JPS58184507A - Device for measuring thickness of surface layer - Google Patents

Device for measuring thickness of surface layer

Info

Publication number
JPS58184507A
JPS58184507A JP6742382A JP6742382A JPS58184507A JP S58184507 A JPS58184507 A JP S58184507A JP 6742382 A JP6742382 A JP 6742382A JP 6742382 A JP6742382 A JP 6742382A JP S58184507 A JPS58184507 A JP S58184507A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
surface layer
thickness
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6742382A
Other languages
Japanese (ja)
Inventor
Satoshi Ogura
小倉 「さとし」
Sakae Sugiyama
栄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6742382A priority Critical patent/JPS58184507A/en
Publication of JPS58184507A publication Critical patent/JPS58184507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To make it possible to measure a thickness which is shorter than the wavelength of an operating ultrasonic wave, by inputting the ultrasonic wave into a thin surface layer through a shoe, converting the wave into a surface wave (rubbing wave), performing computation based on an ultrasonic wave propagation speed and an incident angle. CONSTITUTION:The transmission and reception of ultrasonic waves are performed by a probe 8, herein a transmitting part and a receiving part are separated, by using a semicircular shoe 7. A critical incident angle thetain, at which the incident ultrasonic wave is converted into a rubbing wave, is obtained by Snell's law. By measuring the critical incident angle, the propagating speed of the rubbing wave is obtained by using a continuous wave. Then, a thickness t1 of the surface layer to be measured is further obtained.

Description

【発明の詳細な説明】 本発明は超f改による厚み測定法に関するものであり、
時に燃料被榎管におけるジルコニシム層の厚み測定に好
適である。
[Detailed description of the invention] The present invention relates to a thickness measurement method using ultra-f modification,
It is sometimes suitable for measuring the thickness of a zirconium layer in a fuel receiving tube.

従来の超音波による表面層厚み測定法として、反射法と
共振法が挙げられる。(超音波技術便覧ンしかし、これ
らの方法は反射面が必要であるのと超音波の持つ距離分
解能の制約により、音譬イ/ピーダンス値がはy同等の
物′iからなる層構造ならびにμmオーダーの厚み測定
には使えないという欠点があった。
Conventional ultrasonic surface layer thickness measurement methods include a reflection method and a resonance method. (Ultrasonic Technology Handbook) However, these methods require a reflective surface and are limited by the distance resolution of ultrasonic waves. The drawback was that it could not be used to measure the thickness of orders.

本発明の目的は、従来の超音波による表面層厚み測定法
において超音波の反射面を必要とせず、測定対象とする
表面層が薄くなるに従い測定が困離に□″なる欠点を解
決した新しi表面層厚み測定装置を提供することにある
The purpose of the present invention is to develop a new method that eliminates the need for an ultrasonic reflecting surface in the conventional method of measuring surface layer thickness using ultrasonic waves, and which solves the drawback that measurement becomes difficult as the surface layer to be measured becomes thinner. An object of the present invention is to provide a surface layer thickness measuring device.

本発明の原理について図を用いて説明する。第1図に示
す様な層構造において、一面層1と下部層2をなす物質
における横波伝播速[倉それぞれc、、c、(Ci <
cm )とし、表面波(−)プ波)の改擾λと一面層厚
さtlおよび下部層厚さiがt、4λくt、の条件を満
たt′場会には、厚さ1、と表面層lを伝播する表面波
の伝播遭[Cとの閾に、次の関係の成立が知られている
The principle of the present invention will be explained using figures. In the layered structure shown in FIG.
cm), and if the modification λ of the surface wave (-)p wave), the thickness tl of one surface layer, and the thickness i of the lower layer satisfy the conditions t, 4λ × t, then the thickness 1, It is known that the following relationship holds true between the propagation encounter of a surface wave propagating through the surface layer l and [C].

ただし、(1)式においてfは入射MAt波の周波数、
μm、μmはそれぞれ表向層l、下部層2の材料の剛性
率である。
However, in equation (1), f is the frequency of the incident MAt wave,
μm and μm are the rigidity modulus of the material of the surface layer 1 and the lower layer 2, respectively.

便って、ラブ波の伝播速度Cを測定すれば表面層の厚み
tlが求められる。ところが、(1)式II′i庵波数
が一定でめる連続波の場合の式で69、多くの周波数成
分を言んでいるパルス波による伝播速度測定には不適で
ある。
For convenience, the thickness tl of the surface layer can be determined by measuring the propagation velocity C of the Love waves. However, Equation (1) (II'i) is for a continuous wave with a constant wave number, which is 69, and is not suitable for measuring the propagation velocity using a pulse wave that has many frequency components.

