JPS58184617A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS58184617A
JPS58184617A JP57067846A JP6784682A JPS58184617A JP S58184617 A JPS58184617 A JP S58184617A JP 57067846 A JP57067846 A JP 57067846A JP 6784682 A JP6784682 A JP 6784682A JP S58184617 A JPS58184617 A JP S58184617A
Authority
JP
Japan
Prior art keywords
transistor
temperature
self
resistor
holding means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57067846A
Other languages
Japanese (ja)
Inventor
Takashi Ikehara
池原 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57067846A priority Critical patent/JPS58184617A/en
Publication of JPS58184617A publication Critical patent/JPS58184617A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1912Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can take more than two discrete values

Abstract

PURPOSE:To improve thermal response, by operating a timer after a self-holding means is reset, and switcing between the releasing of a temperature regulating means from fixation and the conduction of a TRIAC in one direction a specific period after the self-holding means is reset. CONSTITUTION:When a heater 2 attains to maximum temperature, a transistor (TR)39 turns off and a TR70 turns on to reset the operation of the self-holding means. The conduction of the TR70 turns off a TR49 to stop charging a capacitor 51, starting the timer. While the potential of a capacitor 51 is higher than the minus side input level of a comparator 54, the high level output of the comparator 54 is held. When the temperature of the heater 2 drops from the maximum temperature alpha, a pulse signal is led out of the collector of a TR21 in every zero-crossing state of an AC power source and the TRIAC 3 turns on in two directions again. Thus, the TRIAC 3 turns on and off repeatedly to hold the maximum temperature.

Description

【発明の詳細な説明】 本発明は自己保持手段の動作により温度調節手段の設定
を一定(一般的には最高温度)に固定するとともに双方
向性スイッチング素子(以下トライアックで説明)の導
入方向とし、ヒータの温度上昇を早めた所謂≠福運熱回
路に関し、ヒータの温度上昇を速めた所謂#4速熱回路
を具備した温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention fixes the setting of the temperature regulating means at a constant value (generally the maximum temperature) by operating the self-holding means, and also controls the introduction direction of the bidirectional switching element (hereinafter referred to as TRIAC). The present invention relates to a so-called ≠ lucky heat circuit that accelerates the temperature rise of the heater, and relates to a temperature control device equipped with a so-called #4 speed heat circuit that accelerates the temperature rise of the heater.

従来、速熱回路を具備した温度制御装置の該速熱回路に
於て、ヒータが最高温度に到達し、自己保持手段が解除
され温度調節手段の固定を解除し、(温度調節手段によ
る設定温度となる)トライアックの導通を一方向に(自
動的に)切り換る時、ヒータの温度上昇が短時間で最高
温度に到達する為自己保持手段が解除された時点では採
暖具の温度は十分に上昇していない。
Conventionally, in the fast heating circuit of a temperature control device equipped with a fast heating circuit, when the heater reaches the maximum temperature, the self-holding means is released and the fixation of the temperature adjusting means is released (the set temperature by the temperature adjusting means is reached). ) When the conduction of the triac is switched to one direction (automatically), the temperature of the heater reaches the maximum temperature in a short time, so the temperature of the heating device is sufficient by the time the self-holding means is released. It's not rising.

本発明は係る点を鑑み発明されたもので、自己保持手段
の解除後にタイマを動作せしめ、自己保持手段解除後一
定期間を経て温度調節手段の固定の解除とトライアック
の導通牙一方向に切り換る如くにして採暖具の温度も十
分に暖だたまる様にした速熱回路を具備した温度制御装
置に関する。
The present invention was devised in view of the above-mentioned points, and operates a timer after the self-holding means is released, and after a certain period of time has elapsed after the self-holding means is released, the fixation of the temperature adjustment means is released and the conduction fan of the triac is switched to one direction. The present invention relates to a temperature control device equipped with a rapid heating circuit that can sufficiently warm the temperature of a heating device.

以下本発明の温度制御装置の一実施例を図面とともに説
明する。
An embodiment of the temperature control device of the present invention will be described below with reference to the drawings.

第1図に於て、交流電源lにヒータ2.トライアック3
が直列に接続されて主回路をなしている。
In FIG. 1, a heater 2. triac 3
are connected in series to form the main circuit.

