JPS58186948A - Dielectric-isolated semiconductor substrate and manufacture thereof - Google Patents

Dielectric-isolated semiconductor substrate and manufacture thereof

Info

Publication number
JPS58186948A
JPS58186948A JP6865882A JP6865882A JPS58186948A JP S58186948 A JPS58186948 A JP S58186948A JP 6865882 A JP6865882 A JP 6865882A JP 6865882 A JP6865882 A JP 6865882A JP S58186948 A JPS58186948 A JP S58186948A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
solution
dielectric film
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6865882A
Other languages
Japanese (ja)
Other versions
JPH0432544B2 (en
Inventor
Yasushi Sawada
廉士 澤田
Junji Watanabe
純二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6865882A priority Critical patent/JPS58186948A/en
Publication of JPS58186948A publication Critical patent/JPS58186948A/en
Publication of JPH0432544B2 publication Critical patent/JPH0432544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body

Abstract

PURPOSE:To obtain a semiconductor substrate which has good performance and is simple in manufacture by dipping the substrate which has a groove coated with a dielectric film in liquid in which ultrafine particles of silicon are dispersed in a liquid of tetralkylorthosilicate, then drying and sintering the substrate. CONSTITUTION:V-shaped grooves are formed by etching on an Si substrate, and dielectric film of SiO2 is formed by thermal oxidizing in a thickness of 1-2mum. Subsequently, dilute hydrochloric acid which is prepared by diluting conc. hydrochloric acid with ethylsilicate-4-0, ethanol, and 10 times of water are mixed with at ratio by volume of 40:52:4:1, ultrafine particles 5 of SiO2 are mixed with the solution in cream-state solution 6, the Si substrate is dipped in the solution 6, the entire container 7 is reduced by a vacuum pump 8 under pressure, air bubbles in the V-shaped grooves are removed, pulled up and dried from the solution 6. After drying, it is sintered at 1,000 deg.C for 1hr. In this manner, the semiconductor substrate in which the adhesive is improved, impurity is introduced in less amount, and which can be sufficiently durable against heat treatment can be obtained by a simple device.

Description

【発明の詳細な説明】 本発明は、性能が良好で、製造が簡単な、誘電体分離し
た半導体基板及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dielectrically isolated semiconductor substrate that has good performance and is easy to manufacture, and a method for manufacturing the same.

従来、このような誘電体分離基板の製造は81基板にエ
ツチングあるいは機械加工等によpv字溝を設け、次い
で誘電体である5i02膜を熱酸化法により1字溝の表
面に形成した後、CvD(Chemical Vapo
ur Deposition)法により誘電体膜上に多
結晶81ヲ堆積させていた。そして、この多結晶Siを
Si基板保持体として用い、その後の工程である研摩、
素子形成などを行っていた。
Conventionally, such a dielectric isolation substrate was manufactured by forming a PV-shaped groove on an 81 substrate by etching or machining, and then forming a dielectric 5i02 film on the surface of the 1-shaped groove by thermal oxidation. CvD (Chemical Vapo)
Polycrystalline 81 was deposited on the dielectric film by the ur deposition method. Then, using this polycrystalline Si as a Si substrate holder, the subsequent steps of polishing and
They were involved in element formation, etc.

しかしながら、CVD法による多結晶S1の堆積は堆積
速度が数μm/分程度と非常に遅い。一般に基板保持体
となる多結晶S1の厚さは300μm〜400μm程度
必要なため、この方法では製造に多くの時間を要する欠
点があった。また、CVD法は大損りで非常に高価な装
置を必要とし、誘電体分離した半導体基板が非常に高価
なものとなる原因の一つになっていた。
However, the deposition rate of polycrystalline S1 by the CVD method is very slow, on the order of several μm/min. Generally, the thickness of the polycrystalline S1 serving as the substrate holder is required to be about 300 μm to 400 μm, so this method has the drawback that it requires a lot of time to manufacture. Furthermore, the CVD method requires a large amount of waste and very expensive equipment, which is one of the reasons why dielectrically isolated semiconductor substrates become very expensive.

