JPS58186379A - Control system for self-excited power converter - Google Patents

Control system for self-excited power converter

Info

Publication number
JPS58186379A
JPS58186379A JP57068836A JP6883682A JPS58186379A JP S58186379 A JPS58186379 A JP S58186379A JP 57068836 A JP57068836 A JP 57068836A JP 6883682 A JP6883682 A JP 6883682A JP S58186379 A JPS58186379 A JP S58186379A
Authority
JP
Japan
Prior art keywords
power
output
converter
switch
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57068836A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogawa
清 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57068836A priority Critical patent/JPS58186379A/en
Publication of JPS58186379A publication Critical patent/JPS58186379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To continue as a reactive power regulator the operation of a self- excited power converter by switching the effective power control to a DC input constant-voltage control at the DC power source malfunction time when a DC power source and other different AC power source are interlocked. CONSTITUTION:The output of a converter 2 is interlocked through a transformer 3 and a switch 4 to an AC power source 5, the output 12 of a power converter is controlled via a switch 25 so as to become equal to the voltage reference 21 when the switch 4 is opened, and the effective and reactive components of the power are controlled and interlocked with the reactive power reference 22 and the effective power reference 31 by switching the switches 25, 36. The malfunction of a DC power source 1 is detected by a controller 42, the switch 36 is closed, the switch 53 is opened, thereby shortcircuiting the effective power control, and the phase of the converter 2 is controlled to become equal to the voltage reference 51. Accordingly, the operation as the reactive power regulator for stabilizing the voltage of the system can be continued at the malfunction time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は直流電源と他の異なる交流電源1に接続する交
流連系システムに係り、特に直流電源の保守時あるいは
異常時においても無効電力調[i置として運転を継続す
るに好適な自励式電力変換装置の制御方式に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an AC interconnection system that connects a DC power source to another different AC power source 1, and in particular, the present invention relates to an AC interconnection system that connects a DC power source to another different AC power source 1, and in particular, it is capable of controlling reactive power even during maintenance or abnormality of the DC power source. The present invention relates to a control method for a self-excited power converter suitable for continuous operation as an i-station.

〔発明の技術的背景〕[Technical background of the invention]

従来、真なる系統の交流電源を並列運転する[は無効電
力の偏差で各交流電源間の電圧差t1有効電力の偏差で
各交流電源間の位相差tそれぞれ制御することが知られ
ている。インバータ装置に代!Ijされる直流−交流電
力変換装置と電力系統を連系する場合は電力系統は制御
できないので、変換装置に自励式電力変換装置t(以下
電力変換装置と略す)を用いて有効電力、無効電力を制
御する方法が採用される。第1図に電力変換装置の制御
方式の従来nt示す。
Conventionally, it has been known that when AC power supplies of a true system are operated in parallel, the voltage difference t between each AC power supply is controlled by the deviation of reactive power, and the phase difference t between each AC power supply is controlled by the deviation of active power. Inverter equipment! When connecting a DC-AC power converter to a power grid, the power grid cannot be controlled, so a self-excited power converter (hereinafter referred to as power converter) is used as the converter to convert active power and reactive power. A method is adopted to control the FIG. 1 shows a conventional control method for a power converter.

1点 図中、1M直流電源で、直流電源1の直流出力は電力変
換装置2により交流に変換場れ、変圧器3により所定の
電圧に変換され、開閉器4を介して電力系統5へ接続?
れる。
In the one-point diagram, the DC output of the DC power supply 1 is converted to AC by the power converter 2, which is converted to a predetermined voltage by the transformer 3, and connected to the power grid 5 via the switch 4. ?
It will be done.

