JPS5818597B2 - heat medium heater - Google Patents

heat medium heater

Info

Publication number
JPS5818597B2
JPS5818597B2 JP51137996A JP13799676A JPS5818597B2 JP S5818597 B2 JPS5818597 B2 JP S5818597B2 JP 51137996 A JP51137996 A JP 51137996A JP 13799676 A JP13799676 A JP 13799676A JP S5818597 B2 JPS5818597 B2 JP S5818597B2
Authority
JP
Japan
Prior art keywords
exhaust gas
steam
heat medium
boiling point
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51137996A
Other languages
Japanese (ja)
Other versions
JPS5363641A (en
Inventor
谷川健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP51137996A priority Critical patent/JPS5818597B2/en
Publication of JPS5363641A publication Critical patent/JPS5363641A/en
Publication of JPS5818597B2 publication Critical patent/JPS5818597B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は密閉型の気相加熱式熱媒ヒータの改良に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a closed type vapor phase heating medium heater.

気相加熱式熱媒ヒータは熱負荷に対する即応性に優れる
と共に温度分布均一性が良好であり、かつ、密閉型のも
のは構造が簡単で軽量であるため機器への組込みが容易
であり、合成繊維の熱処理装置として合成繊維加工機で
広く用いられている。
Gas-phase heating medium heaters have excellent responsiveness to heat loads and have good temperature distribution uniformity, and sealed types have a simple structure and are lightweight, making them easy to integrate into equipment. It is widely used in synthetic fiber processing machines as a fiber heat treatment device.

従来の密閉型気相加熱式熱媒ヒータの一例を第1図及び
第2図に基づいて説明すると1は複数の蒸気路2を有す
る密閉容器で、内部に熱媒液3〔代表的例としてダウサ
ムA(商品名で成分はジフェニル・エーテル73.5%
ジフェニル26.5%)がある。
An example of a conventional closed vapor phase heating medium heater will be explained based on FIGS. Dowsome A (trade name, composition is 73.5% diphenyl ether)
diphenyl (26.5%).

〕が封入されている。4は電源に接続された加熱体で密
閉容器1内の圧力又は温度を検出して電源が0N−OF
F制御されるようになっている。
] is included. 4 is a heating element connected to a power source that detects the pressure or temperature inside the sealed container 1 and turns the power ON-OFF.
It is controlled by F.

5は前記複数の蒸気路2の上部を相互に連通する連通路
で、蒸気路2相互間の熱負荷即ち蒸気消費量の差を相補
して蒸気の供給を円滑にし温度分布を良好に保つための
ものである。
Reference numeral 5 denotes a communicating path that communicates the upper portions of the plurality of steam paths 2 with each other to compensate for the difference in heat load, that is, steam consumption between the steam paths 2, to smooth the supply of steam and maintain a good temperature distribution. belongs to.

上記のように構成された密閉型気相加熱式熱媒ヒータは
、加熱体4に通電すると熱媒液3は加熱されて蒸発し、
この熱媒蒸気は設定温度に対応する飽和蒸気圧となって
密閉容器1内に充満する。
In the closed type vapor phase heat medium heater configured as described above, when electricity is applied to the heating body 4, the heat medium liquid 3 is heated and evaporated.
This heat medium vapor has a saturated vapor pressure corresponding to the set temperature and fills the closed container 1.

密閉容器1内の蒸気圧はどの部分においてもほぼ一定圧
力部ち同一温度となり、外部の熱負荷に対して蒸気は凝
結し密閉容器1を介して潜熱を奪れる。
The vapor pressure inside the closed container 1 is approximately constant and the temperature is the same in all parts, and the steam condenses in response to an external heat load and takes away latent heat through the closed container 1.

蒸気量が減少すると温度又は圧力を検出して加熱体4の
電源が0N−OFF制御されるので密閉容器1内の蒸気
圧力は常に一定圧力部ち一定温度に保たれる。
When the amount of steam decreases, the temperature or pressure is detected and the power supply of the heating element 4 is controlled ON/OFF, so that the steam pressure inside the closed container 1 is always maintained at a constant pressure level or constant temperature.