本発明は、これらの欠点を解決するために5i02  
の超微粒子が結合剤として機能することを利用すること
により、高速度でしかも簡単な装置で作製できる、誘電
体分離した半導体基板及びその製造方法を提供するにあ
る。
The present invention aims to solve these drawbacks in accordance with 5i02
An object of the present invention is to provide a dielectrically separated semiconductor substrate and a method for manufacturing the same, which can be manufactured at high speed and with a simple device by utilizing the fact that the ultrafine particles of the present invention function as a binder.

すなわち、本発明を概説すれば、本発明の第1の発明(
半導体基板の発明)は、誘電体膜を施した溝を有する半
導体基板の溝部に、けい素像粒子、又は非金属酸化物微
粒子を、5iO1の超微粒子を結合剤として用いて被覆
しだ構造の保持体を有することを特徴とする誘導体分離
した半導体基板に関する。
That is, if the present invention is summarized, the first invention of the present invention (
The semiconductor substrate invention) has a structure in which silicon image particles or non-metal oxide fine particles are coated on the grooves of a semiconductor substrate having grooves coated with a dielectric film using ultrafine particles of 5iO1 as a binder. The present invention relates to a dielectric-separated semiconductor substrate characterized by having a holder.

また、本発明の第2の発明(半導体基板の製造方法の発
明)は、テトラアルキルオルソシリケート又はその初期
縮合物を加水分解して得られる液体中に、けい素又は非
金属酸化物の微粒子を分散しだ液状体中で、誘電体膜を
施した溝を有する半導体基板を浸漬処理し、その後膣基
板を乾燥及び焼結することを特徴とする誘電体分離した
半導体基板の製造方法に関する。
In addition, the second invention of the present invention (invention of a method for manufacturing a semiconductor substrate) includes fine particles of silicon or nonmetal oxide in a liquid obtained by hydrolyzing a tetraalkyl orthosilicate or an initial condensate thereof. The present invention relates to a method for producing a dielectric-separated semiconductor substrate, which comprises immersing a semiconductor substrate having grooves coated with a dielectric film in a dispersed liquid, and then drying and sintering the substrate.

以下、本発明を添付図面に基づいて具体的に説明する。Hereinafter, the present invention will be specifically explained based on the accompanying drawings.

第1図は、本発明の誘電体分離した半導体基板の一例を
示す断面図である。第1図において1は深さ50μmの
7字溝を形成した81基板、2は熱酸化により形成され
たシリコン酸化膜(S10□)(誘電体)、6は超微粒
子の8102とSl又は非金属酸化物の微粒子とが互い
に強力に結合した保持体である。まだ第2図は、本発明
の製造方法における浸漬処理工程の一実施の態様を示す
断面概要図である。第2図において、1及び2は第1図
と同義、4はSiO□の超微粒子、5は5i02の微粒
子、6は該超微粒子及び微粒子を含む液状体、7は容器
、8は真空ポンプを表す。
FIG. 1 is a sectional view showing an example of a dielectrically isolated semiconductor substrate of the present invention. In Figure 1, 1 is an 81 substrate with a 7-shaped groove with a depth of 50 μm formed, 2 is a silicon oxide film (S10□) (dielectric material) formed by thermal oxidation, and 6 is ultrafine particle 8102 and Sl or nonmetal. It is a carrier in which fine oxide particles are strongly bonded to each other. FIG. 2 is a schematic cross-sectional view showing an embodiment of the immersion treatment step in the manufacturing method of the present invention. In Figure 2, 1 and 2 have the same meanings as in Figure 1, 4 is an ultrafine particle of SiO□, 5 is a fine particle of 5i02, 6 is a liquid containing the ultrafine particle and the fine particle, 7 is a container, and 8 is a vacuum pump. represent.

