JPS58187775A - Manufacture of argon - Google Patents

Manufacture of argon

Info

Publication number
JPS58187775A
JPS58187775A JP7090682A JP7090682A JPS58187775A JP S58187775 A JPS58187775 A JP S58187775A JP 7090682 A JP7090682 A JP 7090682A JP 7090682 A JP7090682 A JP 7090682A JP S58187775 A JPS58187775 A JP S58187775A
Authority
JP
Japan
Prior art keywords
argon
cylinder
nitrogen
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7090682A
Other languages
Japanese (ja)
Other versions
JPH0351648B2 (en
Inventor
達郎 森
若泉 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP7090682A priority Critical patent/JPS58187775A/en
Publication of JPS58187775A publication Critical patent/JPS58187775A/en
Publication of JPH0351648B2 publication Critical patent/JPH0351648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はアルゴン、酸素、′iIi素よりなる原料ガ
スからなる低ha着法によってアルゴンを分離、製造T
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention is a method for separating and manufacturing T
Regarding how to

一般にアルゴンの製造は、空気深冷分離装置の上部精留
塔からアルゴン金型の多い酸素を抜き出し、これを粗ア
ルゴン塔に4き、化アルゴン塔で棺賀して粗アルゴンと
し、この桓アルゴン中の酸素を脱酸したのち高純アルゴ
ン塔でtlnl、m純アルゴンを得る方法によって行わ
れている。しかしながら、この方法では、空気深冷分1
lIii装嵐の上部相留塔から抜き出す原料ガス中の窒
素濃度が3修以上となると、粗アルゴン塔での精留が四
−になるため、窒素濃度を常に規定S表以内に林つ必費
があり、これが上S精留塔の運転条件を柚々に制約り、
 il&度の鉄嵐趣転技術を会費としている。
In general, argon production involves extracting oxygen with a large amount of argon mold from the upper rectification column of an air cryogenic separation device, transferring it to a crude argon column, converting it into a crude argon column, and converting it into crude argon. This is done by deoxidizing the oxygen inside and then using a high purity argon column to obtain tlnl,m pure argon. However, in this method, air-cooled fraction 1
If the nitrogen concentration in the raw material gas extracted from the upper phase distillation column of the argon reactor reaches 3 or more, the rectification in the crude argon column becomes 4, so it is necessary to always keep the nitrogen concentration within the specified S table. This severely restricts the operating conditions of the upper S rectification column.
The membership fee is il &degree's iron storm technique.

また、多くの設備を会費とし、設備コストの点で不利で
あり、さらに加熱、冷却を繰り返すたり、エネルギー的
にも不経済である。
Furthermore, membership fees are required for many facilities, which is disadvantageous in terms of equipment cost, and furthermore, heating and cooling are repeated, which is uneconomical in terms of energy.

このたOS絨近上述のようなn貿法によらない低温吸涜
法によるアルゴンの分離力法が捉峯されている。(脅公
陥55−16088号公報参照)この方法は、vM累濃
kをα1%以下としたアルゴン、酸素の混合ガスを−1
86〜−135’Cの低温でかつL5〜30’JQの圧
力下でム型ゼオライトに流通させて酸素を執着除去し、
アルゴンを分離したのち、圧力を大気圧まで低下さ(、
さらにO,at〜IgLigtで減圧することによって
ム城ゼオライトからi!12索をB?、7fifして、
ム型ゼオライトを沓生するものである。しかし、この低
温吸着法は、吸宥工程時、5〜10°/3〜う分の昇f
f1ia根で行っているたの、温良調節が面倒であるこ
と、酸素の脱着を真空fILIjt下で行っているため
に真空装置ダ必要となり、設備費および動力費が嵩むこ
と窒素を予かじ<) O,1%以下に除去する会費があ
り、原料ガスのamが駆足されることなどの欠点がある
In addition, an argon separation force method based on a low-temperature ablation method, which does not rely on the n-trade method, as described by OS Kechika, has been widely used. (Refer to Publication No. 55-16088) This method uses a mixed gas of argon and oxygen with a vM cumulative concentration k of α1% or less.
Oxygen is removed by passing through a mu-type zeolite at a low temperature of 86 to -135'C and a pressure of L5 to 30'JQ,
After separating the argon, the pressure is reduced to atmospheric pressure (
Furthermore, by reducing the pressure at O, at ~ IgLigt, the i! B for 12 ropes? ,7fif,
This is a product that produces zeolite of the zeolite type. However, in this low-temperature adsorption method, during the absorption process, the temperature rises from 5 to 10°/3 to
The disadvantages of using f1ia roots are that temperature control is troublesome, and that desorption of oxygen is performed under vacuum fILIjt, which requires a vacuum device, which increases equipment and power costs. There is a fee to remove O, 1% or less, and there are disadvantages such as am of raw material gas is required.