密閉容器1内での蒸気の動きを更1に詳細に説明すると
、加熱体4の通電加熱により蒸発した熱媒蒸気は蒸気路
2を通り連通路5に達する。
To explain the movement of steam within the closed container 1 in more detail, the heat medium vapor evaporated by the heating of the heating element 4 passes through the steam path 2 and reaches the communication path 5 .

この蒸気は密閉容器1各部の放熱度合に応じて、凝結に
よる潜熱を密閉容器1を介して外部の熱負荷に与えるが
、密閉容器1内は一定圧力部1ち一定温度となるように
温度制御されているので全体の蒸気減少分は次々と熱媒
液面から補給される。
This steam gives the latent heat due to condensation to the external heat load via the closed container 1 according to the degree of heat dissipation in each part of the closed container 1, but the temperature inside the closed container 1 is controlled so that the constant pressure part 1 has a constant temperature. Therefore, the total amount of vapor loss is replenished one after another from the heat medium liquid level.

この蒸気の動きを全体としてとらえると熱媒液3の液面
を起点とし、蒸気路2で放熱凝結して減少しながら連通
路5に至りその周辺を終点とす;る蒸気流を形成するこ
とになるが、流体であるため流路のコンダクタンスと流
量で決まる圧力低下を生ずる。
If we look at the movement of this steam as a whole, it forms a steam flow that starts at the liquid level of the heat transfer liquid 3, radiates heat and condenses in the steam path 2, and decreases until it reaches the communication path 5 and ends around it. However, since it is a fluid, a pressure drop occurs that is determined by the conductance and flow rate of the flow path.

即ち蒸気消費量が多くなると流量が増え流速が大きくな
り、流速×ヨッ71、クタ7オの圧力低下を生じ、蒸気
流の終点は、密閉容器1内で最も圧力の低い点となり格
別に蒸気消費量の多い蒸気路があればその蒸気路に5け
る圧力低下が犬きくなって他の蒸気路を通過した蒸気が
連通路5を経て逆流の形で当該蒸気路に供給される。
In other words, when the amount of steam consumption increases, the flow rate increases and the flow velocity increases, causing a pressure drop of 71 × 71 × 71 × flow velocity, and the end point of the steam flow becomes the lowest pressure point in the closed container 1, resulting in an exceptionally high steam consumption. If there is a steam path with a large amount of steam, the pressure drop in that steam path will be greater, and the steam that has passed through other steam paths will be supplied to that steam path through the communication path 5 in the form of a reverse flow.

これが連通路5の主な目的であり、この場合当該蒸気路
が蒸気流の終点となり、構造上両端側の蒸気路上部が外
気への放熱量が大きいので、保温構造にもよるが一般に
第1図のa、t)点が蒸気流終点になりやすい。
This is the main purpose of the communication passage 5. In this case, the steam passage becomes the end point of the steam flow, and since the upper part of the steam passage on both ends has a large amount of heat radiated to the outside air due to its structure, it depends on the heat insulation structure, but generally the first Points a and t) in the figure tend to be the end points of the vapor flow.

なお流路のコンダクタンスを充分にとっておけば圧力低
下による温度低下は無視できこの場合蒸気流の終点は通
常複数個生じることになる。
Note that if the conductance of the flow path is sufficiently maintained, the temperature drop due to the pressure drop can be ignored, and in this case, there will usually be multiple end points of the vapor flow.

一方密閉容器1内には使用中、その微細洩れやあるいは
容器構成材や熱媒液から放出される空気及び水分(以下
低沸点ガス諒いう)が蓄積される通常使用温度領域で負
圧側になる熱媒ヒータの密閉容器は真空工学的製造工程
が必要で多大な労力と熟練を要求されるが現在の高度な
生産技術をもってしても上記した低沸点ガスの蓄積の防
止には限度があり低沸点ガスの密閉容器内蓄積は避けら
れない。
On the other hand, during use, air and moisture (hereinafter referred to as low boiling point gases) released from the container's constituent materials and heat transfer fluid accumulate inside the closed container 1, and the pressure becomes negative in the normal operating temperature range. The airtight container of the heat medium heater requires a vacuum engineering manufacturing process, which requires a great deal of labor and skill, but even with today's advanced production technology, there is a limit to preventing the accumulation of the above-mentioned low-boiling gases. Accumulation of boiling point gases in closed containers is unavoidable.