該主回路に抵抗4.ダイオード5ツエナーダイオード6
の直列回路が並列に接続されていて、上記ツェナーダイ
オード60両端とダイオード16を介してコンデンサ6
9が接続されて直流電源をなしている。またツェナーダ
イオード60両端に抵抗7゜8が接続され、該抵抗7.
8の接続端はトランジスタ12のベースに接続され、該
トランジスタ12のエミッタは直流電源の低側(ツェナ
ーダイオード6のアノードライン)に接続され、コレク
タは抵抗11を介してツェナーダイオード6のカソード
側(直流電源の平滑前)、に接続されている。上記ダイ
オード5.ツェナーダイオード6の直列回路に抵抗14
を介して整流ブリッジ15の入力端子(交流側)が接続
されていて、該整流ブリッジ15の出力端子(直流側)
にはトランジスタ21のベース及びエミッタが接続され
、該ベース−エミッタ間には抵抗19が接続さねている
。該トランジスタ21のコレクタは抵抗20を介して直
流電源の高側に接続されている。該トランジスタ21の
コレクタは更に抵抗22を介してトランジスタ62のベ
ースに接続され、前述のトランジスタ12のコレクタは
また抵抗13を介17てトランジスタ63のベースに接
続されている。該トランジスタ62、63は並列に接続
されている。捷た直流電源には抵抗23.温度検出手段
としてのサーミスタ24及び抵抗29,30、温度調節
手段としてのポリウム31よりなる抵抗ブリッジ回路が
接続され、該抵抗ブリッジ回路の出力端は夫々差動アン
プをなすトランジスタ25.26のベースに接続され、
該差動アンプをなすトランジスタ25.26のエミッタ
はお互いに短絡きれて抵抗27を介して直流電源の低側
に、トランジスタ25のコレクタは直流電源の高側に、
トランジスタ26のコレクタは抵抗28を介して直流電
源の高側に接続されている。該トランジスタ26のコレ
クタト抵抗28の接続端は上記差動アンプの出方端をな
し、該出力端はトランジスタ33のベースに接続され、
該トランジスタ33のエミッタは直流電源の高側に、コ
レクタはトランジスタ340ペースに接続され、該トラ
ンジスタ34のコレクタは直流電源の高側に接続されて
いる。該トランジスタ34のベースと直流電源の低側間
に抵抗35が接続され、該トランジスタ34のエミッタ
はダイオード10.抵抗9を介してトランジスタ12の
ベースに、更にダイオード18.抵抗17を介してトラ
ンジスタ210ベースに接続されている。そして更に抵
抗41、ダイオード42を介して自己保持手段のトラン
ジスタ70のベースに接続されている。該トランジスタ
70は抵抗46を介して直流電源に接続され、該トラン
ジスタ7oのベースはダイオード44.抵抗43の直列
回路を介して抵抗38とトランジスタ39のコレクタと
の接続端に接続されている。該トランジスタ39は抵抗
38を介して直流電源に接続され、該トランジスタ3−
9のベースはブツシュオンスイッチ37 (フッシュシ
タ時にのみ閉成し、離せば開成する)、抵抗36の直列
回路を介して直流電源の高側に接続されている。上記ト
ランジスタ70のコレクタ及びトランジスタ39のベー
スはダイオード40により短絡され、該トランジスタ7
oと抵抗46の接続端はタイオード47.抵抗45を介
してトランジスタ32のベースに接続されていて、該ト
ランジスタ32はボリウム31に並列に接続されている
。上記抵抗46とトランジスタ7oの接続端は抵抗48
を介してトランジスタ49のベースに接続され、該トラ
ンジスタ49は抵抗50.コンデンサ51を介して直流
電源に接続されている。該抵抗5゜とコンデンサ51の
接続端はタイマとしてのコンパレータ54の(ト)個入
力に接続されている。該コンパレータ54の(へ)個入
力は直流電源に接続された抵抗52.53の接続端に接
続され、該コンパレータ54の出力端はプルアップ抵抗
55により直流電源の高側にプルアップされ、更にダイ
オード56を介してダイオード47と抵抗45の接続端
に接続され、また該接続端は抵抗57を介してトランジ
スタ58のベースに接続されている。該トランジスタ5
8は直流電源に接続された抵抗59゜60のうち抵抗6
0に並列に接続されているO該抵抗59.60の接続端
はトランジスタ61のベースに接続され、該トランジス
タ61はトランジスタ620ベース、エミッタ間に接続
されている。
4. Resistor in the main circuit. Diode 5 Zener diode 6
series circuits are connected in parallel, and the capacitor 6 is connected via both ends of the Zener diode 60 and the diode
9 is connected to form a DC power supply. Further, a resistor 7.8 is connected to both ends of the Zener diode 60.
8 is connected to the base of the transistor 12, the emitter of the transistor 12 is connected to the low side of the DC power supply (the anode line of the Zener diode 6), and the collector is connected to the cathode side of the Zener diode 6 (the anode line of the Zener diode 6) via the resistor 11. (before smoothing of the DC power supply). The above diode 5. Resistor 14 in series circuit of Zener diode 6
The input terminal (AC side) of the rectifier bridge 15 is connected via the rectifier bridge 15, and the output terminal (DC side) of the rectifier bridge 15 is connected to
are connected to the base and emitter of a transistor 21, and a resistor 19 is connected between the base and emitter. The collector of the transistor 21 is connected to the high side of a DC power supply via a resistor 20. The collector of the transistor 21 is further connected via a resistor 22 to the base of a transistor 62, and the collector of the aforementioned transistor 12 is also connected via a resistor 13 to the base of a transistor 63. The transistors 62 and 63 are connected in parallel. A resistor 23 is connected to the disconnected DC power supply. A resistance bridge circuit consisting of a thermistor 24 and resistors 29, 30 as temperature detection means, and polyurethane 31 as temperature adjustment means is connected, and the output ends of the resistance bridge circuit are respectively connected to the bases of transistors 25 and 26 forming differential amplifiers. connected,
The emitters of transistors 25 and 26 forming the differential amplifier are shorted to each other and connected to the low side of the DC power supply via the resistor 27, and the collector of the transistor 25 is connected to the high side of the DC power supply.
The collector of the transistor 26 is connected via a resistor 28 to the high side of the DC power supply. The terminal connected to the collector resistor 28 of the transistor 26 constitutes the output terminal of the differential amplifier, and the output terminal is connected to the base of the transistor 33.
The emitter of the transistor 33 is connected to the high side of the DC power supply, the collector is connected to the transistor 340 pace, and the collector of the transistor 34 is connected to the high side of the DC power supply. A resistor 35 is connected between the base of the transistor 34 and the low side of the DC power supply, and the emitter of the transistor 34 is connected to a diode 10. A diode 18 . is connected to the base of the transistor 12 via a resistor 9 . It is connected to the base of transistor 210 via resistor 17. Further, it is connected via a resistor 41 and a diode 42 to the base of a transistor 70 serving as a self-holding means. The transistor 70 is connected to a DC power supply via a resistor 46, and the base of the transistor 7o is connected to a diode 44. It is connected to the connection end between the resistor 38 and the collector of the transistor 39 via a series circuit of a resistor 43. The transistor 39 is connected to a DC power supply via a resistor 38, and the transistor 3-
The base of 9 is connected to the high side of the DC power supply through a series circuit of a push-on switch 37 (closed only when the push button is pressed and opened when released) and a resistor 36. The collector of the transistor 70 and the base of the transistor 39 are short-circuited by a diode 40.
The connection end between the resistor 46 and the diode 47. It is connected to the base of a transistor 32 via a resistor 45, and the transistor 32 is connected in parallel to the volume 31. The connection terminal between the resistor 46 and the transistor 7o is a resistor 48.
is connected to the base of a transistor 49 through a resistor 50. It is connected to a DC power supply via a capacitor 51. The connecting end of the resistor 5° and the capacitor 51 is connected to (g) inputs of a comparator 54 as a timer. The inputs of the comparator 54 are connected to the connection terminals of resistors 52 and 53 connected to the DC power supply, and the output terminal of the comparator 54 is pulled up to the high side of the DC power supply by a pull-up resistor 55. It is connected to a connecting end between a diode 47 and a resistor 45 via a diode 56, and the connecting end is connected to a base of a transistor 58 via a resistor 57. The transistor 5
8 is the resistor 6 of the 59°60 resistors connected to the DC power supply.
The connection terminals of the resistors 59 and 60 connected in parallel with 0 are connected to the base of a transistor 61, which is connected between the base and emitter of a transistor 620.

