JPS58186490A - Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method - Google Patents

Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method

Info

Publication number
JPS58186490A
JPS58186490A JP57069681A JP6968182A JPS58186490A JP S58186490 A JPS58186490 A JP S58186490A JP 57069681 A JP57069681 A JP 57069681A JP 6968182 A JP6968182 A JP 6968182A JP S58186490 A JPS58186490 A JP S58186490A
Authority
JP
Japan
Prior art keywords
water
brine
dissolved oxygen
reverse osmosis
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57069681A
Other languages
Japanese (ja)
Inventor
Kazuo Tomiya
富家 和男
Hiroshi Miyaji
宮地 洋
Masafumi Sasaki
雅史 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP57069681A priority Critical patent/JPS58186490A/en
Publication of JPS58186490A publication Critical patent/JPS58186490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PURPOSE:To remove dissolved oxygen efficiently and to improve durability of a film module, by introducing sea water or brine into a deaeration column having a negative pressure space, and generating cavitation in the sea water or brine. CONSTITUTION:Sea water or brine 1 is pumped 2 through a feed pipe 3 and fine holes 5 into a deaeration column 4 maintained under negative pressure by the residual pressure of condensed water. Cavitation is generated in the sea water when the water passes through the hole 5 by which a large amt. of fine bubbles is generated in the treated water 1 and dissolved oxygen is removed. The treated water 1' deaerated in the column 4 is pressurized through a connecting pipe 6 by a high pressure pump 7 and is supplied into a reverse osmosis treatment tank 8, where the water is separated to the concd. water of the high residual pressure and the permeated water of the atmospheric pressure by the film module provided in the tank 8. The concd. water is injected to an ejector 10 connected to the column 4 and is then discharged through a discharge pipe 11.

Description

【発明の詳細な説明】 本発明は、逆浸透法により海水又はかん水を脱塩処理す
る際に生ずる濃縮水の有する高残圧を利用して海水又は
かん水中の溶存酸素を効率よく分離除去する方法に関す
る。
Detailed Description of the Invention The present invention efficiently separates and removes dissolved oxygen in seawater or brine by utilizing the high residual pressure of concentrated water generated when seawater or brine is desalinated by reverse osmosis. Regarding the method.

既存のものに比べ、経済的かつ効率のよい遣水プロセス
として脚光を浴びつつある逆浸透性脱塩プロセスは、浸
透圧より大きい圧力を塩水側に加え、塩水中の真水を膜
モジーールを通して真水匈に浸透させて塩水から真水を
分離するようにしたものである。この逆浸透プロセスに
おける中枢部である膜モジーールとしては、スパイラル
型、ホローファイバー聾、など種々のタイプのものが実
用化されているが、これらの中には膜モジ為−ルの耐久
性の面から溶存酸素対策を必要とする。すなわち、膜モ
ジーールを長期間に亘って溶存酸素を含有する塩水にさ
らすと、溶存酸素により換モジーールの脱塩性能が低下
するため、予め原水中の溶存酸素の量を減少させ、膜モ
ジーールの寿命を延ばすことが必要となる。
The reverse osmosis desalination process, which is attracting attention as an economical and efficient water supply process compared to existing methods, applies pressure greater than osmotic pressure to the salt water side, and converts the fresh water in the salt water into fresh water through a membrane module. It is designed to separate fresh water from salt water by permeation. Various types of membrane modules, which are the central part of this reverse osmosis process, have been put into practical use, such as spiral type and hollow fiber deaf. Measures against dissolved oxygen are required. In other words, if the membrane module is exposed to salt water containing dissolved oxygen for a long period of time, the dissolved oxygen will reduce the desalination performance of the exchange module. It is necessary to extend the