制御回路100にあっては電圧基準21と電力変換装置
2の出力電圧12とを比較し、その偏差25mは切替ス
イッチ25f:介して誤差増幅器24へ印加される。無
効電力基準22と無効電力検出回路23の出力を比較し
、その偏差25bは切替スイッチ26を介して誤差増幅
器24に印加され、誤差増幅器24の出力は電圧制御回
路26の人力となっている。同様に有効電力基fs31
と有効電力検出回路32の出力tプロyクルー7’ (
Phas−s 1ock@d 1oop )いわゆるP
LL回路S4の1つの人力−4となっている。J5は分
周器でPLL回路34の出力周波数【分周し、その出力
はPLL回路34の他の1つの入力“ハ”となる、 P
LL回路34の他の1つの人力“口”には、電力系統5
の電圧13が位相基準として与えられる。
In the control circuit 100, the voltage reference 21 and the output voltage 12 of the power converter 2 are compared, and the deviation 25m is applied to the error amplifier 24 via the changeover switch 25f. The reactive power reference 22 and the output of the reactive power detection circuit 23 are compared, and the deviation 25b is applied to the error amplifier 24 via the changeover switch 26, and the output of the error amplifier 24 serves as the power for the voltage control circuit 26. Similarly, active power base fs31
and the output of the active power detection circuit 32 t pro y crew 7' (
Phas-s 1ock@d 1oop) So-called P
This is one human power -4 of the LL circuit S4. J5 is a frequency divider that divides the output frequency of the PLL circuit 34, and its output becomes the other input "c" of the PLL circuit 34.
Another human power "port" of the LL circuit 34 is connected to the power system 5.
voltage 13 is given as a phase reference.

ここでPLL回路34は周知の回路であるが簡単に説明
する。第2図はPLL回路34のプロ。
Although the PLL circuit 34 is a well-known circuit, it will be briefly explained here. Figure 2 shows the PLL circuit 34.

り図の1例であり、PLL回路34の構成は位相誤差検
出器PHD 、低域P波器LPFそして電圧制御発振器
vCOから構成される。これら各要素のw*t−説明す
ると、位相誤差検出器PHDは位相基準信号101と位
相帰還信号1ハ”との位相差に比例した信号“二”k%
生する。この位相差に比例し比信号“二”が低域戸波器
LPFの入力となり、この低域P波器LPFで高調波成
分を除去すると共に位相哄差倉増幅する。そして電圧制
御発振器VCOは低域F波器LPFの出力才″に比ガし
几庵波数を出力し、この電圧制御発振器vCOの出力“
へmは、分局器35へ接続される。分局器35の段数t
Nとすれば、電圧制御発振器VCOの発振周波数は位相
基準信号10″のN倍となる。ここでNは電力変換装置
1のインバータ回路の相数により、任意の整数に選ばれ
る。分局器35の出力は位相誤差検出器PHDの位相帰
還信号“ハ”となっているので、電圧制御発振器VCO
の共振周波数は位相基準信号−口1と位相帰還信号1ハ
”との位相が一致するように自動制御される。ここでP
LL回路34の1つの入力“イ”の働きは、低域P波器
LPFへ信号を与えることにより位相基準信号10”と
位相帰還信号“・・”との位相差を任意に設定可能とな
る。
This is an example of the diagram, and the configuration of the PLL circuit 34 is composed of a phase error detector PHD, a low-pass P-wave device LPF, and a voltage controlled oscillator vCO. W*t of each of these elements - To explain, the phase error detector PHD generates a signal "2" k% proportional to the phase difference between the phase reference signal 101 and the phase feedback signal 1.
live. A ratio signal "2" proportional to this phase difference is input to the low-pass P-wave filter LPF, which removes harmonic components and amplifies the phase difference. Then, the voltage controlled oscillator VCO outputs a wave number compared to the output voltage of the low frequency F wave generator LPF, and the output of this voltage controlled oscillator vCO is
Hem is connected to the branch unit 35. Number of stages t of branching device 35
If N, the oscillation frequency of the voltage controlled oscillator VCO will be N times the phase reference signal 10''. Here, N is selected as an arbitrary integer depending on the number of phases of the inverter circuit of the power converter 1. Since the output of the phase error detector PHD is the phase feedback signal "c", the voltage controlled oscillator VCO
The resonant frequency of P
The function of one input "A" of the LL circuit 34 is that it can arbitrarily set the phase difference between the phase reference signal 10" and the phase feedback signal "..." by supplying a signal to the low-pass P-wave device LPF. .