本発明において、半導体基板上の溝の形には、例えば、
V字型及びU字型等があるが、満作製の容易さ及びその
後の操作の良好さからV字型であるのが最適である。
In the present invention, the shape of the groove on the semiconductor substrate includes, for example,
Although there are V-shape and U-shape, the V-shape is most suitable because of ease of full production and ease of subsequent operation.

5102超微粒子を含有する液体は、テトラアルキルオ
ルソシリケート(例えばテトラエチルオルソシリケート
)、又はその初期縮合物であるアルキルシリケート(例
えばエチルシリケート)等を加水分解することによって
得られる。結合剤である該5i02超微粒子の大きさは
6〜100×10−3μm程度である。
A liquid containing 5102 ultrafine particles can be obtained by hydrolyzing a tetraalkyl orthosilicate (eg, tetraethyl orthosilicate) or an alkyl silicate (eg, ethyl silicate) that is an initial condensate thereof. The size of the 5i02 ultrafine particles that are the binder is about 6 to 100 x 10 -3 μm.

それに対して、けい素像粒子又は5102、B2O3若
しくはP2O5等の非金属酸化物の微粒子の大きさは1
μm 前後で最小0.1μm程度である。
In contrast, the size of silicon image particles or fine particles of nonmetal oxides such as 5102, B2O3, or P2O5 is 1
The minimum value is around 0.1 μm.

前記加水分解では、反応を促進させるために、必要に応
じて酸を混入させてもよい。
In the hydrolysis, an acid may be mixed as necessary to accelerate the reaction.

また、該液体と微粒子との配合比は、使用強度に応じて
自由に変えることができる。その配合比によっては、浸
漬処理における減圧脱泡工程を省略することもできる。
Further, the blending ratio of the liquid and the fine particles can be freely changed depending on the strength of use. Depending on the blending ratio, the vacuum degassing step in the immersion treatment can be omitted.

以下、実施例により本発明を更に具体的に説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to this.

実施例 まず、81基板にエツチングにより7字溝を形成し、そ
の後熱酸化により5102の誘電体膜を1〜2μm程度
形成する。酸化膜厚さは素子の設計条件によって決めら
れる。その後、エチルシリケート・40(テトラエチル
オルソシリケートの縮合体〕、エタノール、水並びに濃
塩酸を水で10倍に薄めたものを体積比40対52対4
対1の割合で混合して得た液体に5i02の微粒子(径
およそ0.1μm程度)5を配合したクリーム状の液状
体6の中に上記7字溝並びに薄い酸化膜を形成した81
基板を浸漬し、容器7全体を真空ポンプ8により減圧し
、7字溝部に存在する気泡を取除いた後、液状体6から
引上げ乾燥させる。乾燥後、例えば空気中で1000°
C11時間焼結する。5102超微粒子4を含有する液
体に5i02の微粒子5を配合する割合を、該液体1に
対してS i02微粒子5を1(重量比)とした場合に
ついて実施した結果、およそ500μm厚以上の強固な
保持体が形成された。
Embodiment First, a 7-shaped groove is formed on a substrate 81 by etching, and then a dielectric film 5102 is formed to a thickness of about 1 to 2 .mu.m by thermal oxidation. The thickness of the oxide film is determined by the design conditions of the device. Then, ethyl silicate 40 (a condensate of tetraethyl orthosilicate), ethanol, water, and concentrated hydrochloric acid diluted 10 times with water were added in a volume ratio of 40:52:4.
81 The above-mentioned 7-shaped groove and a thin oxide film were formed in a cream-like liquid material 6 in which fine particles of 5i02 (approximately 0.1 μm in diameter) 5 were mixed in a liquid obtained by mixing at a ratio of 1:1.
The substrate is immersed, and the entire container 7 is depressurized by a vacuum pump 8 to remove air bubbles existing in the 7-shaped groove, and then pulled out from the liquid 6 and dried. After drying, e.g. 1000° in air
Sinter for C11 hours. As a result of blending 5i02 fine particles 5 into a liquid containing 5102 ultrafine particles 4, the ratio of Si02 fine particles 5 to 1 (weight ratio) of the liquid was 1 (weight ratio). A holder was formed.

