JP2690072B2 - Energization display device in temperature control circuit - Google Patents

Energization display device in temperature control circuit

Info

Publication number
JP2690072B2
JP2690072B2 JP60162394A JP16239485A JP2690072B2 JP 2690072 B2 JP2690072 B2 JP 2690072B2 JP 60162394 A JP60162394 A JP 60162394A JP 16239485 A JP16239485 A JP 16239485A JP 2690072 B2 JP2690072 B2 JP 2690072B2
Authority
JP
Japan
Prior art keywords
temperature
heater
control circuit
switching element
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60162394A
Other languages
Japanese (ja)
Other versions
JPS6222117A (en
Inventor
伸一 渡辺
光男 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60162394A priority Critical patent/JP2690072B2/en
Publication of JPS6222117A publication Critical patent/JPS6222117A/en
Application granted granted Critical
Publication of JP2690072B2 publication Critical patent/JP2690072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房機器、電熱機器等の温度制御回路におけ
る通電表示装置に関するものである。 従来の技術 従来ヒータを制御して希望の温度に設定する温度制御
回路における通電表示装置においては、第4図に示すよ
うに、電源スイッチ3がONと同時に表示される表示装置
5があるのみのものが多かった。あるいは、第5図に示
すように、設定ボリューム18の抵抗値を上げると、抵抗
16と抵抗17で分圧された電圧VAと前記設定ボリューム18
と抵抗19で分割された電圧VBとの比較においてVA>VB
時点からトランジスタ21はONし、表示装置としてのLED2
2が点灯する。つまり、設定ボリューム18の設定位置か
ら温度制御が開始され、開始と同時にLED22が点灯し、
設定ボリューム18の最高位置まで同様にLED22が点灯す
るという通電表示回路があった。 発明が解決しようとする課題 しかし、このような構成では設定温度になったかどう
かがわかりにくく、果たして、この温度が設定温度なの
かわからないので、また、希望の温度に変更しなおすと
いうことが出来にくいという問題点を有していた。 問題を解決するための手段 本発明の温度制御回路は上記問題点を解決するため、
スイッチング素子と、前記スイッチング素子に直列接続
し、被制御体を加熱するヒータと、前記ヒータと並列接
続したヒータへの通電状態を表示する表示装置と、前記
スイッチング素子をON-OFF制御する制御回路とを有し、
前記制御回路は被制御体の温度検出信号と温度設定信号
の差電圧が大きい時には、前記スイッチング素子を連続
ONし、前記差電圧が比例制御領域内になれば一周期の中
での前記スイッチング素子のON時間を前記差電圧に比例
して減少させ、その減少分OFF時間を増加させるように
構成したものである。 作用 本発明は上記した構成により、ヒータに並列に接続さ
れた表示装置によりヒータのON,OFFの状態が目で見てわ
かり、設定温度に対して被制御体の温度が極めて低い場
合は、前記差電圧が大きく、スイッチング素子を連続ON
し、ヒータが連続通電となり、LEDは点灯し放しにな
る。そして、次第に被制御体の温度が上昇して設定温度
との差が小さくなると、前記差電圧も小さくなり、比例
制御領域に入ると一定の周期の中でスイッチング素子と
ヒータはわずかの間だがOFFし始め、さらに差電圧が小
さくなるとこのスイッチング素子とヒータのOFFの割合
が増加し、設定温度に達すると、増加しなくなる。一
方、ヒータと並列に接続された表示装置も同様に連続点
灯の状態から一定の周期で点灯状態となり、さらにその
一定の周期の中でOFFの割合が増加し、設定温度に達す
ると増加しなくなる。したがって、目で見て設定温度に
なったことがわかる。それゆえ、一度設定した設定温度
がまだ希望する温度でない時は、すぐに、再び設定温度
を変更して希望する温度を得ることが出来る。 実施例 第1図は、本発明の一実施例を示す回路図である。 31は電源、32は電源スイッチである。33は双方向性電
力制御素子(スイッチング素子)、34はヒータである。
36は通電表示用のLED(表示装置)、37は前記通電表示
用LED36の耐圧保護用ダイオード、38は電流制御抵抗で
あって、これらはヒータに並列接続されている。39は半
波整流のダイオード、40は平滑用コンデンサ、41はゼロ
・クロスパルス発生IC(制御回路)であり、反転入力端
子411が、非反転入力端子412より電位が高い時のみパル
ス出力端子413から負のゼロ・クロスパルスが発生す
る。 前記ヒータ34で加熱される湯(被制御体)の温度を検
知するサーミスタ42(温度検出信号)は、湯温が高くな
ると抵抗値が低くなり、電位Vaは上昇する。また、湯温
設定はボリューム43(温度設定信号)で行い前記ボリュ
ーム43を回転させると、前記ボリューム43の抵抗値が下
がり、電位Vbが上昇する。演算増幅器44はVaとVbの電位
差(差電位)を増幅するもので出力Vo(差電位)は、抵
抗45、抵抗46をR46とすると、Vo=Vb+α(Va−Vb)
(α=1+R46/R45)となって、前記非反転入力端子412
に入力される。 一方、47は三角波発生回路(制御回路)であるが、演
算増幅器48の出力V481から三角波が出力され、前記ゼロ
・クロスパルス発生IC41、反転入力端子411に入力させ
る。 第2図は三角波V481と出力Vo(V412a〜V412d)の電位
関係とゼロ・クロスパルス発生(ヒータON)のタイミン
グを示す。湯温が設定温度に対して低い場合は第2図V4
12dに示す位置となり、この時ヒータ34はV481>V412dで
あるから、前記ゼロ・クロスパルス発生IC41のパルス出
力端子413から、電源電圧のゼロ・クロスに同期した約1
00μsecの巾で電圧約8Vの負のゼロ・クロスパルスが発
生し、前記双方向性電力制御素子33のゲート331に入力
され、前記双方向性電力制御素子33は導通し、前記ヒー
タ34は通電され連続通電となる。 そして、湯温が上昇すると前記サーミスタ42の抵抗値
が減少し、Vaの電位が高くなり、出力Voは第2図中V412
bあるいはV412cに示すような比例制御領域に移動する。
この第2図中に示すように、V481>V412b、V412cの時の
み前記ヒータ34が通電される。したがって前記ヒータ34
に並列に接続された前記通電表示用LED36は、三角波V
481の周期(約1秒)でヒータ34が通電された時のみON
する。すなわち、差電圧が比例制御領域になれば一定の
周期の中でその差電圧に比例してヒータ34への通電率を
制御するデューティ制御を行なう。また、湯温が設定温
度より極めて高い場合、Voは第2図中V412aとなり、V
481<V412aとなり、前記ヒータ34はOFFしたままであ
る。 第3図は、一実施例における電気シャワーの外観図で
ある。49は電源表示用LED、43は温度設定ボリュームで
ある。50は水バルブ、51は温度設定表示部、52はヘッド