再び第1図に戻り、七の動作の説明を行うと、PLL回
路34の位相基準信号10”としては電力系統5の位相
が印加されているので、PLL回路34の出力周波数は
電力系統50位相と同期し、従って電力変換装置20位
相も電力系統5の位相と同期している。開閉器4が開の
状態ではスイッチ25は偏差Jj5a’i7択しており
・電力変換装置2の出力電圧12が電圧基準21に等し
くなるよう自動制御される。また誤差増幅器j3の入出
力はスイッチ36で短絡されており、有効電力の偏差2
3mVCよる電力変換装置1の位相を制御する有効電力
制御(ロ)路は形成場れていない0次に開閉器4t−閉
の状態にすると、切換スイッチ25は偏差25bt−選
択し電力変換値WL2の無効電力が無効電力基準22に
等しくなるよう、電力変換装置2の出力電圧が自動制御
される。
Returning to FIG. 1 again, to explain the operation in step 7, since the phase of the power system 5 is applied as the phase reference signal 10'' of the PLL circuit 34, the output frequency of the PLL circuit 34 is the phase of the power system 50. Therefore, the phase of the power converter 20 is also synchronized with the phase of the power system 5. When the switch 4 is open, the switch 25 selects the deviation Jj5a'i7. The output voltage 12 of the power converter 2 is automatically controlled so that it becomes equal to the voltage reference 21. Furthermore, the input and output of the error amplifier j3 are short-circuited by a switch 36, so that the deviation of the active power 2
The active power control (b) path that controls the phase of the power converter 1 using 3mVC is not formed.When the 0-order switch 4t is closed, the selector switch 25 selects the deviation 25bt and sets the power conversion value WL2. The output voltage of the power conversion device 2 is automatically controlled so that the reactive power of the reactive power becomes equal to the reactive power reference 22.

又、開閉器4を閉の状態にすると同時に、スイッチ36
が捌き、誤差増幅器33の入出力の短絡が解除され、電
力変換装置2の有効電力が有効電力基準3ノと等しくな
るよう電力変換装置13の位相が自動制御石れる。
Also, at the same time as the switch 4 is closed, the switch 36 is closed.
is resolved, the short circuit between the input and output of the error amplifier 33 is released, and the phase of the power converter 13 is automatically controlled so that the active power of the power converter 2 becomes equal to the active power reference 3.

〔背景技術の問題点〕[Problems with background technology]

上記のように従来、ik流電諒ノと電力系統5に接続さ
れる電力変換値f112の制御方式においては、電力変
換装置2の有効電力が常に有効電力基準31と等しくな
るよう自動制御されるため直流電源1の容量低下あるい
は開放時は有効電力制御機能は所定の動作を行うことが
できなくなる。この結果、電力変換装置2は制御不能と
なり、電力系統5との横流により運転不能となる欠点を
生じる。
As mentioned above, conventionally, in the control method of the power conversion value f112 connected to the electric power system 5, the active power of the power conversion device 2 is automatically controlled so as to always be equal to the active power reference 31. Therefore, when the capacity of the DC power supply 1 decreases or is opened, the active power control function cannot perform the prescribed operation. As a result, the power conversion device 2 becomes uncontrollable, resulting in a drawback that it becomes inoperable due to cross current with the power system 5.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の欠点を除去し几自励式電力変換装
置の制御方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a control method for a self-excited power converter.