既述のように、この配合比(液体対5102微粒子の重
駄比)は、使用強度に応じて自由に変えることができる
。そして、仁の配合比が大きい場合には粘性が小さいた
め、液状体6が溝の隔隔まで行渡り気泡が発生しないこ
とから、浸漬処理における前記減圧脱泡工程を省略する
ことができる。
As mentioned above, this blending ratio (liquid to 5102 fine particles weight ratio) can be freely changed depending on the strength of use. When the blending ratio of kernels is high, the viscosity is low, so the liquid material 6 spreads to the gaps between the grooves and no air bubbles are generated, so that the vacuum degassing step in the immersion process can be omitted.

また前記実施例における8i02微粒子の代りに、81
 微粒子、又はP2O5若しくはB2O3等の非金属酸
化物の微粒子を用いることにより、保持体の強度及び膨
張率等を容易に変化させることもできる。
Also, instead of the 8i02 fine particles in the above example, 81
By using fine particles or fine particles of a non-metal oxide such as P2O5 or B2O3, the strength, expansion rate, etc. of the holder can be easily changed.

更に、既述のように、加水分解で塩酸は必須要件ではな
い。しかしながら、塩酸を混入することにより、熱酸化
中1csi 基板表面に導入される結晶欠陥を低減化さ
せる効果(ゲッタリング効果)がある。
Furthermore, as mentioned above, hydrochloric acid is not an essential requirement for hydrolysis. However, by mixing hydrochloric acid, there is an effect (gettering effect) of reducing crystal defects introduced to the surface of the 1csi substrate during thermal oxidation.

以上詳細に説明したように、本発明による誘電体分離し
た半導体基板においては、Sin、の超微粒子が結合剤
として作用して匹るため、半導体基板との密着性が良く
、シかも半導体基板への不純物の導入が少ない上に、高
熱処理にも十分耐えられる。また本発明は、装置構成が
簡単なもので、十分にその目的を達成するという利点も
ある。
As explained in detail above, in the dielectrically separated semiconductor substrate according to the present invention, the ultrafine particles of Sin act as a binder, so the adhesion with the semiconductor substrate is good, and it is easy to bond to the semiconductor substrate. In addition to introducing fewer impurities, it can withstand high heat treatment. Further, the present invention has the advantage that the device configuration is simple and the object can be fully achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の誘電体分離した半導体基板の一例を
示す断面図である。第2図は、本発明の製造方法におけ
る浸漬処理工程の一実施の態様を示す断面概要図である
。 1:S1基板 2:誘電体膜 6:保持体4 : 5i
02の超微粒子 5 : 5in2の微粒子 6:液状
体 7:容器 8:真空ポンプ 特許出願人 日本電信電話公社 代理人中 本  宏 同    井   上      昭
FIG. 1 is a sectional view showing an example of a dielectrically isolated semiconductor substrate of the present invention. FIG. 2 is a schematic cross-sectional view showing an embodiment of the immersion treatment step in the manufacturing method of the present invention. 1: S1 substrate 2: Dielectric film 6: Holder 4: 5i
02 ultrafine particles 5: 5in2 microparticles 6: Liquid 7: Container 8: Vacuum pump patent applicant Nippon Telegraph and Telephone Public Corporation agent Hirotoshi Moto Akira Inoue

Claims (1)