この発明株上紀拳悄に麺みてなされたもので、製造&備
が少なくて済むとともに運転操作が簡単であり、アルゴ
ンの回収率の高い低温吸着法によるアルゴンの製造方法
を提供することを目的と1−るものであるJ 以下、図面を参照してこの発明を奸しく説明する。
The purpose of this invention was to provide a method for producing argon using a low-temperature adsorption method that requires less manufacturing and equipment, is easy to operate, and has a high recovery rate of argon. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、この発明のアルゴンの振造方法に用いられる
製造M直の一例を示Tものである。
FIG. 1 shows an example of a production line used in the argon shaking method of the present invention.

璧気深冷分lI#、、装区の機種留塔1の上部絹貿堪2
の中間膜から抜き出された、例えばアルゴン5〜1う襲
、w1本1〜ン襲、酸素残部、渥膨−180℃根度の漣
別ガスは、管3から熱交換器4に導入され後述する戻り
ガスにより加湿されて雷5から圧旙憔6に導入される。
The upper part of the distillation tower 1 in the cooling section 2
The gas extracted from the interlayer film, for example, 5 to 1 stroke of argon, 1 to 1 concentration of W, the remainder of oxygen, and an expansion temperature of -180°C is introduced from the pipe 3 into the heat exchanger 4. It is humidified by return gas, which will be described later, and introduced from the lightning 5 to the pressure gas 6.

ここで原料ガスは3〜5〜機度、O〜−100℃相度の
状馨となって升7Aを鮭て、Il吸看筒ム−1と第2吸
看賃ム−2とからなるム系列吸着器kO第1吸倉筒&−
1に送り込まれる。第1吸着筒ムー1と第2吸層簡A 
−2とには、ム型ゼオライトが吸着剤として充填されて
いて、原料ガス温度と−1じ温度、0〜−1叩°Cに保
持されている。第1吸着筒ムー1に導入された原料ガス
は、ここでvjI木が吸′N除去されたのち、管8ムを
経て、第2吸m筒A−2に入り、さらにここで#M素が
Ti&層除去されて、弁9^、管10、ajl調贅片1
1を峠て製品アルゴンか官校より拍出される。
Here, the raw material gas is in the state of 3 to 5 degrees Celsius and O to -100 degrees Celsius, and is made up of square 7A, which consists of Il intake cylinder M-1 and second intake cylinder M-2. Mu series adsorber kO 1st suction cylinder &-
sent to 1. First adsorption cylinder Mu 1 and second absorption cylinder A
-2 is filled with mu-type zeolite as an adsorbent, and is maintained at a temperature of -1 degrees Celsius and 0 to -1 degrees Celsius relative to the raw material gas temperature. The raw material gas introduced into the first adsorption cylinder M1 is where the vjI wood is removed by suction, and then it passes through the pipe 8m and enters the second suction cylinder A-2, where it is further mixed with the #M element. Ti & layer removed, valve 9^, pipe 10, ajl adjustment piece 1
1 and the product argon is pumped out from the government school.