そこで、連続波で伝播速度を測定する方法として第1図
の様に半円形のシュー7を用いて送受信分割型の探触子
8により超f波の送受信を行ない、入射超音波がラブ波
に変換される臨界入射01.を求める方法を採用する。
Therefore, as a method of measuring the propagation velocity using continuous waves, as shown in Fig. 1, ultra-f waves are transmitted and received by a transceiver split type probe 8 using a semicircular shoe 7, and the incident ultrasonic wave is converted into a love wave. Critical incidence to be transformed 01. Adopt a method to find out.

このJa曾、スネルの法則により次式が成立することが
知られている。
It is known that the following equation holds true according to Snell's law.

た友し、C?はシュー内や超音波伝播速度でめる。よっ
て、この臨界入射角を測定することにより、連続波を用
いてラブ波の伝播速[Cが(4式から水まり、さらに(
1)式により測定対象の表面層厚み1が求めらnる。
Friends, C? is determined by the inside of the shoe and the ultrasonic propagation speed. Therefore, by measuring this critical angle of incidence, the propagation speed of the Love wave [C using a continuous wave can be calculated as (from equation 4, puddle, and (
The surface layer thickness 1 of the object to be measured is determined by the formula 1).

なお、臨界入射角θ1の測定には第2図に示す様なシュ
ー7と送受分IIII型の探触子8倉用いて何う。超音
波の入射角を一1臨界入射角を81としてCRT上に入
射波と反射波t−表示する。
In order to measure the critical incidence angle θ1, a shoe 7 and a transmitter/receiver type III probe 8 are used as shown in FIG. The incident wave and the reflected wave are displayed on the CRT with the incident angle of the ultrasonic wave being 11 and the critical incident angle being 81.

#(#、、の場合には入射超音波は表向3の0点、シュ
ー7のP点、さらに再び0点で反射して探触子8に戻っ
て来るので入射波と反射波には位相遅れが生じる。次に
−が大きくな9、θ;#龜、の条件が満足されると超音
波はラブ波に変換され、その一部がシュー7のQ点で反
射して戻って来るが、入射波と反射波の間の位@走がθ
く#−1の時に比べて大きくなり、さらに娠幅も小さく
なることがわかる。θ、>6.の場合には超音波は表面
層1の中の8方向に進むため反射波はほとんど戻って米
ない。以上の3つの場合の入射波9反射波のCRT表示
を第2図の中、 (il)、 OH)に示す。
In the case of #(#, , the incident ultrasonic wave is reflected at the 0 point of the surface 3, the P point of the shoe 7, and then again at the 0 point and returns to the probe 8, so the incident wave and the reflected wave are A phase delay occurs.Next, when the condition of 9, θ; #龜, where - is large is satisfied, the ultrasonic wave is converted into a Love wave, and a part of it is reflected at the Q point of shoe 7 and returns. However, the position between the incident wave and the reflected wave is θ
It can be seen that the width is larger than that of #-1, and the width of the pregnancy is also smaller. θ, >6. In this case, since the ultrasonic waves travel in eight directions within the surface layer 1, almost no reflected waves return. The CRT display of the incident wave 9 reflected waves in the above three cases is shown in (il), OH) in Fig. 2.

従って、探触子8t−シュー7の外縁上で走査する事に
より、ラブ波に変換される臨界角’1mが求められる。
Therefore, by scanning the outer edge of the probe 8t and the shoe 7, the critical angle '1m for conversion into a Love wave can be found.

以下、本発明の一実施例t−第3図を用いて説明する。Hereinafter, one embodiment of the present invention will be described using FIG. 3.

本実施例は、前記の表向層厚み測定法を燃料仮積管22
のジルコニウム内層21の測定に厄用したものである。
In this embodiment, the above-described surface layer thickness measurement method is applied to the temporary fuel stack tube 22.
This was difficult for the measurement of the zirconium inner layer 21.

超音波送gN器32で発生し九連続萬周波により、送受
信分割型探触子8からシュー7t−介して超音波がジル
コニウム内層21に送信される。探触子8は探触子制御
装置33で1ltl岬された探触子走査装置18でシュ
ー7の外縁を走査さrL4゜シュー7はガイド11によ
り走査装置に固定されるものとする。次に探触子8によ
る受信超音波は超音波送m器32の送信波とともにCI
LT表示装[31に送られ、ラブrIIL変換の臨界入
射角測定用信号となる。CRT衆示I&d31にょシラ
ブ波変侠が観測された時の入射角データ0鳳、は探触子
制御装置i33から演算装置35に送られる。
Ultrasonic waves are transmitted from the transmitting/receiving split type probe 8 to the zirconium inner layer 21 via the shoe 7t by nine continuous frequencies generated by the ultrasonic transmitter gN device 32. The probe 8 scans the outer edge of the shoe 7 with the probe scanning device 18 which is capped by the probe control device 33. The shoe 7 is fixed to the scanning device by the guide 11. Next, the received ultrasonic waves by the probe 8 are transmitted by the ultrasonic transmitter 32 and the CI
The signal is sent to the LT display device [31 and becomes a signal for measuring the critical angle of incidence for Love rIIL conversion. The incident angle data 0 when the Nyoshirabu wave change is observed on the CRT display I&d31 is sent from the probe control device i33 to the arithmetic device 35.