〔発明の概要〕[Summary of the invention]

この目的を達成するため・本発明は直流電源1の容量が
低下したり、あるいは保守等で開放した場合でも、電力
変換装置2の運転を継続せしめて制御機能のうち、無効
電力制御機能のみを活かして電力系統5の電圧安定化の
几めの無効電力調整装置として動作させるようにし几こ
とを特徴とするものである。
In order to achieve this objective, the present invention allows the power converter 2 to continue operating even when the capacity of the DC power supply 1 decreases or is disconnected for maintenance etc., and only the reactive power control function among the control functions is performed. It is characterized in that it can be effectively operated as a reactive power adjustment device for stabilizing the voltage of the power system 5.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明t−第3図に示す一実施例によって説明す
る。第3図で謳1図と同符号のものは同一機能のもので
ある。第3図で譲1図と異なる点は、蕗1図の有効電力
制御系の誤差増幅器J1の動作【制御するスイッチ36
が第1図の開閉器4と同時に制御される信号のほかに、
直流電源1の容量の低下、あるいは開放により動作する
制御回路42の出力信号4Jaでも制御され、又、制御
回路42の他の出力信号42bで制御される直流入力定
電圧制御系の誤差増幅器52の出力が、PLL回路34
の入力“イ”となり、電力変換装置2の位相が制御され
る点である。
The present invention will be explained below using an embodiment shown in FIG. In Fig. 3, parts with the same symbols as in Fig. 1 have the same functions. The difference in Fig. 3 from Fig. 1 is that the operation of the error amplifier J1 in the active power control system in Fig. 1 [controlling switch 36
In addition to the signals that are controlled simultaneously with switch 4 in Fig. 1,
The error amplifier 52 of the DC input constant voltage control system is also controlled by the output signal 4Ja of the control circuit 42 which is activated when the capacity of the DC power supply 1 is reduced or opened, and is also controlled by the other output signal 42b of the control circuit 42. The output is the PLL circuit 34
This is the point where the input becomes "A" and the phase of the power conversion device 2 is controlled.

次に本発明の作用について述べる。Next, the operation of the present invention will be described.