従来、海水又はかん水等の塩水の脱塩処理に先立って、
塩水中の溶存酸素を除去するには、重亜硫酸ナトリウム
、ヒドラジ7等の還元剤を添加して化学処理することが
一般的である。海水又はかん水中には通常8 ppm前
後の溶存酸素が溶解しているが、この酸素を還元除去す
るには約60 ppmの重亜硫酸ナトリウムを添加する
必要があり、又酸素と重亜硫酸ナトリウムの反応時間は
30分程度必要とされる。    □ 逆浸透性脱塩プロセスにこの還元処理工程が加わると、
薬品の入手法及び価格的な問題だけでなく、還元反応の
反応時間が比較的長いため、大容量の遣水プラントにお
いては大型の反応タンクが必要となり、プロセス全体の
コストがかなシ高くなるという欠点がある。
Conventionally, prior to desalination treatment of saltwater such as seawater or brine,
In order to remove dissolved oxygen in salt water, it is common to add a reducing agent such as sodium bisulfite or hydrazi 7 to perform chemical treatment. Usually around 8 ppm of dissolved oxygen is dissolved in seawater or brine, but to reduce and remove this oxygen it is necessary to add about 60 ppm of sodium bisulfite, and the reaction between oxygen and sodium bisulfite is It takes about 30 minutes. □ When this reduction treatment step is added to the reverse osmosis desalination process,
In addition to the problem of how to obtain chemicals and the price, the reduction reaction time is relatively long, so a large reaction tank is required in a large-capacity water supply plant, which significantly increases the cost of the entire process. There is.

又、各種機器工業あるいは写真工業等において、予め、
真空脱気おるいは加熱によ抄溶存酸素を除去する手法が
採用されている(たとえば、%開昭55−15661号
、特開昭55−94605号)。
In addition, in various equipment industries or photographic industries, etc., in advance,
A method of removing dissolved oxygen from the paper by vacuum degassing or heating has been adopted (for example, % Japanese Patent Application Laid-Open No. 55-15661, Japanese Patent Application Laid-open No. 55-94605).

しかしながら、これらの手法では、いずれにしても真空
ポンプやヒーターを別個に設置しなければならず、設備
費がかさむという欠点がある。
However, these methods have the disadvantage that a vacuum pump and a heater must be installed separately, which increases equipment costs.

本発明は、逆浸透性脱塩プロセスにおいて高残圧を有す
る濃縮水のエネルギーに着目し、濃縮水を流動躯体とし
たエジェクターを作動させることによシ海水又はかん水
を導入した脱気塔内に負圧空間を形成し、海水又はかん
水中の溶存酸素を除去するようにしたものである。
The present invention focuses on the energy of concentrated water that has a high residual pressure in the reverse osmosis desalination process, and operates an ejector that uses concentrated water as a fluid body to introduce seawater or brine into a degassing tower. A negative pressure space is formed to remove dissolved oxygen from seawater or brine.

即ち、本発明は、海水又はかん水を所定圧に加圧して逆
浸透処理槽に供給し、透過水と高残圧を有する濃縮水と
に分離する逆浸透性脱塩プロセスにおいて、予め海水又
はかん水を脱気塔に導入するとともに、分離され九鎖縮
水を前記脱気塔に連通され九エジェクターより噴射して
脱気塔内に負、圧空間を作シ、これにょ9海水又はがん
水にキャビテーシ冒ンを生じさせ、溶存酸素を分離除去
するようにした溶存酸素の除去方法である。
That is, the present invention provides seawater or brine in advance in a reverse osmosis desalination process in which seawater or brine is pressurized to a predetermined pressure and supplied to a reverse osmosis treatment tank and separated into permeated water and concentrated water having a high residual pressure. At the same time, the separated nine-chain condensed water is communicated to the deaeration tower and injected from the nine ejector to create a negative pressure space in the deaeration tower, and this is converted into seawater or cancer water. This is a method for removing dissolved oxygen in which cavitation is generated and dissolved oxygen is separated and removed.

又、本発明は、上記のように溶存酸素を除去した海水又
はかん水にさらに重亜硫酸す) IJウム、ヒドラジン
等の還元剤を添加して還元処理するようにした溶存酸素
の除去方法である。
Further, the present invention is a method for removing dissolved oxygen, in which a reducing agent such as bisulfite, hydrazine, etc. is further added to seawater or brine from which dissolved oxygen has been removed as described above.

図面は、本発明により溶存ll素を除去しながら海水又
はかん水を脱塩処理する方法の一例を示すものである。
The drawings show an example of the method of desalinating seawater or brine while removing dissolved chlorine according to the present invention.