【特許請求の範囲】 1、 誘電体膜を施しだ溝を有する半導体基板の溝部に
、けい素像粒子、又は非金属酸化物微粒子’6.5in
2  の超微粒子を結合剤として用いて被覆した構造の
保持体を有することを特徴とする誘導体分離した半導体
基板。 2、 テトラアルキルオルソシリケート又はその初期縮
合物を加水分解して得られる液体中に、けい素又は非金
属酸化物の微粒子を分散した液状体中で、誘電体膜を施
した溝を有する半導体基板を浸漬処理し、その後肢基板
を乾燥及び焼結することを特徴とする誘電体分離した半
導体基板の製造方法。 3、 該半導体基板の浸漬処理が、全体を減圧して脱泡
することによって行うものである特許請求の範囲第2項
に記載の誘電体分離した半導体基板の製造方法。
[Claims] 1. Silicon image particles or non-metal oxide fine particles of 6.5 inches are placed in the grooves of a semiconductor substrate coated with a dielectric film and having grooves.
2. A derivatized semiconductor substrate characterized by having a holder having a structure coated with the ultrafine particles of Item 2 as a binder. 2. A semiconductor substrate having grooves coated with a dielectric film in a liquid obtained by hydrolyzing a tetraalkyl orthosilicate or an initial condensate thereof, in which fine particles of silicon or nonmetal oxide are dispersed. 1. A method for manufacturing a dielectrically separated semiconductor substrate, which comprises subjecting the hindlimb substrate to a dipping treatment, and drying and sintering the hindlimb substrate. 3. The method for manufacturing a dielectrically separated semiconductor substrate according to claim 2, wherein the immersion treatment of the semiconductor substrate is carried out by degassing the entire substrate by reducing the pressure.
JP6865882A 1982-04-26 1982-04-26 Dielectric-isolated semiconductor substrate and manufacture thereof Granted JPS58186948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6865882A JPS58186948A (en) 1982-04-26 1982-04-26 Dielectric-isolated semiconductor substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6865882A JPS58186948A (en) 1982-04-26 1982-04-26 Dielectric-isolated semiconductor substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58186948A true JPS58186948A (en) 1983-11-01
JPH0432544B2 JPH0432544B2 (en) 1992-05-29

Family

ID=13380015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6865882A Granted JPS58186948A (en) 1982-04-26 1982-04-26 Dielectric-isolated semiconductor substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58186948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024163A1 (en) * 1995-02-01 1996-08-08 The Whitaker Corporation Process for producing a glass-coated article and article produced thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024163A1 (en) * 1995-02-01 1996-08-08 The Whitaker Corporation Process for producing a glass-coated article and article produced thereby
US5639325A (en) * 1995-02-01 1997-06-17 The Whitaker Corporation Process for producing a glass-coated article

Also Published As

Publication number Publication date
JPH0432544B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
US5302198A (en) Coating solution for forming glassy layers
JPS63274158A (en) Method of making glass layer planar
JPH09116011A (en) Semiconductor device and its manufacture
TW201819337A (en) Sintered body, method of manufacturing the same, and electrostatic chuck
US3669693A (en) Germania-silica glasses and method of coating
WO2001053225A1 (en) Sol-gel process for producing synthetic silica glass
CN109928359B (en) Microstructure packaging method and packaging device
JPS6183674A (en) Ceramic wire distribution substrate and manufacture
US4978379A (en) Method of joining semiconductor substrates
US6379785B1 (en) Glass-coated substrates for high frequency applications
JPH05243423A (en) Manufacture of multilayer ceramic substrate
JPS58186948A (en) Dielectric-isolated semiconductor substrate and manufacture thereof
US3698947A (en) Process for forming monocrystalline and poly
JP2007134420A (en) Embedding method inside structure by hydrophobic porous silica material
JP2000077399A (en) Silica based porous film and production thereof
JPH118239A (en) Manufacture of semiconductor device
JP2915357B2 (en) Semiconductor device, method of manufacturing the same, and method of forming porous film
US6191048B1 (en) Process for manufacturing composite glass/Si substrates for microwave integrated circuit fabrication
JPS62216979A (en) Aluminum nitride sintered body with glass layer and manufacture
JP2721265B2 (en) Semiconductor substrate manufacturing method
JP6951657B2 (en) Manufacturing method of inorganic porous sheet
JP3236882B2 (en) Aluminum nitride substrate and method of manufacturing the same
JPS62216983A (en) Aluminum nitride sintered body with metallization layer and manufacture
JP2001287909A (en) Porous silicon oxide coating film
EP1250295A1 (en) Sol-gel process for producing synthetic silica glass