丁なわち、#I3図において直流電源1が所定1直に確
立していればレベル変換器41により変換されt信号を
制御回路42に入力し、七の出力信号42aでスイッチ
36が開に対して制御回路42の出力信号4jbでスイ
ッチ53が閉であり、誤差増幅器33の出力により有効
電力制御が施される。ここで制御回路JjFi本実施例
ではレベル変換器41の出力で直流電源1の容量低下あ
るいけ開放【検出しているが、制御回路42の入力信号
としては直流電源1の容量低下や開放により動作するも
のであれば良いばかりか、あらかじめ直流電源1【開放
する以前に操作される信号で動作するものであっても良
い、再び菖3図に戻り制御回路42が動作するとスイッ
チ36が閉となり有効電力制御機能は停止し、代わりに
スイッチ5Sが開となり誤差増幅器52が動作し、直流
入力電圧を電圧基準51に等しくなるよう電力変換装置
2の位相が制御される。すなわちこの直流入力定電圧制
御は定常な状態では電力系統5より有効電力を受けて電
力変換装置2の入力ラインに設けられた図示されないコ
ンデンサ又は直流電源1に定電圧で充電され、電力変換
装置2の無負荷損會消費する。前記図示式れないコンデ
/す又は直流電源1が過充電されると直流入力定電圧制
御VCより余剰電力は電力変換装置1、変圧器3、開閉
器4【通して電力系統5に戻される。この結果、電力系
統6から電力変換装置ijの無負#損のみが供給される
ことになり、電力変換装置2は無効電力制御機能として
動作することができるO 本実施ガではi[l[電源1の容量低下又は開放の検出
t[l31E電圧の検出による方法で説明したが、検出
手段は直流電源1の容量低下や開放により動作するもの
であれば伺んでも良く、ガえば直流電源1と電力変換装
置20間に設置される図示逼れない開閉器の動作条件、
あるいは有効電力基準31の設定に対する直流電流のレ
ベルを比軟する検出でも同様の効果が得られると共にそ
れらの1壷条件で動作させればより効果が得られる。こ
の実施ガを第4図に示す、菖4図で第31jA同様直流
電源1が正常ならば制御回路42の出力信号4jaでス
イッチ36の開放が行われ、誤差増幅@isが動作し、
有効電力制御が行われる。この魁差増幅器33の出力に
バイアス(ロ)路43の出力を加算器44で加算し、バ
イアス回路43の田力t″誤差増幅器S3の出力が零で
あっても電力変換装@2の位相を電力系統6に対して遅
らせることにより電力系IR5から電力変換鋏[jの無
負荷損失に相当する有効電力を供給するよう設定してお
く、従りて直流電源1が正常ならば有効電力制御が行わ
れ、直流電源1の秤量が低下したり、あるい#′i開放
になると制御回路42がこれを検出して出力信号421
を出力し、スイッチ36′Ik制御して1差増幅器33
の入出力を短絡させ、有効電力制御機能を停止させる。
That is, in Figure #I3, if the DC power supply 1 is established in the predetermined 1st direction, the t signal converted by the level converter 41 is input to the control circuit 42, and the switch 36 is opened with the 7th output signal 42a. The switch 53 is closed by the output signal 4jb of the control circuit 42, and active power control is performed by the output of the error amplifier 33. Here, the control circuit JjFi in this embodiment detects a decrease in the capacity of the DC power source 1 or an open circuit using the output of the level converter 41, but the input signal to the control circuit 42 is used to detect a decrease in the capacity of the DC power source 1 or an open circuit. Not only can it be a device that operates by a signal that is operated before the DC power supply 1 is opened, but it may also be a device that operates by a signal that is operated before the DC power supply 1 is opened.Returning to the iris 3 diagram, when the control circuit 42 is activated, the switch 36 is closed and becomes effective. The power control function is stopped, and instead, the switch 5S is opened, the error amplifier 52 is operated, and the phase of the power converter 2 is controlled so that the DC input voltage is equal to the voltage reference 51. That is, in a steady state, this DC input constant voltage control receives active power from the power system 5 and charges a capacitor (not shown) or DC power source 1 provided in the input line of the power converter 2 with a constant voltage, and the power converter 2 The no-load loss will be consumed. When the AC/DC power supply 1 (not shown) is overcharged, surplus power is returned to the power system 5 through the DC input constant voltage control VC through the power converter 1, the transformer 3, and the switch 4. As a result, only the zero loss of the power converter ij is supplied from the power system 6, and the power converter 2 can operate as a reactive power control function. Detection of capacitance drop or open circuit of DC power source 1 t[l31EAlthough the explanation has been made using a method based on voltage detection, the detection means may be of any type as long as it operates due to a capacitance decrease or open circuit of DC power source 1. Operating conditions of the switch installed between the power converters 20, not shown in the diagram,
Alternatively, a similar effect can be obtained by detecting a DC current level relative to the setting of the active power reference 31, and more effects can be obtained by operating under one of these conditions. This implementation is shown in Fig. 4. In Fig. 4, similarly to Fig. 31jA, if the DC power supply 1 is normal, the switch 36 is opened by the output signal 4ja of the control circuit 42, and the error amplification @is is operated.
Active power control is performed. The output of the bias circuit 43 is added to the output of the difference amplifier 33 by the adder 44, and even if the output of the error amplifier S3 of the bias circuit 43 is zero, the phase of the power converter @2 is adjusted. By delaying the power system 6, the power system IR 5 is set to supply active power equivalent to the no-load loss of the power conversion scissors [j. Therefore, if the DC power supply 1 is normal, the active power control is performed. When the weight of the DC power source 1 decreases or #'i is opened, the control circuit 42 detects this and outputs the output signal 421.
is output, the switch 36'Ik is controlled, and the 1-difference amplifier 33
short-circuit the input and output of the device and stop the active power control function.