この低沸点ガスの蓄積は熱媒ヒータの温度分布不良につ
ながる。
This accumulation of low boiling point gas leads to poor temperature distribution in the heat medium heater.

即ち密閉容器1内に蓄積された低沸点ガスは熱媒蒸気よ
りも比重が小さいため熱媒液面からの熱媒蒸気により次
第に上方に押し上げられ、部分的には熱媒蒸気と混合さ
れる部分もあるが、その大部分は蒸気流により蒸気流の
終点に向い最終的には、すべての低沸点ガスは蒸気流終
点に集結され、熱媒蒸気はこの低沸点ガスによって遮断
される。
In other words, since the low boiling point gas accumulated in the closed container 1 has a lower specific gravity than the heat medium vapor, it is gradually pushed upward by the heat medium vapor from the heat medium liquid level, and some parts are mixed with the heat medium vapor. However, most of it is directed to the end point of the steam flow by the steam flow, and finally, all the low boiling point gases are concentrated at the end point of the steam flow, and the heating medium vapor is blocked by this low boiling point gas.

このために蒸気流終点への熱媒蒸気の供給が行われなく
なりこの部分の温度が低下し、この範囲は低沸点ガス量
に比例して拡大し、蒸気流の終点が蒸気路2になると温
度分布不良を生じることになる。
As a result, the heat medium vapor is not supplied to the end point of the steam flow, and the temperature in this part decreases, and this range expands in proportion to the amount of low-boiling gas.When the end point of the steam flow reaches steam path 2, the temperature This will result in poor distribution.

前記した従来のものにおいては蒸気路2の上部に連通路
5を設け、低沸点ガスが熱媒蒸気より比重が小さいこと
を利用して連通路5の上部に低沸点ガスを集めるように
構成しているが、しかし前記したように蒸気流の終点は
通常第1図のa 、y b点になりやすく、この部分に
低沸点ガスが集まり。
In the conventional system described above, the communication passage 5 is provided above the steam passage 2, and the low boiling point gas is collected in the upper part of the communication passage 5 by utilizing the fact that the low boiling point gas has a lower specific gravity than the heat medium vapor. However, as mentioned above, the end points of the vapor flow usually tend to be points a, y, and b in Figure 1, and low-boiling gases gather at these points.

温度分布不良も発生初期には、この部分に発生すること
になる。
Temperature distribution defects also occur in this area in the early stages of occurrence.

比較的少量の空気を密閉容器1内に注入して行なった確
認実験においてもこの現象が観測された。
This phenomenon was also observed in a confirmation experiment in which a relatively small amount of air was injected into the closed container 1.

また密閉容器1内の低沸点ガスの体積は、ヒータの使用
温度領域における容器内圧力に逆比例するので、この領
域で一気圧よりも低い飽和蒸気圧を持つ高沸点熱媒液を
用いるど特に低沸点ガスの膨張による影響が大きくなり
温度分布不良が生じやすくなるが、逆に低沸点熱媒液を
用いると容積×圧力の値が増大して圧力容器の制限(容
積X圧力の値が一定値をこえると法律上の安全基準に触
れ、圧力容器の指定を受けると共に公的機関の認可を要
し専任取扱者が必要となる。
In addition, the volume of the low-boiling gas in the closed container 1 is inversely proportional to the pressure inside the container in the operating temperature range of the heater. The effect of expansion of low-boiling point gas increases, making it easier to cause poor temperature distribution, but conversely, when a low-boiling point heat transfer liquid is used, the value of volume x pressure increases, which limits the pressure vessel (the value of volume x pressure remains constant). If this value is exceeded, it violates legal safety standards and requires the designation of a pressure vessel, approval from a public institution, and the need for a dedicated operator.

)に触れるので、これを避けるため、又使用時の安全面
から負圧側動作の高沸点熱波液の使用が望まれており、
更には最近、仮撚機等の高速化によるヒータの長大化要
請もあり、ヒータの温度分布不良の改善が強く要望され
ていた。
), so in order to avoid this and from a safety perspective during use, it is desirable to use a high boiling point heat wave liquid that operates on the negative pressure side.
Furthermore, recently there has been a demand for longer heaters due to higher speeds of false twisting machines, etc., and there has been a strong demand for improvement of poor temperature distribution in heaters.