である。36は前記通電用LEDである。 以上のような構成において、湯温が設定温度より低い
場合は前記通電用LED36が点灯したままとなり、次第に
湯温が設定温度に近づくと前記通電表示用LED36は三角
波V481の周期の間けつ的にON-OFFを繰り返すこととなり
ほぼ設定温度になるとON-OFFの比率は変化しなくなり、
使用者は設定温度なったことを知る。そして、設定温度
がまだ低い場合や逆に高い場合は設定を変えて好みの湯
温に即時変化させることができる。また、設定温度を高
くした時には、前記ヒータ34の能力を最大にしても設定
温度に達しないことがあり、この場合は、やはり前記通
電表示用LED36は点灯のままであって、ヒータ34の能力
限界であり、これ以上温度は上昇しないことを使用者に
知らせるという効果を有する。 発明の効果 以上述べてきたように、被制御体の温度検知回路から
の電圧と、温度設定回路からの電圧との差電圧を求め
て、その差電圧が大きい時にはスイッチング素子を連続
ONし、差電圧が比例制御領域になれば一定の周期の中で
のスイッチング素子のON時間を差電圧に比例して減少さ
せ、その減少分OFF時間を増加させる。 そして、スイッチング素子と直列にヒータを接続し、
そのヒータと並列に通電表示素子を接続する構成である
から、設定温度への移行状態が一目でわかり、さらに
は、設定温度になったことも通電表示素子の点滅の割合
が変化し、一定になったことにより直感的にわかる。そ
れゆえ、一度設定した温度が未だ不充分であった場合は
すぐに変更して希望温度に設定しなおすことができる。
また被制御体の熱容量が大きくて、ヒータフル通電でも
希望温度に到達しない時は、通電表示素子は点灯したま
まであり、これ以上は温度が上昇しないということもわ
かり、非常に使い勝手が良くなるという効果がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-carrying display device in a temperature control circuit for heating equipment, electric heating equipment and the like. 2. Description of the Related Art Conventionally, in an energization display device in a temperature control circuit for controlling a heater to set a desired temperature, as shown in FIG. 4, there is only a display device 5 which is displayed at the same time when a power switch 3 is turned on. There were many things. Alternatively, as shown in FIG. 5, if the resistance value of the setting volume 18 is increased, the resistance is increased.
The voltage V A divided by 16 and the resistor 17 and the setting volume 18
In comparison with the voltage V B divided by the resistor 19 and the voltage V A > V B , the transistor 21 turns on and the LED2
2 lights up. In other words, temperature control is started from the setting position of the setting volume 18, LED22 lights up at the same time as the start,
There was an energization display circuit in which the LED 22 also lights up to the highest position of the setting volume 18. However, in such a configuration, it is difficult to know whether or not the temperature has reached the set temperature, and since it is not known whether or not this temperature is the set temperature, it is difficult to change the temperature to a desired temperature. Had the problem. Means for Solving the Problems The temperature control circuit of the present invention solves the above problems by
A switching element, a heater that is connected to the switching element in series and that heats a controlled object, a display device that displays an energization state to the heater that is connected in parallel with the heater, and a control circuit that controls ON / OFF of the switching element. Has and
The control circuit continuously connects the switching element when the difference voltage between the temperature detection signal of the controlled object and the temperature setting signal is large.
When it is turned on and the difference voltage is within the proportional control region, the ON time of the switching element in one cycle is decreased in proportion to the difference voltage, and the decrease time is increased by the decrease time. Is. Action The present invention has the above-mentioned configuration, and the ON / OFF state of the heater can be visually recognized by the display device connected in parallel to the heater, and when the temperature of the controlled object is extremely low with respect to the set temperature, Large difference voltage, continuous switching on