この有効電力制御機能が停止するとPLL回路34の入
力“イ”はバイアス回路43の出力のみで決定され、電
力系統5から電力変換装置IL2の無負荷損が供給され
るよう電力変換装@2の出力位相が制御され運転シ継続
することがで、きる、又、この時無効電力制御機能によ
り、電力系統6との間の無効電力の授受は行うことがで
きるため、電力変換装置2を無効電力調整装置として動
作させることができる。
When this active power control function stops, the input "A" of the PLL circuit 34 is determined only by the output of the bias circuit 43, and the power converter @2 is switched so that the no-load loss of the power converter IL2 is supplied from the power system 5. The output phase can be controlled and operation can be continued, and at this time, the reactive power control function can transfer reactive power to and from the power grid 6, so the power converter 2 can be operated without reactive power. It can be operated as a regulating device.

〔発明の効果〕〔Effect of the invention〕

以上、a明し九ように本発明によれば直流電源と他の異
なる交流電源t−接続する交流連系システムにおいて、
直流taiが異常**几し九り、保守上でシステムから
切離店れるような場合でも電力変換装置を停止すること
なく、電力系統の電圧安定化のための無効電力調整装置
として動作名せることができる・
As described above, according to the present invention, in an AC interconnection system in which a DC power source is connected to another different AC power source,
Even if the DC power is abnormal or disconnected from the system for maintenance, the power converter can operate as a reactive power adjustment device to stabilize voltage in the power system without stopping the system. be able to·

【図面の簡単な説明】[Brief explanation of the drawing]

萬1図は従来の交流連系システムの制御方式を示すプロ
、り図、#I2図Fi第1図のPLL回路の具体的な回
路構成図、第3図は本発明の一実施例を示すプロ、り図
、菖4図は本発明の他の実施例を示すブロック図である
。 1・・・直流電源、2・・・自励式電力変換装置、3・
・・変圧器、4・・・開閉器、5・・・電力系統、1ノ
・・・出力電流、12・・・出力電圧、13・・・電力
系統電圧、21・・・電圧基準、22・・・無効電力基
準、21・・・無効電力検査回路、24・・・誤差増幅
器、25・・・切替スイッチ、j’ 5 a + J 
5 b・・・偏差、26・・・電圧制御回路、31・・
・有効電力基準、JJII・・・偏差、34・・・PL
L回路、35・・・分局器、36・・・スイッチ、41
・・・レベル変換器、42・・・制御回路、4ja、4
Jb・・・出力信号、43・・・バイアス回路、44・
・・加算器、51・・・1圧基準、52・・・1差増幅
器、53・・・スイッチ。
Figure 1 is a professional diagram showing the control method of a conventional AC interconnection system, Figure #I2 is a specific circuit configuration diagram of the PLL circuit in Figure 1, and Figure 3 shows an embodiment of the present invention. Figures 1 and 4 are block diagrams showing other embodiments of the present invention. 1... DC power supply, 2... Self-excited power converter, 3.
...Transformer, 4...Switch, 5...Power system, 1...Output current, 12...Output voltage, 13...Power system voltage, 21...Voltage reference, 22 ... Reactive power standard, 21... Reactive power inspection circuit, 24... Error amplifier, 25... Changeover switch, j' 5 a + J
5 b... Deviation, 26... Voltage control circuit, 31...
・Active power standard, JJII...deviation, 34...PL
L circuit, 35... Branch, 36... Switch, 41
... Level converter, 42 ... Control circuit, 4ja, 4
Jb...Output signal, 43...Bias circuit, 44.
...Adder, 51...1 pressure reference, 52...1 difference amplifier, 53...switch.

Claims (2)