本発明は上記の点に鑑み提案されたもので蒸気路を有す
る密閉容器内に熱媒液を封入すると共に加熱体を設けて
なる密閉型の気相加熱式熱媒ヒータにおいて、前記密閉
容器の蒸気路上部を排ガス装置に連なる排ガス管路に連
通ずると共に同排ガス管路と蒸気路上部との連通部に装
置され、同連通部周辺の温度を検出する検出装置からの
指令を受けて開閉するバルブを上記排ガス管路に設けた
ことを特徴としその目的とするところは低沸点ガス蓄積
による温度分布不良の発生を防止することができると共
に密閉容器の製造工程を簡素化することのできる密閉型
気相加熱式熱媒ヒータを供する点にある。
The present invention has been proposed in view of the above points, and provides a closed type vapor phase heating type heat medium heater in which a heat transfer liquid is sealed in a closed container having a steam path and a heating element is provided. The upper part of the steam passage communicates with the exhaust gas pipe connected to the exhaust gas device, and is installed at the communication part between the exhaust gas pipe and the upper part of the steam passage, and opens and closes in response to commands from a detection device that detects the temperature around the communication part. A valve is provided in the exhaust gas pipe, and its purpose is to prevent poor temperature distribution due to accumulation of low boiling point gases, and to simplify the manufacturing process of closed containers. The point is that it provides a vapor phase heating type heat medium heater.

本発明は上記のように構成されているので密閉容器内に
蓄積された低沸点ガスは蒸気流によって、その終点とな
る蒸気路の上部に集結されるが蒸気路の上部には上記排
ガス管路が接続されているために低沸点ガスはヒータ機
能部となる蒸気路内には滞留せず、すべて排ガス管路内
に集結され低沸点ガスの蓄積量が排ガス管路内容積を超
過するまで蒸気路内に滞留することがなくなる。
Since the present invention is configured as described above, the low boiling point gas accumulated in the closed container is collected by the steam flow at the upper part of the steam path which is the end point of the steam path, and the above-mentioned exhaust gas pipe is connected to the upper part of the steam path. Because the low-boiling point gas is connected, the low-boiling point gas does not remain in the steam line that serves as the heater function section, but is all concentrated in the exhaust gas line, and steam continues until the accumulated amount of low-boiling point gas exceeds the internal volume of the exhaust gas line. No more staying on the road.

そして低沸点ガスの蓄積量が排ガス管路内容積を越える
と、蒸気路との連通部から低沸点ガスがオーバーフロー
するためその周辺部の温度が低下せしめられ、この温度
が所定値まで低下すると、上記検出装置がこれを検出し
、排ガス管路中に設けられたバルブは開かれ、排カス装
置によって排ガス管路内に蓄積していた低沸点ガスは外
部へ排出される。
When the accumulated amount of low boiling point gas exceeds the internal volume of the exhaust gas pipe, the low boiling point gas overflows from the communication part with the steam line, causing the temperature of the surrounding area to drop, and when this temperature drops to a predetermined value, The detection device detects this, a valve provided in the exhaust gas pipe is opened, and the low boiling point gas accumulated in the exhaust gas pipe is discharged to the outside by the waste removal device.

排ガス管路内の低沸点ガスが排出されると蒸気路との連
通部周辺に、熱媒蒸気が達し、その周辺部の温度は上昇
するので、バルブはこの温度を検出して閉じられる。
When the low boiling point gas in the exhaust gas pipe is discharged, the heat medium vapor reaches the area around the communicating part with the steam line, and the temperature of the surrounding area rises, so the valve detects this temperature and closes.

以上のような動作を繰返すことにより、機械運転中にお
いてもこれを停止することなく密閉容器内に蓄積される
低沸点ガスを自動的に外部へ排出することができる。
By repeating the above operations, the low boiling point gas accumulated in the closed container can be automatically discharged to the outside without stopping the machine even during operation.