一2吸漕簡ム−2の吸揄剤が酸素で飽和する直前に原料
ガスの供給を第1&*t&JA−1から、A系列執着益
ムとfMJ株に帯戚されたB系列吸着器Bの第1&嵩筒
B−1に切り替える。この時、第1Wj1.盾部&−1
が承素で飽和する寸前となるようにm料ガス組成に合わ
せて各吸麺動A−4・A−2の容量をF&enシておく
。しかし、原料ガス組成り良動によって、若干貢の搦索
が第2奴准筒A−2に流入しても友人な−をにならない
Immediately before the absorbent in the 12th adsorption tank 2 is saturated with oxygen, the raw material gas is supplied from the 1st &*t&JA-1 to the B series adsorber B, which is associated with the A series adsorbent and fMJ stock. Switch to the first & bulky cylinder B-1. At this time, 1st Wj1. Shield part &-1
The capacity of each suction movement A-4 and A-2 is set in accordance with the composition of the feed gas so that the capacity of each suction movement A-4 and A-2 is on the verge of being saturated with suction. However, due to the good composition of the raw material gas, even if a small amount of feeder flows into the second fuel tube A-2, it will not become a good friend.

ついで、A糸夕11吸!に器ムに減圧1極に入り、D系
列吸着器Bに上述の         層重らに入る。
Next, I smoked 11 A-itoyu! It enters the depressurized single pole in the second vessel, and enters the above-mentioned layer in the D-series adsorber B.

すなわち、弁9Aを閉じ、升13Aを1Jき、第2吸層
@ A−2内を常圧とし、眼役剤に吸着していた酸素を
膜層させる。こq)説盾敵木と船2吸着簡ムー2内に涌
貿していたアルゴンFi智14を経て、−交換器4に送
られ、ここで冷却されて上部軸w塔2の中間駅に戻され
る。また、弁16ムを閉じ、弁15ムを開いて、結λ獣
着餉ムー1内を常圧とし、吸着剤に@、看していた電嵩
を脱着さゼる。この脱着窒素と第1奴層筒A−1内に*
1lllしていた酸素およびアルゴンは、管17から外
部に放出される。
That is, the valve 9A is closed, the square 13A is turned off by 1J, and the inside of the second absorption layer @ A-2 is brought to normal pressure, so that the oxygen adsorbed in the eyelid is made into a film layer. q) Argon is sent to the exchanger 4 via the argon gas 14 that was pumped into the adsorption tank Mu 2, where it is cooled and sent to the intermediate station of the upper shaft W tower 2. be returned. In addition, the valve 16m is closed and the valve 15m is opened to make the inside of the laminate holder 1 at normal pressure, and the electric charge that was being held on the adsorbent is desorbed. This desorbed nitrogen and the first nitrogen layer in the cylinder A-1*
The oxygen and argon contained in the tube 17 are discharged to the outside.

そして、ム系タ1111ik′lII#Mム框引きつづ
いて洗滌工程に入る。すなわち、第2吸層簡ムー2には
、管18、減圧弁19、管20、弁21ムを駐て、製品
アルゴンが#tは常圧で導入され、吸着剤に成層してい
る残余の酸素を追い出す。洗滌後の廃ガスは、第2@着
筒ムー2から弁13A、L#t14を経て熱変換64に
送られ、ここで冷却されて上部梢餉#12に戻される。
Then, the cleaning process continues. That is, a pipe 18, a pressure reducing valve 19, a pipe 20, and a valve 21 are installed in the second absorbent tank 2, and the product argon is introduced at normal pressure, and the residual stratified on the adsorbent is removed. expel oxygen. The waste gas after washing is sent from the second @tube mounting room 2 to the heat exchanger 64 via the valve 13A and L#t14, where it is cooled and returned to the upper top pipe #12.