1Fi、海水又はかん水で、ポンプ2により給水管5を
通って脱気塔4内に細孔5を介して導入される。仁の際
、後述する濃縮水の残圧にょシ、脱気塔−内は負圧に維
持されてお乞細孔5を通る際にキャビチー7−Iンが生
じて、海水又はがん水中に多数の微細な気泡が発生し、
溶存酸素が除去される。脱気塔4内で脱気された海水又
はがん水1′は、連結管6を通って高圧ポンプ7に達し
、骸ボ/グアにより所定圧力に加圧されて逆浸透処理槽
8に供給される。鋏処理檜8内には、スパイラル型、ホ
ローファイバー製等の膜モジーールが内装され、供給さ
れた海水又はがん水を常圧の透過水と高残圧を有する濃
縮水とに分離する。透過水は、取水管9を経て外部に取
シ出され、濃縮水は、前記脱気塔4に連通されたエジェ
クター10に噴射された後、排出管11を経て排出され
る。この様に濃縮水を駆動流体としたエジェクターを作
動させることにより脱気塔4内が負圧とされ、海水又は
かん水中にキャビテーシ冒ンが生じて溶存酸素が除去さ
れる。
1 Fi, seawater or brine is introduced by the pump 2 through the water supply pipe 5 into the degassing tower 4 through the pores 5 . During degassing, the residual pressure of the concentrated water (described later) is maintained at a negative pressure inside the degassing tower, and a cavity is generated when it passes through the pores 5, causing it to leak into seawater or water. Many fine bubbles are generated,
Dissolved oxygen is removed. The seawater or gun water 1' degassed in the degassing tower 4 passes through the connecting pipe 6 and reaches the high-pressure pump 7, where it is pressurized to a predetermined pressure by the skeleton/gua and supplied to the reverse osmosis treatment tank 8. be done. A membrane module made of spiral type, hollow fiber, etc. is installed inside the scissors processing cypress 8 to separate the supplied seawater or gun water into permeated water at normal pressure and concentrated water with high residual pressure. The permeated water is taken out to the outside through the intake pipe 9, and the concentrated water is injected into the ejector 10 connected to the degassing tower 4, and then discharged through the discharge pipe 11. By operating the ejector using concentrated water as the driving fluid, the inside of the degassing tower 4 is brought to a negative pressure, cavitation is generated in the seawater or brine, and dissolved oxygen is removed.

このように本発明によれば、従来の逆浸透性脱塩プロセ
スに、別個に特別の装置を設置することなく、海水又は
かん水中の溶存酸素を容易に除去することができ、膜モ
ジーールの耐久性を向上させることができる。
As described above, according to the present invention, dissolved oxygen in seawater or brine can be easily removed without installing special equipment separately in the conventional reverse osmosis desalination process, and the durability of the membrane module can be improved. can improve sex.

また、上記プロセスのみでは溶存酸素の除去が不十分な
場合、たとえば食塩濃度が低く、逆浸透処理槽に供給さ
れる海水又はかん水の加圧が弱い場合には、濃縮水の残
圧が低く脱気塔内で発生するキャビテーシ冒ンが不十分
でる力、逆浸透魁塩檜に供給する前に所定量の重亜硫酸
す) IJウム、ヒドラジン等の還元剤を加えて還元処
理し、溶存酸素をさらに分離除去することができる。こ
の場合には、溶存酸素のほとんどが予め除去されている
ため添加すべき還元剤の量は少なくてすむとともに、処
理時間も短くなり、さらに反応タンクの容量も小さなも
のでよい。
In addition, if the above process alone is insufficient to remove dissolved oxygen, for example, if the salt concentration is low and the pressurization of seawater or brine supplied to the reverse osmosis treatment tank is weak, the residual pressure of the concentrated water may be low and the removal of dissolved oxygen may be insufficient. In order to prevent insufficient air pollution from the cavities generated in the gas column, a predetermined amount of bisulfite is added to the reverse osmosis before supplying it to the salt cylinder. It can be further separated and removed. In this case, since most of the dissolved oxygen has been removed in advance, the amount of reducing agent to be added can be small, the processing time can be shortened, and the capacity of the reaction tank can also be small.

実施例1 溶存酸素a 1 ppm、全塩分#度(TDS ) 3
40CIOppm。
Example 1 Dissolved oxygen a 1 ppm, total salinity (TDS) 3
40CIOppm.