さらに周波数データfが超音波送m器32から、ジルカ
ロイ、ジルコニクムにおける超音波伝播速度C,、C,
νよび剛性率μm、μ、のデータとシュー7における音
速データC7が入力装置34から演算f7c霞35に送
られる。演算装置35は以上の臨界入射角#11、シュ
ー内の音速C1、入射超音波の周波数f1ジルカロイ、
ジルコニ9ムにおける音速と剛性率のデータC,,C,
,μm。
Further, frequency data f is transmitted from the ultrasonic transmitter 32 to ultrasonic propagation velocities C, , C, in Zircaloy and zirconicum.
The data of ν, the rigidity μm, μ, and the sound velocity data C7 at the shoe 7 are sent from the input device 34 to the calculation f7c Kasumi 35. The arithmetic unit 35 calculates the above critical incident angle #11, sound velocity C1 in the shoe, frequency f1 of the incident ultrasonic wave, Zircaloy,
Data of sound velocity and rigidity in zirconium 9m C,,C,
, μm.

μmtもとに鰺)式および(1)式の演算を行い、得ら
れたジルコニウム内層厚みt、を表示装置36に表示さ
せる。図4に演算装置35の演算内容を示す。
Based on μmt, calculations are performed using Equation 1) and Equation (1), and the obtained zirconium inner layer thickness t is displayed on the display device 36. FIG. 4 shows the calculation contents of the calculation device 35.

以上の実施例によれば、従来の超音波による測定法では
困−とされていた燃料仮積管のジルコニウム内層の厚み
(〜70μm)が容易に測定できる。
According to the above embodiment, the thickness (~70 μm) of the zirconium inner layer of the fuel storage tube can be easily measured, which has been difficult to measure using conventional ultrasonic measurement methods.

従来の超音波による表面層の測定では、測定対象の表面
層厚みが使用超音波の波兼以下の場合の測定が不可能で
6つ九。しかし、本発明によシ使用超音波の波兼以下の
厚み測定が可能となシ、表面層厚み管理が重要な製品の
品質管埋が大幅に改善される。
When measuring the surface layer using conventional ultrasound, it is impossible to measure when the thickness of the surface layer to be measured is less than the thickness of the ultrasound wave used. However, according to the present invention, it is possible to measure the thickness of the ultrasonic wave and the thickness of the ultrasonic wave, thereby greatly improving the quality control of products where surface layer thickness control is important.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、層構造材の表向にシューと送受分割型探触子
を配置した図、t42図は、超音波の入射角を変えた一
合の超音波伝播方向を示す図ならびに入射波と反射波の
CRT表示を示す図、#g3図は、本発明全燃料被覆管
のジルコニウム内層の厚み測定に応用しfc夾施例の全
体構成図、第4図は、演算装置における計算の流れ図で
ある。 1・・・表面層、2・・・下部層、6・・・ラブ波、7
・・・円形外縁を愕つシュー、8・・・送受分wJI型
探触子、12・・・探触子走f、f装置、31・・・C
RT宍示装置、32・・・超音波送g!器、33・・・
探触子制御装置、34・・・入力装置、35・・・演算
装置、36・・・表示W&置。 茅l 固
Figure 1 is a diagram showing the shoe and the transmitting/receiving split type probe arranged on the surface of the layered structure material, and Figure t42 is a diagram showing the direction of propagation of the ultrasonic wave when the incident angle of the ultrasonic wave is changed, as well as the incident wave. Figure #g3 is a diagram showing the overall configuration of the FC implementation applied to the thickness measurement of the zirconium inner layer of a full fuel cladding tube according to the present invention, and Figure 4 is a flowchart of calculations in the arithmetic unit. It is. 1...Surface layer, 2...Lower layer, 6...Love wave, 7
...Shoe that touches the circular outer edge, 8.Transmission/reception part wJI type probe, 12..Probe travel f, f device, 31..C
RT display device, 32...Ultrasonic transmission g! Vessel, 33...
Probe control device, 34... Input device, 35... Arithmetic device, 36... Display W & position. Kaya hard