また、第1[看簡ム−1には空気深冷分離鉄a1で発生
ずる低温の酸素が賃22、弁23ムを鮭てほぼ常圧で導
入され、吸着剤に!&層している残余の窒素を退い出す
。洗紗彼の廃ガスは、第し@膚簡ムー1から弁15ム、
管17を経て外部に放出される。かくしてム糸タリ成層
恭ムは貴生され、次のV&層工程に博える。^糸夕り吸
7III器ムが減圧、洗滌工程にある間、B系タリ吸*
ItlBは、上記の吸庸工機にあり、製品アルゴンを製
造している。そして、ム系列畝ylIt器ム、B系列吸
着!IBを交互に鵬次切替えることKより、連続的に製
品アルゴンが製造できる。
In addition, low-temperature oxygen generated in the air cryogenic separation iron a1 is introduced into the first tank 1 at almost normal pressure through valves 22 and 23, and becomes an adsorbent. & Get rid of the remaining nitrogen layer. Washing his waste gas is the first step from step 1 to valve 15,
It is discharged to the outside through a pipe 17. In this way, the thickness of the yarn layer is improved and used in the next V&layer process. ^ While the suction 7III unit is in the depressurization and cleaning process, the B system suction *
ItlB is located in the above-mentioned suction equipment and manufactures the product argon. And, the B series suction! Product argon can be produced continuously by switching IB alternately.

つぎに、細2図を参照して、この発明のアルゴンの製造
方法の原塩を説明する。第2図のグラフは、ム型ゼオラ
イト00〜−200℃の温良範囲におけるアルゴン、窒
素、酸素の吸m%性を圧カフ00■Hgの時のデータで
示したもので、たて軸Lム型ゼオライ艷の1空洞尚りの
吸着分子数を示し、よこ@は温度である。このグラフか
ら明らかなように1温嵐が0〜−100℃の範四では、
アルゴンの9&層i[は窒素、鍍嵩O欲層童に比ベニ着
るしく低い。%K、−50°C付近ではこのI&盾量の
差が最大となっている。したがって、O〜−100℃、
好ましくは−50℃liI後でアルゴン。
Next, the raw salt used in the method for producing argon according to the present invention will be explained with reference to Figure 2. The graph in Figure 2 shows the absorption percentage of argon, nitrogen, and oxygen in the temperature range of 00 to -200°C for M type zeolite using data when the pressure cuff is 00 Hg. It shows the number of adsorbed molecules in one cavity of the zeolite type, and the horizontal is the temperature. As is clear from this graph, in the range 4 of 1-temperature storms from 0 to -100℃,
The 9 & layer i of argon is much lower than that of nitrogen. %K and around -50°C, the difference in I & shield amount is maximum. Therefore, O~-100℃,
Preferably -50°CliI followed by argon.

窒素、酸素の混合ガスをム型ゼオライトが充填された#
111@看筒^−1および第2吸看鋤ム−2に順次流せ
ば、第1吸看筒ム−1に窒素が、ついで第2+&着@ 
A −2に練累が吸着され、アルゴンはほとんど吸着さ
れずKそのttsz吸嵩筒ム−2から帰山される。した
かつて、アルゴン、家祢、歌集01合ガスからアルゴン
を分離することができる。
# Filled with mu type zeolite mixed gas of nitrogen and oxygen
By sequentially flowing nitrogen into the first suction cylinder M-1 and the second suction cylinder M-2, nitrogen flows into the first suction cylinder M-1 and then into the second +&
The mixture is adsorbed to A-2, and almost no argon is adsorbed and returned to the mountain from the ttsz suction cylinder M-2. Argon can be separated from gas.