そして並列に接続されたトランジスタ62.63のコレ
クタは抵抗64を介してトランジスタ660ベースに接
続され、該トランジスタ66のエミッタは直流電源の高
側、コレクタはトランジスタ66のベースに夫々接続さ
れている。該トランジスタ66のベース、エミッタ間に
抵抗65が接続されている。上記トランジスタ67のコ
レクタは直流電源の高側にエミッタは抵抗68を介して
トライアック3のゲートに接続されている0 第2図に於て、(イ)はタイマ、’、(、、eンノくレ
ータ54)の出力信号で自己保持手段が解除後Tの期間
動作している。(ロ)(l−i自己保持手段の出力信号
(トランジスタ70のコレクタ信号)で、ブツシュオン
スイッチ37の閉成後、期間tでヒータ2が最高温度に
到達し解除される。(ハ)はトライアック3のゲート信
号波形で、自己保持手段及びタイマが動作しているとき
は交流電源の各半サイクルのゼロクロス時に、タイマ、
自己保持手段停止時は交流電源の1サイクル毎のゼロク
ロス時にトライアック3のゲートに印加される。に)は
ヒータ2の通電波形で、自己保持手段及びタイマが動作
している期間(t+T)は交流の全波で(トライアック
3は双方向に導通)、タイマ、自己保持手段の停止時は
交流の半波(トライアック3が一方向にのみ導通)で通
電される。
The collectors of transistors 62 and 63 connected in parallel are connected to the base of transistor 660 via a resistor 64, the emitter of transistor 66 is connected to the high side of the DC power supply, and the collector is connected to the base of transistor 66, respectively. A resistor 65 is connected between the base and emitter of the transistor 66. The collector of the transistor 67 is connected to the high side of the DC power supply, and the emitter is connected to the gate of the triac 3 via a resistor 68. The self-holding means operates for a period T after release by the output signal of the regulator 54). (b) (li) The output signal of the self-holding means (collector signal of the transistor 70) causes the heater 2 to reach the maximum temperature in a period t after the button-on switch 37 is closed, and is released. (c) In the gate signal waveform of triac 3, when the self-holding means and timer are operating, the timer,
When the self-holding means is stopped, the voltage is applied to the gate of the triac 3 at the zero cross of each cycle of the AC power supply. ) is the energization waveform of the heater 2, which is a full wave of AC during the period (t+T) when the self-holding means and timer are operating (triac 3 conducts in both directions), and an AC waveform when the timer and self-holding means are stopped. (triac 3 conducts only in one direction).