Claims (1)

【特許請求の範囲】[Claims] 1、異なる超音波伝播速度t−Mする2樵の物質で構成
される下部層と薄い表面層からなる層構造において、そ
れぞれの物質中の超音波速度を測定しその値を記憶する
工程と、薄い一面層にシューを介して超音波音入射させ
て表面波(2プ波)に変換を行ない、この時の超f[入
射角度とシュー内の伝播速度を測定し記憶する工程と、
前記工程により記憶された超音波伝播速度および入射角
度により演Jlを行ない、表面層の厚さを表示する工程
からなることを特徴とする表面層厚み測定装置。
1. In a layered structure consisting of a lower layer and a thin surface layer composed of two materials having different ultrasonic propagation velocities t-M, the step of measuring the ultrasonic velocity in each substance and storing the value; An ultrasonic wave is made incident on a thin one-sided layer through a shoe and converted into a surface wave (two-wave wave), and the step of measuring and storing the incident angle and the propagation velocity within the shoe;
A surface layer thickness measuring device comprising the step of performing a calculation using the ultrasonic propagation velocity and incident angle stored in the step and displaying the thickness of the surface layer.
JP6742382A 1982-04-23 1982-04-23 Device for measuring thickness of surface layer Pending JPS58184507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6742382A JPS58184507A (en) 1982-04-23 1982-04-23 Device for measuring thickness of surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6742382A JPS58184507A (en) 1982-04-23 1982-04-23 Device for measuring thickness of surface layer

Publications (1)

Publication Number Publication Date
JPS58184507A true JPS58184507A (en) 1983-10-28

Family

ID=13344483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6742382A Pending JPS58184507A (en) 1982-04-23 1982-04-23 Device for measuring thickness of surface layer

Country Status (1)

Country Link
JP (1) JPS58184507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603583A (en) * 1984-04-06 1986-08-05 Kraftwerk Union Aktiengesellschaft Method for the ultrasonic testing of ferritic parts having a cladding
JPS6439510A (en) * 1987-08-06 1989-02-09 Hitachi Construction Machinery Thickness measuring method
EP0694757A3 (en) * 1994-07-26 1998-10-21 Shinkokensa Service Kabushiki Kaisha An apparatus for measuring a layer thickness using transverse waves of ultrasonic waves
CN105241401A (en) * 2015-09-26 2016-01-13 哈尔滨工程大学 Acoustic measuring method of thickness of ice layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603583A (en) * 1984-04-06 1986-08-05 Kraftwerk Union Aktiengesellschaft Method for the ultrasonic testing of ferritic parts having a cladding
JPS6439510A (en) * 1987-08-06 1989-02-09 Hitachi Construction Machinery Thickness measuring method
EP0694757A3 (en) * 1994-07-26 1998-10-21 Shinkokensa Service Kabushiki Kaisha An apparatus for measuring a layer thickness using transverse waves of ultrasonic waves
CN105241401A (en) * 2015-09-26 2016-01-13 哈尔滨工程大学 Acoustic measuring method of thickness of ice layer
CN105241401B (en) * 2015-09-26 2017-08-04 哈尔滨工程大学 A kind of acoustic measurement method of ice layer thickness

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
US4391281A (en) Ultrasonic transducer system and method
US20090282920A1 (en) Nuclear reactor vibration surveillance system and its method
US20110230766A1 (en) Ultrasound imaging modality improvement
JPS58184507A (en) Device for measuring thickness of surface layer
Deán et al. Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves
JPH0298340A (en) Ultrasonic diagnostic device
US6253618B1 (en) Apparatus and method for synthetic phase tuning of acoustic guided waves
JP2019033822A (en) Ultrasound signal processor, ultrasound diagnostic apparatus, and ultrasound signal processing method
JP2720732B2 (en) Mechanical scanning ultrasonic probe
JPH049261B2 (en)
US3540279A (en) Acoustic sensing system
JPS6365899B2 (en)
JPH05149931A (en) Method and apparatus for measuring sound speed and density
JP2693000B2 (en) Ultrasonic transducer
Lockett Lamb and torsional waves and their use in flaw detection in tubes
JP2001133319A (en) Acoustic velocity measuring device
JPH0862191A (en) Method and apparatus for aperture synthesis of ultrasonic
JPH0440649Y2 (en)
Smit et al. The analysis and results of a continuous wave ultrasonic densitometer
JPH0610255Y2 (en) Ultrasonic transceiver
Toda et al. Nondestructive testing in human teeth using a leaky Lamb wave device
Brendel Calibration of ultrasonic probe transducers
JPH02107932A (en) Stress measurement
JPS59182419A (en) Acoustic optical element