従って機械の運転保守を省力化することができると共に
低沸点ガスの蓄積による温度分布不良の発生を防止し製
品の品質向上を計ることができる。
Therefore, it is possible to save labor in operating and maintaining the machine, and also to prevent the occurrence of poor temperature distribution due to the accumulation of low boiling point gases, thereby improving the quality of the product.

また、従来の密閉容器は熟練者による真空工学的製品工
程によって、微細洩れの防止を計って製作されていたが
このような厳密な製造工程によって製作しなくても、低
沸点ガスを確実に外部に排出して温度分布不良の発生を
防止することができるため製造工程を著しく簡素化する
ことができるようになる。
In addition, conventional airtight containers were manufactured using a vacuum engineering product process by skilled workers to prevent minute leaks, but even if they are not manufactured using such a strict manufacturing process, low boiling point gases can be reliably removed from the outside. Since it is possible to prevent the occurrence of poor temperature distribution by discharging the heat to the outside, the manufacturing process can be significantly simplified.

以下本発明の一実施例を第3図に基づいて詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to FIG.

10は複数の蒸気路12を有する密閉容器11内に熱媒
液13を封入すると共に密閉容器内の温度又は圧力を検
出して電源を0N−OFF制御される加熱体14を設け
て構成された密閉型の気相加熱式熱媒ヒータであり、密
閉容器11に蒸気路12の上部とそれぞれ連通した排ガ
ス管15が接続されている。
10 is constructed by sealing a heat transfer liquid 13 in an airtight container 11 having a plurality of steam paths 12, and providing a heating element 14 whose power is controlled ON-OFF by detecting the temperature or pressure inside the airtight container. It is a closed type vapor phase heating type heat medium heater, and exhaust gas pipes 15 are connected to a closed container 11 and communicated with the upper part of a steam path 12, respectively.

排ガス管15は途中に熱媒分離器16とバルブ18を設
けて後述する排ガス装置21に接続されている。
The exhaust gas pipe 15 is provided with a heat medium separator 16 and a valve 18 in the middle thereof, and is connected to an exhaust gas device 21 to be described later.

熱媒分離器16は排ガス中に含まれる熱媒液を分離して
密閉容器11内に戻すためにパイプ17で密閉容器11
の下部に接続されており、バルブ18は、蒸気路12の
上部と排ガス管15との接続部に取り付けられた検出素
子19によって核部の温度を検出し、この検出温度と所
定温度とを比較判定するバルブ制御器20を介して所定
温度以下ではバルブ18は開きそれ以上ではバルブ18
は閉じるように自動的に開閉制御されるようになってい
る。
The heat medium separator 16 connects the closed container 11 with a pipe 17 in order to separate the heat medium liquid contained in the exhaust gas and return it to the closed container 11.
The valve 18 detects the temperature of the core by a detection element 19 attached to the connection between the upper part of the steam path 12 and the exhaust gas pipe 15, and compares this detected temperature with a predetermined temperature. The valve 18 is opened when the temperature is below a predetermined temperature via the valve controller 20 that determines the valve 18
is automatically controlled to open and close.

排ガス装置21は排気ガス管22と排気ポンプ23と熱
媒トラップ24と圧力検出器25とから構成されており
、前記排ガス管15は排気ガス管。
The exhaust gas device 21 is composed of an exhaust gas pipe 22, an exhaust pump 23, a heat medium trap 24, and a pressure detector 25, and the exhaust gas pipe 15 is an exhaust gas pipe.

22に接続され、排気ポンプ23は前記検出素子19が
所定の温度検出したとき駆動されるようになっている。
22, and the exhaust pump 23 is driven when the detection element 19 detects a predetermined temperature.

また圧力検出器25は排気ガス管22内の圧力を検出す
るもので、排気ガス管22内の圧力が十分低下したとき
、前記バルブ制御器・20に信号を送り、この信号を受
けてバルブ制御器20がバルブ18を開くようになって
いる。
Further, the pressure detector 25 detects the pressure inside the exhaust gas pipe 22, and when the pressure inside the exhaust gas pipe 22 has decreased sufficiently, it sends a signal to the valve controller 20, and upon receiving this signal, the valve is controlled. device 20 is adapted to open valve 18.

なお、熱媒トラップ24は大気中への熱媒蒸気の飛散を
防止するためのものである。
Note that the heat medium trap 24 is for preventing heat medium vapor from scattering into the atmosphere.