そして、このようなアルゴンの製造方法によれば、t&
層温表をさほど厳密にt壇しなくて鳴よく、挟置の運転
が容易となる。また、真空減圧による酸素、窒素の脱着
を行っていないので、真空ポンプなどの真空装置が不要
であり、設備費、A力費が安くて栖む。さらに、吸5v
温巖をO〜−100゛Cとム型ゼオライトがw1素、成
木の両省を同時によく吸*Tる温度域を選択したので、
従来の低温吸庸法のように予め窒素を除去しておく必要
がなく、窒素含有蓋の多いガス4原料ガスとして用いる
ことができ、多様な原料ガスに対応することができると
ともに原料ガス中の窒素含有側合について例んら制約を
受けないので、従来のa画法によるアルゴン製造の−の
空気深冷分離装置O運転の囚離度が酸相される。また、
A糸タリ吸着器Aを第l成層簡ムー1と第2吸層薗ムー
2とに分離し、第1(&漬簡ムー1で窒素を、第2吸増
筒に−2で酸素をM看除去Tるようにし、給l成層簡A
−iの洗fIkK空気徐冷分岨装匣1からの低温酸素を
用いるように*mしたので、高価なアルゴンを用いる必
要がなく、アルゴンのロスが少なくなるとともに、上記
酸素の殊冷によって成層器ムの寒冷損失が補われ、吸着
に必要な低温を維持することが容易となる。さらに、第
2吸階餉ムー2の洗滌再生時、アルゴンと1!&素との
廃ガスを空気採冷分1m、&直の上部jnlIIIl塔
2に戻すようKしているので、アルゴン、iI2素のロ
スが防止で自る。また、上部楕ws2に戻した酸素は、
上部精留塔2から吸着器ムに帰ってくる仁とがないので
、圧male6、th2吸着簡ム−2の容量を太龜くす
る必要がない。
According to this method of producing argon, t&
The layer temperature table does not have to be measured very strictly, making it easier to operate the clamping operation. In addition, since oxygen and nitrogen are not desorbed by vacuum reduction, a vacuum device such as a vacuum pump is not required, and equipment costs and power costs are low. Furthermore, suction 5v
We selected a temperature range of O to -100°C, where the mu-type zeolite absorbs both W1 element and mature wood at the same time.
It is not necessary to remove nitrogen in advance as in the conventional low-temperature suction method, and gas with a large nitrogen content can be used as the raw material gas. Since there are no restrictions on the nitrogen-containing side, the degree of confinement in the operation of the air cryogenic separator O for the production of argon by the conventional a method is reduced to the acid phase. Also,
Separate the A yarn adsorption device A into the first stratification layer 1 and the second absorption layer 2, and add nitrogen to the first (& dipping layer 1) and oxygen to the second absorption tube (-2). Make sure to remove it and add it to the stratified paper A.
Since the cleaning fIkK of -i was designed to use low-temperature oxygen from air slow cooling distribution box 1, there is no need to use expensive argon, the loss of argon is reduced, and the special cooling of the oxygen causes stratification. This compensates for the cooling loss in the chamber, making it easier to maintain the low temperatures necessary for adsorption. Furthermore, when cleaning and regenerating the second vacuum cleaner Mu2, argon and 1! Since the waste gas from the & element is returned to the upper jnlIIIl column 2 after 1 m of air cooling, the loss of argon and iI2 elements can be prevented. In addition, the oxygen returned to the upper ellipse ws2 is
Since there is no fuel returning from the upper rectification column 2 to the adsorption device, there is no need to increase the capacity of the pressure male 6 and th2 adsorption device 2.

なお、以上の実施では、ム系列獣着儀ムとB系列吸着器
Bとの2系列を交互に切管えて運転するものについて説
明したが、これに限定されず、l系列あるい扛3系列以
上のものを用いることもできる。
In addition, in the above implementation, an explanation has been given of an operation in which two lines, ie, a MU-series animal-mounted system and a B-series adsorption device B, are alternately cut, but the operation is not limited to this. The above can also be used.

