diagram of a conventional apparatus used for cooling an assimilated package, FIG. 2 is an explanatory diagram of another example of a conventional apparatus used for cooling a solidification package, and FIG. 6 is an explanatory diagram of another example of a conventional apparatus used for cooling a solidification package. An explanatory diagram showing an example of a cooling device for a solidification package to be used,
FIG. 4 (This is an explanatory diagram showing another example of a cooling device for a solidification package used in the method of the present invention. In the figure, (1) is a solidification package, (2) is a cooling bit,
(4) (5) indicates a plenum, (7) indicates a pipe line, (8) indicates a heat exchanger, (!l) indicates a flow path, and 01) indicates a cooling panel. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 旬 冷却ピントの下方より入る冷却空気が加熱されて前
記冷却ビット内を上昇し、該冷却ビット」二方から出る
昇温した冷却空気が冷却され前記冷却ビット下方から再
び入るような密閉空間を形成し、前記冷却ビット内に放
射性廃液同化体を、該放射性廃液同化体からの崩壊熱に
より該冷却ビット内に冷却空気のzj流を生じさせ得る
よう貯蔵することを’lとする高レベル放射性廃液固化
体の貯蔵方法。
Cooling air that enters from below the cooling pin is heated and rises inside the cooling bit, forming a sealed space in which heated cooling air exiting from two sides of the cooling bit is cooled and re-enters from below the cooling bit. and storing a radioactive waste liquid assimilate in the cooling bit in such a way that decay heat from the radioactive waste liquid assimilate can generate a flow of cooling air in the cooling bit. Method of storing solidified material.
JP7060382A 1982-04-27 1982-04-27 Method of storing solidified body of high level radioactive liquid waste Pending JPS58187900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060382A JPS58187900A (en) 1982-04-27 1982-04-27 Method of storing solidified body of high level radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7060382A JPS58187900A (en) 1982-04-27 1982-04-27 Method of storing solidified body of high level radioactive liquid waste

Publications (1)

Publication Number Publication Date
JPS58187900A true JPS58187900A (en) 1983-11-02

Family

ID=13436308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060382A Pending JPS58187900A (en) 1982-04-27 1982-04-27 Method of storing solidified body of high level radioactive liquid waste

Country Status (1)

Country Link
JP (1) JPS58187900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132800U (en) * 1985-02-07 1986-08-19
JPS61202199A (en) * 1985-03-06 1986-09-06 清水建設株式会社 Storage facility in base rock of radioactive waste
JPH0515000U (en) * 1991-03-06 1993-02-26 石川島播磨重工業株式会社 Radioactive material storage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419097A (en) * 1977-07-07 1979-02-13 Nukem Gmbh Device for storing irradiated or burned fuel element picked out of highhtemperature nuclear reactor
JPS58146900A (en) * 1982-02-25 1983-09-01 三菱マテリアル株式会社 Method of storing radioactive material by sealed air circulation and cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419097A (en) * 1977-07-07 1979-02-13 Nukem Gmbh Device for storing irradiated or burned fuel element picked out of highhtemperature nuclear reactor
JPS58146900A (en) * 1982-02-25 1983-09-01 三菱マテリアル株式会社 Method of storing radioactive material by sealed air circulation and cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132800U (en) * 1985-02-07 1986-08-19
JPS61202199A (en) * 1985-03-06 1986-09-06 清水建設株式会社 Storage facility in base rock of radioactive waste
JPH0515000U (en) * 1991-03-06 1993-02-26 石川島播磨重工業株式会社 Radioactive material storage

Similar Documents

Publication Publication Date Title
US3046403A (en) Device for the storage of a heat evolving material
US3607630A (en) Molten core stopping device
US8873697B2 (en) Liquid metal cooled nuclear reactor and heat removal method for the same
US5102617A (en) Passive cooling means for water cooled nuclear reactor plants
US2736696A (en) Reactor
US3866424A (en) Heat source containing radioactive nuclear waste
JPH0342595A (en) Passive safety injector for nuclear power plant
EP0389231A3 (en) Containment heat removal system
JP4840627B2 (en) Corrosion mitigation system for liquid metal reactors with passive decay heat removal system
CN109074883A (en) Sodium-caesium vapor trap system and method
CN106297914A (en) A kind of passive high-temperature heat pipe fast reactor reactor core heat transfer system and method thereof
US3244597A (en) Fast breeder neutronic reactor
US2809931A (en) Neutronic reactor system
JPS58187900A (en) Method of storing solidified body of high level radioactive liquid waste
JPS5848894A (en) Atomic power plant
JP6756470B2 (en) Reactors and nuclear plants
US8675807B2 (en) Basket and pH adjusting device
KR101322441B1 (en) Thorium oxide nano-fluid coolants, Breeder reactor using the same
JPH06294891A (en) Storage facility for spent fuel
CN206075830U (en) A kind of passive high-temperature heat pipe fast reactor reactor core heat transfer system
JP5798473B2 (en) Reactor
JPH02210295A (en) Auxiliary reactor core cooling device
JPH02176596A (en) Decay heat removal system for fast breeder
CA1259714A (en) Core assembly storage structure
GB909692A (en) A storage and shipping cask for a heat evolving radiation source