本実施例は上記のように構成されているので密閉容器1
1内に封入されている熱媒液13は加熱体14によって
加熱されて蒸発し、設定温度に対する飽和蒸気圧の熱媒
蒸気となって密閉容器11内に充満され、外部熱負荷に
対して凝結し、密閉容器11を介して潜熱を与える。
Since this embodiment is configured as described above, the airtight container 1
The heating medium liquid 13 sealed in the container 1 is heated by the heating body 14 and evaporated, becomes heating medium vapor with a saturated vapor pressure relative to the set temperature, fills the closed container 11, and condenses in response to an external heat load. Then, latent heat is applied through the closed container 11.

熱媒蒸気が減少すると加熱体14が密閉容器11内の温
鹸又は圧力を検出して0N−OFF制御されるので、密
閉容器11内の蒸気圧は常に一定圧力即ち一定温度に保
たれるようになっている。
When the heat medium vapor decreases, the heating element 14 detects the temperature or pressure inside the closed container 11 and is controlled to turn ON/OFF, so that the vapor pressure inside the closed container 11 is always maintained at a constant pressure, that is, at a constant temperature. It has become.

一方密閉容器11内に蓄積された低沸点ガスは熱媒蒸気
の蒸気流によってそれぞれの蒸気路12の上部に導かれ
るが、蒸気路12の一七部と連通ずる排ガス管15が接
続されているめで蒸気流の終点は排ガス管15となり、
低沸点ガスは排ガス管15内に集結される。
On the other hand, the low boiling point gas accumulated in the closed container 11 is guided to the upper part of each steam path 12 by the vapor flow of heat medium vapor, and an exhaust gas pipe 15 communicating with one part of the steam path 12 is connected. The end point of the steam flow is the exhaust gas pipe 15,
The low boiling point gas is collected in the exhaust gas pipe 15.

そしてこの低沸点ガスの蓄積量が、排ガス管15内の容
積を越えて蓄積されると排ガス管15から蒸気路12の
上部へ連通部からオーバーフローし、核部の温度は低沸
点ガスによって低下される。
When the amount of low-boiling gas accumulated exceeds the volume of the exhaust gas pipe 15, it overflows from the exhaust gas pipe 15 to the upper part of the steam path 12 through the communication section, and the temperature of the core is lowered by the low-boiling gas. Ru.

この温度が所定値となると検出素子19がこれを検出し
、バルブ制御器20が所定値以下であることを判定する
と共に排気ポンプ23が駆動され排気ガス管22内の圧
力を低下させる。
When this temperature reaches a predetermined value, the detection element 19 detects this, and the valve controller 20 determines that the temperature is below the predetermined value, and the exhaust pump 23 is driven to reduce the pressure in the exhaust gas pipe 22.

排気ガス管22内の圧力が充分低下すると圧力検出器2
5が作用してバルブ制御卸器20に信号が送られバルブ
18が開かれ、排ガス管15内の低沸点ガスは排気ガス
管22から外部へ排出される。
When the pressure inside the exhaust gas pipe 22 drops sufficiently, the pressure detector 2
5 acts, a signal is sent to the valve control device 20, the valve 18 is opened, and the low boiling point gas in the exhaust gas pipe 15 is discharged to the outside from the exhaust gas pipe 22.

低沸点ガスが上記のように排出されると排ガス管15の
蒸気路12との連通部に熱媒蒸気が達して核部の温度は
上昇し、所定値以上になると上記とは逆の作用でバルブ
18は閉じ、低沸点ガスの排出は終了し、再び低沸点ガ
スが蓄積すると上記と同様の作用を繰返し仮撚機等の機
械運転中においてもこれを停止するこさなく、自動的に
低沸点ガスを外部へ排出することができる。
When the low boiling point gas is discharged as described above, the heating medium vapor reaches the communication part of the exhaust gas pipe 15 with the steam path 12, and the temperature of the core part rises, and when it exceeds a predetermined value, the opposite effect to the above occurs. The valve 18 closes, the discharge of the low boiling point gas is completed, and when the low boiling point gas accumulates again, the same action as described above is repeated, and even when a machine such as a false twister is in operation, the low boiling point gas is automatically removed without stopping. Gas can be discharged to the outside.