However, the heater is energized continuously, and the LED lights up and remains off. Then, when the temperature of the controlled object gradually rises and the difference from the set temperature becomes smaller, the difference voltage also becomes smaller, and when it enters the proportional control area, the switching element and the heater are turned off for a short period in a certain cycle. Then, when the differential voltage further decreases, the OFF ratio of the switching element and the heater increases, and when the set temperature is reached, it does not increase. On the other hand, the display device connected in parallel with the heater also turns on from the continuous lighting state at a fixed cycle, and the OFF rate increases during that fixed cycle and does not increase when the set temperature is reached. . Therefore, it can be seen visually that the temperature has reached the set temperature. Therefore, if the set temperature once set is not the desired temperature, the set temperature can be immediately changed again to obtain the desired temperature. Embodiment FIG. 1 is a circuit diagram showing an embodiment of the present invention. Reference numeral 31 is a power supply, and 32 is a power switch. 33 is a bidirectional power control element (switching element), and 34 is a heater.
36 is an LED (display device) for displaying electricity, 37 is a diode for protection against voltage of the LED 36 for displaying electricity, 38 is a current control resistor, and these are connected in parallel to the heater. 39 is a half-wave rectifier diode, 40 is a smoothing capacitor, 41 is a zero-cross pulse generation IC (control circuit), and the pulse output terminal 413 is used only when the inverting input terminal 411 has a higher potential than the non-inverting input terminal 412. Generates a negative zero-cross pulse. The thermistor 42 (temperature detection signal) for detecting the temperature of the hot water (controlled body) heated by the heater 34 has a low resistance value as the hot water temperature rises, and the potential Va rises. Further, the hot water temperature is set by the volume 43 (temperature setting signal), and when the volume 43 is rotated, the resistance value of the volume 43 decreases and the potential Vb rises. The operational amplifier 44 amplifies the potential difference (difference potential) between Va and Vb, and the output Vo (difference potential) is Vo = Vb + α (Va-Vb) when the resistor 45 and the resistor 46 are R46.
(Α = 1 + R46 / R45), and the non-inverting input terminal 412
Is input to On the other hand, reference numeral 47 denotes a triangular wave generating circuit (control circuit), which outputs a triangular wave from the output V481 of the operational amplifier 48 and inputs it to the zero cross pulse generating IC 41 and the inverting input terminal 411. FIG. 2 shows the potential relationship between the triangular wave V 481 and the output Vo (V 412 a to V 412 d) and the timing of zero cross pulse generation (heater ON). When the hot water temperature is lower than the set temperature, V2 in Fig. 2
Becomes the position shown in 12d, since at this time the heater 34 is V 481> V 412 d, the pulse output terminal 413 of the zero-cross pulse generating IC 41, about synchronized with the zero crossing of the source voltage 1
A negative zero-cross pulse having a voltage of about 8 V is generated with a width of 00 μsec and is input to the gate 331 of the bidirectional power control element 33, the bidirectional power control element 33 is turned on, and the heater 34 is turned on. It is continuously energized. Then, when the hot water temperature rises, the resistance value of the thermistor 42 decreases, the potential of Va rises, and the output Vo becomes V 412 in FIG.