以上ia明したように、この発明のアルゴンの製造方法
によれば、従来の低温吸着法に比べてvI&層直度をさ
ほどIIk密に雪塊する必要かなく運転操作1容易とな
る。また、吸着剤の再生を#kXあるい社アルゴンによ
る洗滌再生によっているので、真空ポンプ等の真空装置
が不要となり、設gIl貴、動力費が低減される。さら
に1洗滌再生に使用されたアルゴンは原料系統である上
部精留塔に返送し2ているのでアルゴンのロスが少なく
、アルゴンの一収率が高められる。また、Il精留塔と
は分離して運転できるので空気深冷分111MKのアル
ゴン採取に係る運転の困1IIIWLが緩和される。さ
らに、従来の棺留法Oこと〈冷却、加熱を繰り返す心安
がなく、エネルギー損失も少なく、経済性に富むなどの
利点が得られる。
As explained above, according to the method for producing argon of the present invention, compared to the conventional low-temperature adsorption method, it is not necessary to pack vI & layer straightness so densely, and operation 1 becomes easier. Further, since the adsorbent is regenerated by washing and regenerating with #kX or argon, a vacuum device such as a vacuum pump is not required, and the installation cost and power cost are reduced. Furthermore, the argon used for washing and regeneration (1) is returned to the upper rectification column (2), which is the raw material system, so there is less loss of argon and the yield of argon is increased. In addition, since it can be operated separately from the Il rectification column, the operational difficulties associated with extracting argon from the air-deep-cooled fraction 111MK are alleviated. Furthermore, the conventional coffin retention method (also known as O) has advantages such as no need to worry about repeated cooling and heating, less energy loss, and high economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアルゴンの製造方法に用いられる製
造&KO−例を示す歎陥構成図、第2図はム型ゼオライ
トの吸着特性を示すグラフである。 l・・・・・Il梢曽塔、2.・・・・・上部精留塔、
4・・・・・熱父換鮨、6・・−・・圧m機、ム−1・
・・・・第l吸看筒、A−2・・・・・VSZTJ&庸
筒、13.21.23  ・・・・・弁、14.18.
20.22・・・・・管、19・・・・・減圧弁。 320− 第2図 憎 □j墓度(′C)
FIG. 1 is a block diagram showing an example of production and KO used in the method for producing argon of the present invention, and FIG. 2 is a graph showing the adsorption characteristics of mu-type zeolite. l...Il Kozue Soto, 2.・・・・・・Upper rectification tower,
4...Nezushi Kakene Sushi, 6...Pressure machine, Mu-1.
....Lth suction tube, A-2...VSZTJ & Yotsutsu, 13.21.23 ....Valve, 14.18.
20.22...Pipe, 19...Reducing valve. 320- Figure 2 hate □j grave degree ('C)

Claims (1)

【特許請求の範囲】[Claims] 空気深冷分陰装置のnw塔からifi自出されたアルゴ
ン、敵本、窒素の混合ガスを原料ガスとし、この原料ガ
スを加圧して温[0〜−’loo’cでム扱セオライト
が充填された81@11簡からム型ゼオライトが充填さ
れた第21に看筒へ順次流し数品アルゴンを得る工程と
、前記第1.および第2吸層簡管常圧まで減圧して窒素
、#I素を脱着さゼ、第1ay11筒からの脱着カスは
放出し、第2叡看筒からの脱着ガスFime塔に返送し
た後製品アルゴンの一部を麩2g&層簡に流し該筒内を
洗滌した上1nI留塔に返送するとと−に空気陳冷分離
鉄1からO酸素を第1FJ&層簡に流して該筒内を洗滌
した上板用して吸着筒を再生する工程によってアルゴン
を製造することをIIIとするアルゴンの製造方法、J
The raw material gas is a mixed gas of argon, carbon dioxide, and nitrogen discharged from the NW tower of the air cryogenic analyzer. A step of sequentially flowing argon from the filled 81@11 tank to the 21st barrel filled with Mu-type zeolite to obtain several argon products; Then, the pressure is reduced to normal pressure in the second absorption tube to desorb nitrogen and #I element, and the desorption residue from the 1st and 11th cylinders is discharged, and the desorption gas from the 2nd cylinder is returned to the Fime column, and then the product A part of the argon was flowed through 2 g of fume and bed glass to wash the inside of the cylinder and returned to the upper 1nI distillation column, and then O2 from the air-cooled separated iron 1 was flowed through the 1st FJ and bed glass to clean the inside of the cylinder. A method for producing argon, comprising producing argon by a step of regenerating an adsorption cylinder by using it as an upper plate, J
JP7090682A 1982-04-27 1982-04-27 Manufacture of argon Granted JPS58187775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7090682A JPS58187775A (en) 1982-04-27 1982-04-27 Manufacture of argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7090682A JPS58187775A (en) 1982-04-27 1982-04-27 Manufacture of argon