従って、機械の運転保守が省力化されると共に温度分布
不良の生じない高品質の熱媒ヒータを得ることができ、
加工される合成繊維の品質をも安定させることができる
Therefore, it is possible to obtain a high-quality heat medium heater that saves labor in operating and maintaining the machine and does not cause poor temperature distribution.
The quality of processed synthetic fibers can also be stabilized.

また密閉容器の製造工程においては従来のもののように
厳密な真空工学的工程を経る必要がなくなり、製造工程
を著しく簡素化して生産性の向上を計ることもできる等
多くの効果を得ることができるものである。
In addition, in the manufacturing process of sealed containers, there is no need to go through the strict vacuum engineering process unlike conventional ones, and the manufacturing process can be significantly simplified and productivity can be improved, among other benefits. It is something.

なお、上記実施例では熱媒ヒータ10は1個のものにつ
いて説明したが、熱媒ヒータ10を複数個となし、これ
らを上記実施例と同様にして排ガス装置21に接続して
構成してもよく、また、第4図及び第5図と第6図及び
第7図に示すように蒸気路12の上部と連通ずるガス溜
26と27を設け、このガス溜26と21に上記実施例
と同様にして排ガス管15及び排ガス装置を接続して構
成してもよく、更には第8図乃至第10図に示すように
、蒸気路12内に仕切板28を設けて低沸点ガスを蓄積
させる空間部29を形成し、この空間部29に図示のよ
うに設置された設定値の異なる2個の温度検出素子30
.31により、低沸点ガスが過剰となったとき、検出素
子30で検出してバルブ制御器32を作用させ、バルブ
33を開き低沸点ガスを上記実施例と同様にして排出し
、低沸点ガスが不足となったときは検出素子31で検出
してバルブ制御器32を作用させバルブ33を開き低沸
点ガスを注入するようにして空間部29内に常に低沸点
ガスを滞留させこれを保温層として有効利用するように
することもできる。
In the above embodiment, one heat medium heater 10 was explained, but a plurality of heat medium heaters 10 may be used and these may be connected to the exhaust gas device 21 in the same manner as in the above embodiment. As shown in FIGS. 4, 5, 6, and 7, gas reservoirs 26 and 27 communicating with the upper part of the steam path 12 are also provided, and the gas reservoirs 26 and 21 are provided with the same structure as in the above embodiment. The exhaust gas pipe 15 and the exhaust gas device may be connected in the same manner, and as shown in FIGS. 8 to 10, a partition plate 28 may be provided in the steam path 12 to accumulate low boiling point gas. A space 29 is formed, and two temperature detection elements 30 with different set values are installed in this space 29 as shown in the figure.
.. 31, when the low boiling point gas becomes excessive, the detection element 30 detects it, activates the valve controller 32, opens the valve 33, and discharges the low boiling point gas in the same manner as in the above embodiment. When there is a shortage, it is detected by the detection element 31 and the valve controller 32 is actuated to open the valve 33 and inject the low boiling point gas, thereby constantly retaining the low boiling point gas in the space 29 and using it as a heat insulating layer. It can also be used effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものを示す 一部破断概略正面図、第2
図は第1図のA−A断面図、第3図は本発明の一実施例
を示す一部破断概略正面図、第4図は本発明の他の実施
例を示す一部破断概略正面図、第5図は第4図のB−B
断面図、第6図は本発明の更に他の実施例を示す一部破
断概略正面図、第7図は第6図のC−C断面図、第8図
は本発明の更にまた他の実施例を示す一部破断概略正面
図、第9図は第8図のD−D断面図、第10図は第8図
のE−E断面図である。 10:熱媒ヒータ、11:密閉容器、12:蒸気路、1
3:熱媒液、14:加熱体、15:排ガス管、18:バ
ルブ、19:検出素子、21:排ガス装置。
Figure 1 is a partially cutaway schematic front view showing the conventional one;
The figure is a sectional view taken along the line A-A in FIG. 1, FIG. 3 is a partially cutaway schematic front view showing one embodiment of the present invention, and FIG. 4 is a partially cutaway schematic front view showing another embodiment of the present invention. , Figure 5 is B-B in Figure 4.
6 is a partially broken schematic front view showing still another embodiment of the present invention, FIG. 7 is a sectional view taken along the line CC in FIG. 6, and FIG. 8 is a still another embodiment of the present invention. FIG. 9 is a partially broken schematic front view showing an example, FIG. 9 is a sectional view taken along line DD in FIG. 8, and FIG. 10 is a sectional view taken along line EE in FIG. 8. 10: Heat medium heater, 11: Sealed container, 12: Steam path, 1
3: Heat medium liquid, 14: Heating body, 15: Exhaust gas pipe, 18: Valve, 19: Detection element, 21: Exhaust gas device.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気路を有する密閉容器内に熱媒液を封入すると共
に加熱体を設けてなる密閉型の気相加熱式熱媒ヒータに
おいて、前記密閉容器の蒸気路上部を排ガス装置に連な
る排ガス管路に連通ずると共に同排ガス管路と蒸気路上
部との連通部に装着され、同連通部周辺の温度を検出す
る検出装置からの指令を受けて開閉するバルブを上記排
ガス管路に設けたことを特徴とする熱媒ヒータ。
1. In a closed type vapor phase heating type heat medium heater, which is formed by enclosing a heat medium liquid in a closed container having a steam path and providing a heating element, the upper part of the steam path of the closed container is connected to an exhaust gas pipe connected to an exhaust gas device. A valve is provided in the exhaust gas pipe, which is attached to the communicating part between the exhaust gas pipe and the upper part of the steam passage along with the communication slide, and opens and closes in response to a command from a detection device that detects the temperature around the communicating part. Heat medium heater.
JP51137996A 1976-11-17 1976-11-17 heat medium heater Expired JPS5818597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51137996A JPS5818597B2 (en) 1976-11-17 1976-11-17 heat medium heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51137996A JPS5818597B2 (en) 1976-11-17 1976-11-17 heat medium heater