温度25℃の海水18 m”/D t” II集ろ過し
て懸濁物質を除去した後、真空度が707orrK維持
された直径150■、高さ2.6mの脱気塔で脱気した
ところ溶存酸素がα5 ppmに減少した。この脱気水
を高圧ポンプにより56 Kg/cd・Gに加圧してス
パイラル型の膜モジーールが内装された逆浸透処理槽に
供給したと、ころ、& 2 m’/Dの透過水と残圧5
4h/d@Gの濃縮水9.8 m”/Dが得られた。こ
の濃縮水を前記脱気塔に連通されたエジェクターより噴
射すると、脱気塔内を定常的に70 Torrに維持す
ることができ友。
18 m"/D t" II of seawater at a temperature of 25°C was collected and filtered to remove suspended solids, and then degassed in a degassing tower with a diameter of 150 cm and a height of 2.6 m that maintained a degree of vacuum of 707 orrK. Dissolved oxygen decreased to α5 ppm. When this degassed water was pressurized to 56 Kg/cd・G using a high-pressure pump and supplied to a reverse osmosis treatment tank equipped with a spiral membrane module, the permeated water and residual pressure of &2 m'/D were obtained. 5
9.8 m"/D of concentrated water of 4 h/d@G was obtained. When this concentrated water was injected from the ejector connected to the deaeration tower, the inside of the deaeration tower was constantly maintained at 70 Torr. Can be a friend.

実施例2 溶存酸素&lppm、全塩分濃度(TDS)5500 
Ppm、温度25℃のかん水18 m”/Dを凝集ろ過
して懸濁物質を除去した後、真空度が100 ’l’o
rrlc維持された直径150m、高さ2.6mの脱気
塔で脱気したところ溶存酸素が0.7 ppmに減少し
た。このかん水に25 ppmの重亜硫酸ナトリウムを
添加し、50分間反応させ九とこ\箒存酸素がCL 4
 ppmに減少した7この脱気水を高圧ポンプにより5
5に47cd−Gに加圧してスパイラル型の膜モジーー
ルが内装された逆浸透処理槽に供給したところ、12.
6 m”/ Dの透過水と残圧35々/CIi・Gの濃
縮水5.4 m”/Dが得られ友。この濃縮水をオリフ
ィスを通して、前記脱気塔に連通された噴射管に噴射す
ると、脱気塔内を定常的に100Torr KM持する
ことができた。
Example 2 Dissolved oxygen & lppm, total salt concentration (TDS) 5500
Ppm, brine 18 m"/D at a temperature of 25°C was subjected to coagulation filtration to remove suspended solids, and the degree of vacuum was 100'l'o.
When deaeration was performed using a degassing tower with a diameter of 150 m and a height of 2.6 m maintained at rrlc, dissolved oxygen was reduced to 0.7 ppm. Add 25 ppm of sodium bisulfite to this brine and let it react for 50 minutes until the remaining oxygen reaches CL4.
This degassed water, which has been reduced to 7ppm, is pumped to 5ppm using a high-pressure pump.
When 12.5 was pressurized to 47 cd-G and supplied to a reverse osmosis treatment tank equipped with a spiral membrane module, 12.
Permeated water of 6 m"/D and concentrated water of 5.4 m"/D of residual pressure 35 cm/CIi・G were obtained. When this concentrated water was injected into the injection pipe connected to the deaeration tower through an orifice, the inside of the deaeration tower could be maintained at a constant pressure of 100 Torr KM.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明方法の実施要領の一例を示す説明図であ
る。 1.1′・・・・・・海水(かん水) 2・・・・・・・・・・・・ポンプ 3・・・・・・・・・・・・給水管 4・・・・・・・・・・・・脱気塔 6・・・・・・・・・・・・連結管 7・・・・・・・・・・・・高圧ポンプ8・・・・・・
・・・・・・逆浸透処理槽9・・・・・・・・・・・・
取水管 10・・・・・・・・・・・・エジェクター11・・・
・・・・・・・・・排出管
The drawings are explanatory diagrams showing an example of the implementation procedure of the method of the present invention. 1.1'... Seawater (brine) 2... Pump 3... Water supply pipe 4... ...... Deaeration tower 6 ...... Connection pipe 7 ...... High pressure pump 8 ...
・・・・・・Reverse osmosis treatment tank 9・・・・・・・・・・・・
Water intake pipe 10... Ejector 11...
・・・・・・・・・Discharge pipe

Claims (2)