第3図に於て、通電初期にブツシュオンスイッチ37を
閉成し、自己保持手段を動作せしめると、期間tで最高
温度αに到達し、自己保持手段が解除され、その後タイ
マがT期間動作するか、その期間σ)ヒータ2は最高−
(□度αを持続しくトライアック3は双方向に導通)、
タイマの動作が停止すると温度調節手段による設定温度
βまで下降し、設定温度βを持続(トライアック3は一
方向にのみ導通)する。
In FIG. 3, when the push-on switch 37 is closed at the initial stage of energization and the self-holding means is operated, the maximum temperature α is reached in a period t, the self-holding means is released, and then the timer operates for a period T. or during that period σ) Heater 2 is at its maximum -
(Triac 3 conducts in both directions while maintaining the degree α),
When the operation of the timer stops, the temperature decreases to the set temperature β by the temperature adjusting means, and the set temperature β is maintained (the triac 3 is conductive in only one direction).

以上構成の採暖具等の温度制御装置に於て、先ず、通電
初期、ブツシュオンスイッチ37(ブツシュしていると
きのみONt、離せば開成する常開のスイッチ)をON
すると、抵抗36.ブツシュオンスイッチ37を介して
トランジスタ39のベースにベース電流が流れ、該トラ
ンジスタ39はONする。するとトランジスタ700ペ
ース電流はトランジスタ39によりノくイノシスされる
のでトランジスタ70は0FFt、、該トランジスタ7
0のコレクタ電位1d(El)(高レベル)Kなるので
ダイオード40を介してトランジスタ39にベース電流
が流れる。従ってブツシュオンスイッチ37が開閉され
てもトランジスタ39のON、)ラン・ンスタ70のO
FFの状態は持続される。(自己保持手段が自己保持し
た)すると、ダイオード47゜抵抗45を介してトラン
ジスタ320ベースにベース電流が流れるのでトランジ
スタ32はON状態になる。このことはボリウム31が
電気的に短絡蛯て・温度調節手段として最高温度に固定
(設定)されたことを意味する。
In the temperature control device for heating equipment, etc. configured as described above, first, at the initial stage of energization, the button-on switch 37 (a normally open switch that is ON only when the button is pressed and opens when released) is turned on.
Then, resistance 36. A base current flows to the base of the transistor 39 via the bush-on switch 37, and the transistor 39 is turned on. Then, the current flowing through the transistor 700 is injected by the transistor 39, so that the transistor 70 becomes 0FFt.
Since the collector potential 1d (El) (high level) K is 0, a base current flows to the transistor 39 via the diode 40. Therefore, even if the bush-on switch 37 is opened or closed, the transistor 39 is turned on, and the run transistor 70 is turned on.
The state of FF is maintained. (When the self-holding means has self-held), a base current flows to the base of the transistor 320 via the diode 47° resistor 45, so that the transistor 32 is turned on. This means that the volume 31 is electrically shorted and fixed (set) at the highest temperature as a temperature control means.

また、抵抗48を介してトランジスタ49にベース電流
が流れてトランジスタ49もONする。
Further, a base current flows to the transistor 49 via the resistor 48, and the transistor 49 is also turned on.