【特許請求の範囲】[Claims] (1)直流電源の出力を交流に変換する自励式電力変換
装置の交流出力が他の交流電源と接続δれ、前記自動式
電力変換装置により前記交流電源との有効分、無効分の
電力を制御する交流連系システムにおいて、前記直流電
源の開放あるいは電圧の低下により、有効電力制御を直
流入力定電圧制御に切り換えることにより前記直流電源
が開放あるいは電圧低下をきたしても無効電力調整装置
として運転を継続させるようにし几ことをI!#黴とす
る自動式電力変換装置の制御方式。
(1) The AC output of a self-excited power converter that converts the output of a DC power source into AC is connected to another AC power source, and the automatic power converter converts the effective and reactive power from the AC power source. In the AC interconnection system to be controlled, when the DC power supply is opened or the voltage drops, active power control is switched to DC input constant voltage control, so that the system operates as a reactive power adjustment device even if the DC power supply is opened or the voltage drops. I want to continue this! #Control method for automatic power conversion equipment that generates mold.
(2)  直流電源の出力を交流に変換する自励式電力
変換装置の交流出力が他の交流電源と接続石れ、前記自
励式電力変換装置により前記交流電源との有効分、無効
分の電力を制御する交流連系システムにおいて、前記直
流電源の開放あるいは電圧の低下により有効電力制御機
能を停止1ぜ、有効電力制御信号を前記交流電源から前
記自励式電力変換装置の無負荷損失を供給するよう動作
名せることにより前記直流電源が開放あるいは電圧低下
t’17tしても無効電力調整装置として運転を継続さ
せるようにし九ことt%黴とする自動式電力変換装置の
制御方式。
(2) When the AC output of a self-excited power converter that converts the output of a DC power source to alternating current is connected to another AC power source, the self-excited power converter converts the active and reactive power from the AC power source. In the AC interconnection system to be controlled, the active power control function is stopped due to an open circuit or voltage drop of the DC power supply, and an active power control signal is supplied from the AC power supply to compensate for the no-load loss of the self-excited power converter. A control system for an automatic power converter that allows operation to continue as a reactive power adjustment device even if the DC power supply is opened or the voltage drops t'17t.
JP57068836A 1982-04-26 1982-04-26 Control system for self-excited power converter Pending JPS58186379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068836A JPS58186379A (en) 1982-04-26 1982-04-26 Control system for self-excited power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068836A JPS58186379A (en) 1982-04-26 1982-04-26 Control system for self-excited power converter

Publications (1)

Publication Number Publication Date
JPS58186379A true JPS58186379A (en) 1983-10-31

Family

ID=13385175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068836A Pending JPS58186379A (en) 1982-04-26 1982-04-26 Control system for self-excited power converter

Country Status (1)

Country Link
JP (1) JPS58186379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262462A (en) * 1993-03-11 1994-09-20 Tamachi Seisakusho:Yugen Fixed position clamp device for workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262462A (en) * 1993-03-11 1994-09-20 Tamachi Seisakusho:Yugen Fixed position clamp device for workpiece

Similar Documents

Publication Publication Date Title
CA2066490C (en) Parallel operation system of ac output inverters
US4827151A (en) Uninterruptible power supply utilizing a synchronized chopper for power factor improvement
US5041959A (en) Control system for a current source converter supplying an AC bus
US7567064B2 (en) Systems of parallel operating power electronic converters
US5182463A (en) 3-Phase converter apparatus
JP4664836B2 (en) Three-phase voltage type AC / DC converter
US4878208A (en) Voltage-phase responsive, inverter disable circuit for system interconnection
JPS6277833A (en) Controlling method for self-excited converter
US4238688A (en) Three-phase uninterruptible power supply maintaining reserve energy sources in idling condition with unbalanced loads
JPS58186379A (en) Control system for self-excited power converter
JP4777913B2 (en) Three-phase voltage type AC / DC converter
JPH0250696B2 (en)
JPS6118405B2 (en)
JPS5932974B2 (en) Control method for inverters connected to the power grid
JP2823345B2 (en) Power supply
JP2957613B2 (en) Inverter device
JP2004096831A (en) Continuous commercial feeding type uninterruptible power supply
JPH01255475A (en) Parallel operation control device for constant voltage constant frequency power source device
JPS59153426A (en) Methdo of operating self-excited power converter
JPS59162728A (en) Control system of self-excited power converter
JPS59103528A (en) Control system for self-excited power converter
JPH08149824A (en) Parallel operation device of inverter
JPH077857A (en) System interconnection protection equipment for inverter
JPS6016176A (en) Starting method of power converter
JPS6022474A (en) Parallel power source system by inverter