Publications (2)

Publication Number Publication Date
JPS58187775A true JPS58187775A (en) 1983-11-02
JPH0351648B2 JPH0351648B2 (en) 1991-08-07

Family

ID=13445026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7090682A Granted JPS58187775A (en) 1982-04-27 1982-04-27 Manufacture of argon

Country Status (1)

Country Link
JP (1) JPS58187775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JP2008039457A (en) * 2006-08-02 2008-02-21 Chugoku Electric Power Co Inc:The Measuring terminal for instrument and its operating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JPS6158747B2 (en) * 1984-01-11 1986-12-12 Daido Oxygen
JP2008039457A (en) * 2006-08-02 2008-02-21 Chugoku Electric Power Co Inc:The Measuring terminal for instrument and its operating device

Also Published As

Publication number Publication date
JPH0351648B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US4581044A (en) Process for separating carbonic acid gas from methane-rich gas
CN1007619B (en) Recovering argon from blowing air of ammonia converter by separating method of combining low temp. with non low temp.
US4259091A (en) Adiabatic adsorption method for gas purification or separation
CN87100951A (en) Adopt low temperature to combine and from synthetic ammonia installation hydrogen dilution sweep gas, reclaim argon with non-low temperature separating process
CN1237124A (en) Method and apparatus for purification of argon
CN104058371A (en) Pressure swing adsorption gas production system and pressure swing adsorption gas production method
CN106693608A (en) Refinery dry gas separating and recycling process
CN101978235A (en) Method and apparatus for separating blast furnace gas
CN102502498A (en) Method for separating and recovering chlorine and oxygen of hydrogen chloride oxidation gas mixture by use of PSA (Pressure Swing Adsorption) technology
CN107285279B (en) A method of purified synthesis gas using Quan Wencheng pressure-variable adsorption with separate
JP3037574B2 (en) How to recover lithium
CN101723338B (en) Method for extracting krypton-xenon from liquid oxygen
CN105820846B (en) A kind of full temperature journey pressure swing adsorption purge method of coke-stove gas benzene-removal naphthalene-removal
CN102491269A (en) Method for extracting hydrogen gas from coke oven gas
CN101850209A (en) Vent gas treatment method and treatment device
KR20200018113A (en) A cryogenic sulfur hexafluoride refinement system and refining method using the same
CN101822929B (en) Method for capturing carbon dioxide by utilizing electrical desorption technology
CN108786371B (en) Oxygen recovery system and method for high-temperature oxygen-enriched flue gas
JPS58187775A (en) Manufacture of argon
CN201658935U (en) Membrane separation device for methanol purge gas recovery
CN1282622A (en) Method and device for purifying air
CN214243809U (en) System for producing hydrogen and coproducing LNG (liquefied Natural gas) by using raw gas
CN201701861U (en) Purge gas treatment device
CN1216021C (en) Production process of anhydrous ethyl alcohol by using several adsorbers
CN212560126U (en) Low-temperature methanol washing process device with low energy consumption and high carbon capture rate