するとトランジスタ49.抵抗50を介してコンデンサ
51が充電される0そして、抵抗52.53により分圧
されてコンパレータ54の(ハ)個入力レベルより高レ
ベルとなるとコンパレータ54の出力が高レベルとなり
、ダイオード56.抵抗57を介してトランジスタ58
のベースにベース電流は流れる(これは自己保持手段の
出力の高レベルによっても供給されている。即ち自己保
持手段の出力とタイマーの出力はダイオード47.56
によりアンド回路が構成されている)。従ってトランジ
スタ58はONし、トランジスタ610ベース電流はバ
イパスされるのでトランジスタ61flO,FFである
Then transistor 49. The capacitor 51 is charged via the resistor 50, and when the voltage is divided by the resistors 52 and 53 and becomes higher than the input level of the comparator 54, the output of the comparator 54 becomes high level, and the output of the diode 56. Transistor 58 via resistor 57
(which is also supplied by the high level of the output of the self-holding means, i.e. the output of the self-holding means and the output of the timer are connected to the diode 47.56).
(The AND circuit is constructed by Therefore, the transistor 58 is turned on and the base current of the transistor 610 is bypassed, so that the transistor 61flO, FF.

このとき抵抗14.全波整流ブリッジ15を介して全波
整流された信号がトランジスタ21のベースと印加され
るのでトラ/ジスメ21交流電源のゼロクロス時に短期
間OFFとなる。するとトランジスタ21のコレクタ電
位は交流電源のゼロクロス時に同期したパルス信号とな
り、該・;ルス信号は抵抗22を介してトランジスタ6
2のパルス信号として印加しトランジスタ62は交流電
源のゼロクロス時に短期間ONI、それに追随してトラ
ンジスタ66.67がONする。従ってトライアック3
のゲートには交流電源の各半サイクルのゼロクロス時に
ゲート信号(第2図(ハ)の(t+T)の期間)が印加
されるのでトライアック3は双方向に導通される。この
ときの負荷波形は第2図に)の(t+T)の期間、そし
てヒータ2に双方向に通電されヒータ2の温度が上昇し
、最高温度に達すると、サーミスタ24の抵抗値が下り
トランジスタ25のベース電位の方がトランジスタ26
のベース電位よりも低レベルとなり差動アンプのトラン
ジスタの動作は反転し、トランジスタ25がOFF、ト
ランジスタ26がONとガス。従・てトランジスタ26
のコレクタ電位(差動アンプの出力)は低レベルとなり
トランジスタ33のベース電流カ′流れる為トランジス
タ83.34はONとなる。従ってトランジスタ34ダ
イオード】8.抵抗17ヲ介シてトランジスタ21に連
続的にベース電流が流れてトランジスタ21は連続的に
ONとなりトランジスタ21のコレクタにパルス信号が
導出されてないのでトランジスタ62はOFFとなる。
At this time, resistance 14. Since the full-wave rectified signal is applied to the base of the transistor 21 via the full-wave rectifying bridge 15, the transistor/jisume 21 is turned off for a short period of time at the zero cross of the AC power supply. Then, the collector potential of the transistor 21 becomes a pulse signal synchronized with the zero cross of the AC power supply, and the pulse signal is transmitted to the transistor 6 via the resistor 22.
The transistor 62 is turned on for a short period of time at the zero cross of the AC power supply, and the transistors 66 and 67 are turned on following this. Therefore triac 3
Since a gate signal (period (t+T) in FIG. 2(c)) is applied to the gate of the triac 3 at the zero cross of each half cycle of the AC power supply, the triac 3 is bidirectionally conductive. The load waveform at this time is shown in Figure 2) during the period (t+T), the heater 2 is energized in both directions, the temperature of the heater 2 rises, and when it reaches the maximum temperature, the resistance value of the thermistor 24 decreases and the transistor 25 The base potential of the transistor 26 is
The level becomes lower than the base potential of the differential amplifier, and the operation of the transistors of the differential amplifier is reversed, with transistor 25 turned off and transistor 26 turned on. Slave transistor 26
The collector potential (output of the differential amplifier) becomes low level, and the base current of the transistor 33 flows, so that the transistors 83 and 34 are turned on. Therefore transistor 34 diode】8. The base current flows continuously into the transistor 21 through the resistor 17, so that the transistor 21 is continuously turned on, and since no pulse signal is led to the collector of the transistor 21, the transistor 62 is turned off.

またこのときダイオード10抵抗9を介してトランジス
タ12のペースにもベース電流が連続的に印加されるの
で、トランジスタ12は連続的にONしトランジスタ1
2のコレクタ電位は低レベルで、トランジスタ63もO
FFの為トランジスタ66゜67はONせずトライアッ
ク3はOFFとなる。
At this time, the base current is also continuously applied to the transistor 12 through the diode 10 and the resistor 9, so the transistor 12 is continuously turned on and the transistor 1 is turned on.
The collector potential of transistor 2 is at a low level, and the transistor 63 is also at an O level.
Since it is an FF, the transistors 66 and 67 are not turned on and the triac 3 is turned off.