Publications (2)

Publication Number Publication Date
JPS5363641A JPS5363641A (en) 1978-06-07
JPS5818597B2 true JPS5818597B2 (en) 1983-04-13

Family

ID=15211616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51137996A Expired JPS5818597B2 (en) 1976-11-17 1976-11-17 heat medium heater

Country Status (1)

Country Link
JP (1) JPS5818597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569869B2 (en) 2001-10-05 2004-09-29 東洋電機株式会社 Heat treatment equipment for synthetic fiber yarn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118341A (en) * 1974-03-02 1975-09-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118341A (en) * 1974-03-02 1975-09-17

Also Published As

Publication number Publication date
JPS5363641A (en) 1978-06-07

Similar Documents

Publication Publication Date Title
US4426791A (en) Process and system for drying products and materials, such as wood
US2779183A (en) Apparatus for liquid treatment of a web of fabric
US2976950A (en) Method and apparatus for preventing moisture accumulation in tanks
US4378680A (en) Shell and tube ice-maker with hot gas defrost
JPS5818597B2 (en) heat medium heater
US4899552A (en) Refrigerating system for ice making machine
US3037706A (en) Limitable steam shower assembly
JPS5966595A (en) Apparatus for adjusting moisture of paper web
CN105624811B (en) Dry spinning flash distillation controls device and control method
KR101207237B1 (en) Casting system with a device for applying a casting strip
JP2779431B2 (en) High frequency vacuum drying equipment
US2807150A (en) Temperature control for ice making machine defrosting gases
US2390167A (en) Dehydrating method and apparatus
US2696679A (en) Drier drainage system with pressure differential control
CN206817893U (en) A kind of drying room for baking brick tea
CN206011534U (en) Tyre vulcanization hot plate steam pipework draining system
US3332608A (en) Diffusion pump
US2515651A (en) Steam heating system
US1975301A (en) Apparatus for the manufacture of pulp
JPH03294566A (en) Fiber-steaming device
JP2689656B2 (en) Yarn heat treatment equipment
US2032287A (en) Refrigerant feed control
US1846680A (en) Apparatus for continuous digesting
CN207094190U (en) A kind of feeding stuff cuber quality-adjusting device steam inlet system
US3771954A (en) Method for liquid treatment of textile material