【特許請求の範囲】[Claims] (1)海水又はかん水を所定圧に加圧して逆浸透処理槽
に供給し、透過水と高残圧を有する濃縮水とに分離する
逆浸透性脱塩プロセスにおいて、予め、海水又はかん水
を脱気塔に導入するとともに、エビ!7ター 分離された濃縮水を前記脱気塔に連通され艙i蔚着内に
噴射して脱気塔内に負圧空間を作り、これにより海水又
はかん水にキャビテーシ璽ンを生じさせ、溶存酸素を分
離除去することを特徴とする逆浸透処理槽プロセスにお
ける海水又はかん水中の溶存酸素の除去方法。
(1) In the reverse osmosis desalination process, in which seawater or brine is pressurized to a predetermined pressure and supplied to a reverse osmosis treatment tank and separated into permeated water and concentrated water with high residual pressure, seawater or brine is desalinated in advance. Along with introducing it into the air tower, shrimp! The separated concentrated water is communicated with the degassing tower and injected into the tank to create a negative pressure space in the degassing tower, thereby creating cavities in the seawater or brine and removing dissolved oxygen. A method for removing dissolved oxygen in seawater or brine in a reverse osmosis treatment tank process, which comprises separating and removing dissolved oxygen.
(2)  海水又はかん水を所定圧に加圧して逆浸透処
理槽に供給し、透過水と高残圧を有する濃縮水とに分離
する逆浸透性脱塩プロセスにおいて、予著内に噴射して
脱気塔内に電圧空間を作り、これにより海水又はかん水
にキャビテーシ冒ンを生じさせて溶存酸素を分離除去し
、さらに還元剤を添加して還元処理することを%像とす
る逆浸透性脱塩プロセスにおける海水又はかん水中の溶
存酸素の除去方法。
(2) In the reverse osmosis desalination process in which seawater or brine is pressurized to a predetermined pressure and supplied to a reverse osmosis treatment tank and separated into permeated water and concentrated water with high residual pressure, Reverse osmosis desorption involves creating a voltage space in the degassing tower, creating cavities in seawater or brine, separating and removing dissolved oxygen, and then adding a reducing agent for reduction treatment. Method for removing dissolved oxygen in seawater or brine in salt processing.
JP57069681A 1982-04-27 1982-04-27 Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method Pending JPS58186490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069681A JPS58186490A (en) 1982-04-27 1982-04-27 Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069681A JPS58186490A (en) 1982-04-27 1982-04-27 Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method

Publications (1)

Publication Number Publication Date
JPS58186490A true JPS58186490A (en) 1983-10-31

Family

ID=13409842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069681A Pending JPS58186490A (en) 1982-04-27 1982-04-27 Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method

Country Status (1)

Country Link
JP (1) JPS58186490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319595U (en) * 1989-06-30 1991-02-26
US5154832A (en) * 1990-02-27 1992-10-13 Toray Industries, Inc. Spiral wound gas permeable membrane module and apparatus and method for using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319595U (en) * 1989-06-30 1991-02-26
US5154832A (en) * 1990-02-27 1992-10-13 Toray Industries, Inc. Spiral wound gas permeable membrane module and apparatus and method for using the same

Similar Documents

Publication Publication Date Title
US7560029B2 (en) Osmotic desalination process
AU2009326257B2 (en) Improved solvent removal
CN108218087B (en) System for treating high-salt-content wastewater based on multistage electrically-driven ionic membrane
JPH08108048A (en) Reverse osmosis separator and reverse osmosis separating method
KR101636138B1 (en) Ballast water treatment device and method for a ship using FO process
US20200308037A1 (en) Desalination Brine Concentration System and Method
JP2019072660A (en) Seawater desalination method and seawater desalination system
US20130206697A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
CN111867705A (en) Solvent separation
JP2013063372A (en) Desalination system
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
JP2007307561A (en) High-purity water producing apparatus and method
JPS58186490A (en) Method for removing dissolved oxygen from sea water or brine in desalting process by reverse osmosis method
JP7118823B2 (en) Water treatment system and water treatment method
JP2003117553A (en) Method and apparatus for producing fresh water
JPH0380991A (en) Method and apparatus for treating supplied water to boiler
JP7106465B2 (en) Water treatment system and water treatment method
KR20150008236A (en) Ballast water treatment
US20130082001A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
WO2020226039A1 (en) Water treatment apparatus
CN217535536U (en) Seawater desalination device
CN116395917B (en) Short-process salt-containing wastewater treatment method and system
JPH05309372A (en) Apparatus for producing water of high purity
JPH11169852A (en) Pure water producing device
JP2004000938A (en) Water production method