そしてまた、このとき抵抗41.ダイオード42を介し
てトランジスタ70のベースにベース電流が印加されて
トランジスタ70がONする。するとトランジスタ70
のコレクタ電位は低レベルとなりトランジスタ39のベ
ース電流はバイパスされてトランジスタa 9”ko 
F Fする。そしてトランジスタ39のOFFにより抵
抗38・43.ダイオード44を介してトランジスタ7
0にベース電流が流れる。従ってトランジスタ39のO
FF。
And again, at this time, the resistance 41. A base current is applied to the base of the transistor 70 via the diode 42, and the transistor 70 is turned on. Then transistor 70
The collector potential of transistor a 9''ko becomes low level, and the base current of transistor 39 is bypassed.
FF. Then, by turning off the transistor 39, the resistors 38, 43. Transistor 7 via diode 44
Base current flows to 0. Therefore, O of transistor 39
FF.

トランジスタ70のONは持続される。(自己保持手段
の動作は解除された。そして自己保持手段の動作期間は
、ブツシュオンスイッチ37の閉成時よりヒータ2が最
高温度αに到達するまでのtの期間〔第2図(ロ)、第
3図〕である0)そしてトランジスタ70のONにより
トランジスタ49のベース電流もバイパスされるのでト
ランジスタ49もO’FFし、コンデンサ51の充電は
停止される。
The ON state of transistor 70 is maintained. (The operation of the self-holding means has been canceled.The operation period of the self-holding means is the period t from the time when the button-on switch 37 is closed until the heater 2 reaches the maximum temperature α [Fig. 2 (b) , FIG. 3], and since the base current of the transistor 49 is also bypassed by turning on the transistor 70, the transistor 49 is also turned off, and charging of the capacitor 51 is stopped.

(この時点よりタイマがスタートする)0このときはま
だコンデンサ51の電位の方がコンパレータの←)個入
力レベルより高レベルなのでコンパレータ54の高レベ
ル出力は持続される。そしてヒータ2温度が最高温度←
)より低下すると、サーミスタ24の抵抗値も上昇し差
動アンプのトランジスタの動作も反転しトランジスタ2
5がON、トランジスタ26がOFFとなる。すると差
動アンプの出力が高レベルとなりトランジスタ330ベ
ース電流が流れなくなりトランジスタ33.34がOF
Fし、トランジスタ21のコレクタは交流電源の各ゼロ
クロス時にパルス信号を導出しトライアック3は再び双
方向に導通される。この様にしてトライアック3はON
、OFF  をくり返し最高温度αを保持する。そして
T期間が経過すると、コンデンサ51の電荷がコンパレ
ータ54を介して放電しその電位はコンパレータ54の
(ハ)個入力よりも低レベルとなるのでコンパレータ5
4の出力端には出力は導出されずに低レベルとなる。従
ってトランジスタ32のペースにはベース電流は供給さ
れずにトランジスタ32は0FFLボリウム31の最高
温度での固定は解除される。またトランジスタ58もベ
ース電流が供給されずにOFFとなるのでトランジスタ
611d抵抗59を介してベース電流が供給されてON
状態にある。従ってトランジスタ21のコレクタ電位(
パルス信号)はトランジスタ61によりバイパスされる
のでトランジスタ62はOFF状態となる。そして、前
述の如く、ボリウム31の短絡は解除されると、差動ア
ンプのボリウム側のトランジスタ260ベース電位の方
が、トランジスタ250ベース電位よりも高レベルとな
り、トランジスタ26がON。
(The timer starts from this point) 0 At this time, the potential of the capacitor 51 is still higher than the input level of the comparator, so the high level output of the comparator 54 is maintained. And the heater 2 temperature is the highest temperature ←
), the resistance value of the thermistor 24 also increases, and the operation of the transistor of the differential amplifier is also reversed.
5 is turned on, and transistor 26 is turned off. Then, the output of the differential amplifier becomes high level, and the base current of transistor 330 stops flowing, and transistors 33 and 34 are turned off.
F, the collector of the transistor 21 derives a pulse signal at each zero cross of the AC power supply, and the triac 3 is bidirectionally conducted again. In this way, triac 3 is turned on
, OFF is repeated to maintain the maximum temperature α. Then, when the period T has elapsed, the electric charge of the capacitor 51 is discharged via the comparator 54, and the potential becomes lower than the (c) inputs of the comparator 54, so the comparator 51
No output is output to the output terminal of 4, and the output is at a low level. Therefore, no base current is supplied to the base of the transistor 32, and the transistor 32 is released from being fixed at the maximum temperature of the 0FFL volume 31. Also, since the transistor 58 is not supplied with base current and is turned off, the transistor 611d is supplied with base current through the resistor 59 and turned on.
in a state. Therefore, the collector potential of the transistor 21 (
Since the pulse signal) is bypassed by the transistor 61, the transistor 62 is turned off. Then, as described above, when the short circuit of the volume 31 is released, the base potential of the transistor 260 on the volume side of the differential amplifier becomes higher than the base potential of the transistor 250, and the transistor 26 is turned on.

トランジスタ25がOFFとなるので、トランジスタ3
3.34はONし、トランジスタ21.12にベース電
流を供給しトランジスタ21.12をOFFせしめる。
Since transistor 25 is turned off, transistor 3
3.34 turns on, supplies base current to transistor 21.12, and turns off transistor 21.12.

従ってトランジスタ62及び63が6FFとなる為トラ
ンジスタ66.67もONせずトライアック3はOFF
で、ヒータ2は通電されない。ヒータ2の温度が下降し
、ボリウム31.によって設定された温度(第3図β)
になるとサーミスタ24の抵抗値は上昇していて差動ア
ンプのトランジスタ25のベース電位の方がトランジス
タ260ベース電位よりも高レベルとなり、トランジス
タ25がON、)ランジスタ26がOFFとなり、トラ
・ンジスタ33,34がOFFとなる0そしてトランジ
スタ21.13のコレクタ12は/%ルス侶信号導出さ
れるがトランジスタ21のコレクタ電位ハ、トランジス
タ61のON、トランジスタ62の0FFKよりトライ
て・?:1り3に影響を辱えない。また、トランジスタ
12のベースにはダイオード5等により半波整流された
脈流信号が印加されるのでトランジスタ12は交流電源
の各lサイクル立上り時に01jF(立下り時は不要な
為説明を省く)となる為トランジスタ12のコレクタ電
位は交流電源の1サイクル毎の立上り時に高レベルのパ
ルス状の信号となる。該パルス信号は抵抗13を介して
トランジスタ63のベースに印加され、トランジスタ6
3は該パルス信号に同期して交流電源の1サイクル毎の
立−Lり時にONとなりそれに追随してトランジスタ6
6.67が導通する為トライアック3のゲートには交流
電源の1サイクル毎の立上り時にゲート信号が印加され
トライアック3は一方向にのみONとなる。(第2図に
)の(t+T)以外の期間)。そしてヒータ2は半波通
電され、該ヒータ2が設定温度よりも高くなると差動ア
ンプの動作が反転し、トランジスタ12が0FFL)ラ
イアンプ3はOFFとなる。
Therefore, since transistors 62 and 63 become 6FF, transistors 66 and 67 are not turned on, and triac 3 is turned off.
Therefore, the heater 2 is not energized. The temperature of the heater 2 decreases, and the volume 31. The temperature set by (Fig. 3 β)
When this happens, the resistance value of the thermistor 24 increases, and the base potential of the transistor 25 of the differential amplifier becomes higher than the base potential of the transistor 260, turning the transistor 25 ON, transistor 26 OFF, and transistor 33. , 34 are OFF, and the collector 12 of the transistor 21.13 is output with a /% signal, but the collector potential of the transistor 21 is OFF, the transistor 61 is ON, and the transistor 62 is 0FFK. : Don't be ashamed of the influence of 1 or 3. Furthermore, since a pulsating current signal half-wave rectified by the diode 5 etc. is applied to the base of the transistor 12, the transistor 12 outputs 01jF at the rise of each l cycle of the AC power supply (the explanation is omitted since it is unnecessary at the fall). Therefore, the collector potential of the transistor 12 becomes a high-level pulse-like signal at the rise of each cycle of the AC power supply. The pulse signal is applied to the base of the transistor 63 via the resistor 13, and
In synchronization with the pulse signal, transistor 6 turns on when the AC power supply goes up and down every cycle.
6.67 is conductive, a gate signal is applied to the gate of the triac 3 at the rise of each cycle of the AC power supply, and the triac 3 is turned on only in one direction. (periods other than (t+T) in Figure 2). Then, the heater 2 is energized in a half-wave, and when the temperature of the heater 2 becomes higher than the set temperature, the operation of the differential amplifier is reversed, and the transistor 12 is turned OFF (FFL), and the differential amplifier 3 is turned OFF.