Move to proportional control area as shown by b or V 412 c.
As shown in FIG. 2, the heater 34 is energized only when V 481 > V 412 b, V 412 c. Therefore, the heater 34
The energization display LED 36 connected in parallel with the
ON only when the heater 34 is energized in the cycle of 481 (about 1 second)
I do. That is, when the differential voltage is in the proportional control region, duty control for controlling the energization rate to the heater 34 is performed in a constant cycle in proportion to the differential voltage. When the hot water temperature is much higher than the set temperature, Vo becomes V 412 a in Fig. 2 and V
481 <V 412 a, and the heater 34 remains off. FIG. 3 is an external view of an electric shower in one embodiment. 49 is a power supply display LED, and 43 is a temperature setting volume. 50 is a water valve, 51 is a temperature setting display, and 52 is a head. 36 is the energizing LED. In the above configuration, when the hot water temperature is lower than the set temperature, the energization LED 36 remains lit, and when the hot water temperature gradually approaches the set temperature, the energization display LED 36 is intermittent during the cycle of the triangular wave V 481. The ON-OFF ratio will not change when it reaches almost the set temperature.
The user knows that the set temperature has been reached. Then, when the set temperature is still low or conversely high, the setting can be changed to immediately change the hot water temperature to a desired one. Further, when the set temperature is raised, the set temperature may not be reached even if the capacity of the heater 34 is maximized. In this case, the energization display LED 36 is still lit and the capacity of the heater 34 is not changed. This is a limit and has the effect of informing the user that the temperature will not rise any further. EFFECTS OF THE INVENTION As described above, the difference voltage between the voltage from the temperature detection circuit of the controlled object and the voltage from the temperature setting circuit is obtained, and when the difference voltage is large, the switching element is continuously connected.
When the differential voltage is turned on and the differential voltage is in the proportional control region, the ON time of the switching element in a constant cycle is decreased in proportion to the differential voltage, and the OFF time is increased by the decrease. Then, connect a heater in series with the switching element,
Since the configuration is such that the energization display element is connected in parallel with the heater, the transition state to the set temperature can be seen at a glance.Furthermore, when the set temperature is reached, the blinking rate of the energization display element changes, and it remains constant. Now that you know it, you can understand it intuitively. Therefore, if the temperature once set is still insufficient, the temperature can be changed immediately and the desired temperature can be set again.
In addition, when the heat capacity of the controlled object is large and the desired temperature is not reached even when the heater is fully energized, the energization display element remains lit, and it can be seen that the temperature does not rise any further, which makes it very easy to use. effective.