以上のくり返しによってヒータ2は半波通電により設定
温度を一定に保つδ 以上説明の如く簡単な操作により、温度上昇を望むとき
は交流全波で通電し、自動的にタイマ回路に切り替&1
で十分採暖具を暖めた後、自動的に設定温度に切り替わ
り設定温度を交流半波通電で保持するので、非常に使用
勝手の良い、しかも速熱性の高い、省エネタイプの、し
かも採暖具を自動的に十分ウオーミングアンプする採暖
具等の温度制御装置が提供できる。
By repeating the above steps, the heater 2 maintains the set temperature constant by half-wave energization δ As explained above, by simple operation, when the temperature is desired to rise, the heater 2 is energized with AC full-wave and automatically switches to the timer circuit &1
After heating the heating device sufficiently, it automatically switches to the set temperature and maintains the set temperature with AC half-wave energization, making it extremely easy to use, heats up quickly, and is energy-saving. Therefore, it is possible to provide a temperature control device such as a heating device that provides a sufficient warming amplifier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温度制御装置の一実施例を示す回路図
、第2図は第1図の主要各部の信号波形図、第3図は第
1図のヒータの温度特性図である。
FIG. 1 is a circuit diagram showing one embodiment of the temperature control device of the present invention, FIG. 2 is a signal waveform diagram of each main part of FIG. 1, and FIG. 3 is a temperature characteristic diagram of the heater of FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1、温度調節手段、温度検出手段、自己保持手段及び時
限装置を具備し、上記温度調節手段及び温度検出手段の
信号に対応してトライアック等の双方向性スイッチング
素子の導通を制御することによりヒータの通電を制御す
るに際し、上記自己保持手段を動作せしめることにより
上記温度調節手段に無関係に設定温度を一点に固定せし
めるとともに双方向性スイッチング素子の導通を双方向
とした温度制御装置に於て、上記温度検出手段が上記自
己保持手段による固定温度を検出した時自己保持手段の
動作を解除するとともに時限装置を駆動せしめ更に該時
限装置の停止とともに上記設定温度の固定を解除し上記
双方向性スイッチング素子の導通を一方向とする手段を
具備してなることを特徴とする温度制御装置。
1. The heater is equipped with a temperature adjustment means, a temperature detection means, a self-holding means, and a timer, and controls conduction of a bidirectional switching element such as a triac in response to signals from the temperature adjustment means and temperature detection means. In a temperature control device in which the set temperature is fixed at one point regardless of the temperature adjustment means by operating the self-holding means when controlling the energization of the bidirectional switching element, When the temperature detection means detects the temperature fixed by the self-holding means, it releases the operation of the self-holding means and drives a timer, and when the timer stops, the set temperature is released from being fixed, and the bidirectional switching is activated. A temperature control device characterized by comprising means for making conduction of an element in one direction.
JP57067846A 1982-04-21 1982-04-21 Temperature controller Pending JPS58184617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57067846A JPS58184617A (en) 1982-04-21 1982-04-21 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57067846A JPS58184617A (en) 1982-04-21 1982-04-21 Temperature controller

Publications (1)

Publication Number Publication Date
JPS58184617A true JPS58184617A (en) 1983-10-28

Family

ID=13356721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57067846A Pending JPS58184617A (en) 1982-04-21 1982-04-21 Temperature controller

Country Status (1)

Country Link
JP (1) JPS58184617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968870A (en) * 1988-11-03 1990-11-06 Well Treasure Industries, Ltd. Hair curling appliance power control circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158793A (en) * 1974-06-13 1975-12-22
JPS56168384A (en) * 1980-05-29 1981-12-24 Hitachi Netsu Kigu Kk Temperature control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158793A (en) * 1974-06-13 1975-12-22
JPS56168384A (en) * 1980-05-29 1981-12-24 Hitachi Netsu Kigu Kk Temperature control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968870A (en) * 1988-11-03 1990-11-06 Well Treasure Industries, Ltd. Hair curling appliance power control circuit

Similar Documents

Publication Publication Date Title
US3385957A (en) Electronically controlled heater
JPS58105180A (en) Device for controlling electric power of copying machine
JPS58184617A (en) Temperature controller
JPS58184616A (en) Temperature controller
JPS5998220A (en) Controller
JPS58195213A (en) Temperature controller
JPS6138490B2 (en)
JPS58197524A (en) Temperature controller
JPS58129513A (en) Temperature controlling device
JP3456097B2 (en) Electronics
RU1788604C (en) Device for power supply of cathode heater
JPS58129514A (en) Temperature controlling device
JPS58178420A (en) Controller
JPH0224133Y2 (en)
JPS58139218A (en) Temperature controller
JPH051158Y2 (en)
JPS63279900A (en) Temperature control apparatus for iron
JPS5848114A (en) Temperature controller
JPS58222319A (en) Temperature controller
JPH0347133Y2 (en)
JP3505933B2 (en) Electronics
JPH09106315A (en) Temperature controller
JPS58219620A (en) Temperature controller
JPS6229848Y2 (en)
JP2690072B2 (en) Energization display device in temperature control circuit