【図面の簡単な説明】 第1図は本発明の一実施例の全体回路図、第2図は温度
制御のタイミングチャート、第3図は一実施例の本体外
観図、第4図、第5図は従来の回路図を示す。 33……双方向性電力制御素子(スイッチング素子)、34
……ヒータ、36……通電表示用LED(表示装置)、41…
…ゼロ・クロスパルス発生IC(制御回路)、42……サー
ミスタ(温度検出信号)、43……温度設定ボリューム
(温度設定信号)、47……三角波発生回路(制御回
路)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall circuit diagram of an embodiment of the present invention, FIG. 2 is a timing chart of temperature control, and FIG. 3 is an external view of a main body of the embodiment, FIGS. The figure shows a conventional circuit diagram. 33 ... Bidirectional power control element (switching element), 34
...... Heater, 36 ...... LED for current display (display device), 41 ...
… Zero cross pulse generation IC (control circuit), 42… Thermistor (temperature detection signal), 43… Temperature setting volume (temperature setting signal), 47… Triangular wave generation circuit (control circuit).

Claims (1)

(57)【特許請求の範囲】 1.スイッチング素子と、前記スイッチング素子に直列
接続し、被制御体を加熱するヒータと、前記ヒータと並
列接続した前記ヒータへの通電状態を表示する表示装置
と、前記スイッチング素子をON-OFF制御する制御回路と
を有し、前記制御回路とを有し、前記制御回路は被制御
体の温度検出信号と温度設定信号の差電圧が大きい時に
は、前記スイッチング素子を連続ONし、前記差電圧が比
例制御領域内になれば一周期の中での前記スイッチング
素子のON時間を前記差電圧に比例して減少させ、その減
少分OFF時間を増加させるように構成した温度制御回路
における通電表示装置。
(57) [Claims] A switching element, a heater connected in series with the switching element to heat a controlled object, a display device for displaying an energization state to the heater connected in parallel with the heater, and a control for ON-OFF controlling the switching element And a control circuit, wherein the control circuit continuously turns on the switching element when the difference voltage between the temperature detection signal of the controlled object and the temperature setting signal is large, and the difference voltage is proportionally controlled. An energization display device in a temperature control circuit configured to decrease the ON time of the switching element in one cycle in proportion to the difference voltage and increase the OFF time by the decrease within the range.
JP60162394A 1985-07-23 1985-07-23 Energization display device in temperature control circuit Expired - Fee Related JP2690072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162394A JP2690072B2 (en) 1985-07-23 1985-07-23 Energization display device in temperature control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162394A JP2690072B2 (en) 1985-07-23 1985-07-23 Energization display device in temperature control circuit

Publications (2)

Publication Number Publication Date
JPS6222117A JPS6222117A (en) 1987-01-30
JP2690072B2 true JP2690072B2 (en) 1997-12-10

Family

ID=15753751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162394A Expired - Fee Related JP2690072B2 (en) 1985-07-23 1985-07-23 Energization display device in temperature control circuit

Country Status (1)

Country Link
JP (1) JP2690072B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198614U (en) * 1981-06-05 1982-12-16
JPS58129512A (en) * 1982-01-26 1983-08-02 Sharp Corp Temperature controlling device

Also Published As

Publication number Publication date
JPS6222117A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
US4777350A (en) Heater with duty cycle controller
JPH11510941A (en) Circuit device for temperature control of heating element
JP4156756B2 (en) Temperature control device for soldering iron
KR970009695A (en) Insulation control circuit of electric cooker
JP2690072B2 (en) Energization display device in temperature control circuit
MY109371A (en) Electronic automatic temperature control.
JPH0715651B2 (en) Temperature control device
KR200191604Y1 (en) A temperature control system of the complex heating element for electromagnetic waves interception and anion air cleaning
JP3227745B2 (en) Temperature control device
JPS6355754B2 (en)
JPS5998220A (en) Controller
JPH0254574B2 (en)
JP3505933B2 (en) Electronics
JPS58129513A (en) Temperature controlling device
JPH0269808A (en) Temperature controller
JPS5846401A (en) Temperature controller
JPS6111914Y2 (en)
CA3177503A1 (en) Switching control circuits and method of actuating a switch having reduced conducted emi
JPH06110562A (en) Temperature controller
JPS61193214A (en) Temperature control circuit
JPH0538551Y2 (en)
JPS63168989A (en) Heater driver
KR910004584Y1 (en) Automatic voltage control heater
JPS61193213A (en) Temperature control circuit
JPS62154488A (en) Warming appliance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees