JPS5818425B2 - Austenitic stainless steel with excellent cracking resistance and press formability - Google Patents

Austenitic stainless steel with excellent cracking resistance and press formability

Info

Publication number
JPS5818425B2
JPS5818425B2 JP13774575A JP13774575A JPS5818425B2 JP S5818425 B2 JPS5818425 B2 JP S5818425B2 JP 13774575 A JP13774575 A JP 13774575A JP 13774575 A JP13774575 A JP 13774575A JP S5818425 B2 JPS5818425 B2 JP S5818425B2
Authority
JP
Japan
Prior art keywords
steel
cracking
stainless steel
press formability
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13774575A
Other languages
Japanese (ja)
Other versions
JPS5262113A (en
Inventor
岡裕
嶋中浩
木下昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13774575A priority Critical patent/JPS5818425B2/en
Publication of JPS5262113A publication Critical patent/JPS5262113A/en
Publication of JPS5818425B2 publication Critical patent/JPS5818425B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、オーステナイト系ステンレス鋼板を深絞り
加工して作った器物にみられる置き割れ発生の抵抗性と
、プレス成形性にすぐれたオース。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an austenitic stainless steel sheet with excellent resistance to cracking and press formability, which is seen in utensils made by deep drawing an austenitic stainless steel plate.

テナイト系ステンレス鋼に関するものである。This relates to tenitic stainless steel.

一般にJ I S−8TJS 301および5TJS
304のようなオーステナイト系ステンレス鋼は、延性
および靭性に富みかつ適度な加工硬化性を有することに
より、プレス成形性が良好である。
Generally J I S-8TJS 301 and 5TJS
Austenitic stainless steel such as No. 304 has good press formability because it is rich in ductility and toughness and has appropriate work hardenability.

したがって単段もしくは多段のプレス加工工程を経て、
深絞りを施されることが多く、たとえば、深型流しのシ
ンク、ポットあるいはパスタブのような深い容器は、こ
の種のステンレス鋼を絞り加工して作られている。
Therefore, after going through a single-stage or multi-stage press processing process,
It is often deep drawn; for example, deep containers such as deep sinks, pots or pasta tubs are made from this type of stainless steel.

ところが絞り加工はうまく行なえても、事後、成形品に
縦割れを生じ、それまでの加工が無駄になって経済的、
時間的損失をこおむることかまま起こる。
However, even if the drawing process is performed successfully, vertical cracks will occur in the molded product after the fact, and the process up to that point will be wasted, resulting in economical problems and problems.
It happens all the time, incurring a lot of time loss.

このような、深絞り成形品に起こる縦割れ現象は、置き
割れあるいは時期割れと呼はれ、その発生のしやすさは
主として鋼の化学組成に左右されるが、とりわけNiお
よびH2の含有量が支配的とされている。
This vertical cracking phenomenon that occurs in deep-drawn products is called placement cracking or period cracking, and the ease with which it occurs mainly depends on the chemical composition of the steel, especially the Ni and H2 content. is said to be dominant.

。たとえは、Ni含有量の影響については、つぎのどと
くである。
. An example of the influence of Ni content is as follows.

第1表に示した組成の鋼を臭突溶製して30kgの鋼塊
とし、これを熱間圧延および冷間圧延して0、8 mr
n厚にしたのち、オーステナイト系ステン1/ス鋼板の
製造に通常適用されている条件を用いて大気焼鈍−酸洗
仕上の板にし、この板を多段絞りして、種種の絞り比を
有する平底円筒カップに加工し、室温で2昼夜放置した
ときの、置き割れを起こさない最大の絞り比を調べた結
果は第1表に併記したごとくである。
Steel with the composition shown in Table 1 is made into a 30 kg steel ingot, which is then hot rolled and cold rolled to 0.8 mr.
n thickness, the plate is air annealed and pickled using the conditions normally applied to the production of austenitic stainless steel plates, and this plate is drawn in multiple stages to produce flat bottoms with various drawing ratios. Table 1 shows the results of investigating the maximum drawing ratio that does not cause cracking when processed into a cylindrical cup and left at room temperature for two days and nights.

表から明らかなごとく、鋼中Ni含有量を増すことは、
置き割れを起こさない絞り比を大きくすること、すなわ
ち耐置き割れ性を向上させる効果が顕著である。
As is clear from the table, increasing the Ni content in steel
Increasing the drawing ratio that does not cause cracking due to placement, that is, the effect of improving cracking resistance due to placement is remarkable.

したがって、JIs−8US305鋼のような高Ni含
有鋼では、実用上置き割れ発生を心配する必要がない。
Therefore, in high Ni-containing steel such as JIs-8 US305 steel, there is no need to worry about occurrence of cracking in practice.

しかし、このような高Ni含有鋼を用いることは高価に
つくばかりでなく、プレス成形性、とくに張出し成形性
が満足できる状態にないため、成形時に破断を生じやす
い欠点がある。
However, the use of such a high Ni-containing steel is not only expensive, but also has the disadvantage that it is prone to breakage during forming because its press formability, particularly its stretch formability, is not satisfactory.

一方、H2あるいは分解アンモニアガス雰囲気中で光輝
焼鈍された板は、焼鈍時にH2を吸収するため同一組成
鋼であれば、大気焼鈍−酸洗仕上された板とくらべては
るかに置き割れを起こしやすい。
On the other hand, a plate brightly annealed in an H2 or decomposed ammonia gas atmosphere absorbs H2 during annealing, so if the steel has the same composition, it is much more prone to cracking than a plate that has been air annealed and pickled. .

この状況は第2表に示すごとくであるが、組成の異なる
鋼について、大気焼鈍−酸洗仕上板(鋼中のH2量が少
ない板)で得られる各鋼量の耐置き割れ性の序列は光輝
焼鈍した板で比較しても逆転することはない。
This situation is shown in Table 2. Regarding steels with different compositions, the ranking of cracking resistance of each steel quantity obtained by air annealing and pickling finished plates (plates with a small amount of H2 in the steel) is as follows. Even if a bright annealed plate is compared, the results are not reversed.

しかし置き割れの発生が懸念されるような大きな絞り比
で深絞り加工をする場合には、光輝焼鈍板を用いずに、
大気焼鈍−酸洗仕上板を用いた方が明らかに得策である
However, when deep drawing is performed at a large drawing ratio where there is a concern that cracks may occur, bright annealed plates are not used.
It is clearly better to use an air annealed-pickled finish.

さて、従前の方法でオーステナイト系ステンレス鋼深絞
り品の置き割れ番抑制・防止したり、あるいは置き割れ
発生をきたさない絞り比を大きくするには、鋼のN1含
有量を多くしたり、プレス加工に際して、置き割れを起
こさない深絞り量で予備成形し、ついで焼なましして再
度絞り加工し所望の成形を行うか、所望の深さに絞り加
工したのち焼なましするか、あるいは鋼中のH2量を著
しく低減させるための鋼板での脱水素熱処理を施すとか
いった処理を講じる必要があった。
Now, in order to suppress and prevent the number of cracks in deep-drawn austenitic stainless steel products using conventional methods, or to increase the drawing ratio that does not cause cracks, it is necessary to increase the N1 content of the steel or press In this case, it is necessary to preform with a deep drawing amount that does not cause cracking, then anneal it and then draw it again to form the desired shape, or draw it to the desired depth and then anneal it, or It was necessary to take steps such as dehydrogenation heat treatment on the steel plate in order to significantly reduce the amount of H2 in the steel sheet.

しかし、このような措置は、貴重なNi資源の浪費なら
びに鋼板価格の上昇をきたし、また鋼板あるいは深絞り
品製作過程に余分の労力とエネルギーを費すことになる
However, such measures waste valuable Ni resources, increase the price of steel sheets, and require extra labor and energy in the process of manufacturing steel sheets or deep-drawn products.

発明者らは、かような問題点を打開して、耐置き割れ性
に富む安価なオーステナイト系ステンレス鋼を提供する
ことを目的に実験と検討を進めた結果、上述した元素の
影響のほか、Cは置き割れ感受性を増大するが、Nはこ
の性質にほとんど影響をおよぼさないという知見を得て
、熱間加工性やプレス成形性を損うことなく耐置き割れ
性の優れたオーステナイト系ステンレス鋼の開発に成功
した。
The inventors conducted experiments and studies aimed at overcoming these problems and providing an inexpensive austenitic stainless steel with excellent resistance to cracking due to aging.In addition to the effects of the elements mentioned above, the inventors found that We obtained the knowledge that C increases susceptibility to cracking in place, but N has little effect on this property, and we developed an austenitic system with excellent resistance to setting cracking without impairing hot workability or press formability. Succeeded in developing stainless steel.

すなわち重量百分率で0;0.04%以下、8111.
0%以下、Mn : 1.0〜4.0%、 Nt ;
7.5〜9.5%、 Or ; 17.0〜19.0%
、N;0.03〜0.08%で、かつC十N;0.04
〜0.10%残りはFeと不可避の不純物からなるオー
ステナイト系ステンレス鋼がそれである。
That is, the weight percentage is 0; 0.04% or less, 8111.
0% or less, Mn: 1.0-4.0%, Nt;
7.5-9.5%, Or; 17.0-19.0%
, N: 0.03 to 0.08%, and C+N: 0.04
The remaining ~0.10% is an austenitic stainless steel consisting of Fe and unavoidable impurities.

この発明において、鋼の各合金成分を上述のように限定
した理由はつぎのとおりである。
In this invention, the reason why each alloy component of the steel is limited as described above is as follows.

(1)O:少ないはど耐置き割れ性を向上させるが、適
度の加工硬度をもたらし成形性の向上に有効であるので
、急激に置き割れ感受性を増大させはじめる限界の0.
04%を上限値とした。
(1) O: A small amount improves the cracking resistance, but it provides a suitable working hardness and is effective in improving formability, so the limit of 0.
The upper limit was set at 0.04%.

(2)N:この発明において、Cを上述のとおり0.0
4%以下に限定して置き割れ抵抗性を高めたが、それに
伴なって、鋳造組織中のδ−フェライト相の量が増し、
鋼板製造過程での熱加工性を阻害して鋼板表面を損うの
を防止するためまた、オーステナイト相の安定化に役立
たせるため、下限値を0.03%と定めた。
(2) N: In this invention, C is 0.0 as described above.
Although the cracking resistance was improved by limiting the amount to 4% or less, the amount of δ-ferrite phase in the cast structure increased accordingly.
The lower limit was set at 0.03% in order to prevent damage to the surface of the steel sheet by inhibiting heat workability during the manufacturing process of the steel sheet, and to help stabilize the austenite phase.

さらに、多すぎると成形品の粒界腐食性および応力腐食
割れ感受性を増大させるので、0.08%を上限値とし
た。
Furthermore, since too much content increases intergranular corrosion and stress corrosion cracking susceptibility of the molded product, the upper limit was set at 0.08%.

なお、CとNの和の下限を0.04%としたのは、これ
以上少ないと、鋳造組織にδ−フェライト相を多量に生
じること、また鋼が軟質になりすぎてプレス成形性が劣
化することからであり、上限値を0.100%としたの
は、オーステナイト相が安定になりすぎ、鋼板の張出し
加工性が低下することおよび0.Nのクロム化合物を析
出して耐食性が低下することの故である。
The lower limit of the sum of C and N was set at 0.04% because if the amount is less than this, a large amount of δ-ferrite phase will be generated in the cast structure, and the steel will become too soft and press formability will deteriorate. The reason for setting the upper limit to 0.100% is that the austenite phase becomes too stable and the stretchability of the steel plate decreases. This is because chromium compounds of N are precipitated, resulting in a decrease in corrosion resistance.

(3) Si:鋼の溶製時におけるOrの回収および
清浄度を向上させるための脱酸とに用いたものが鋼中に
残存している量として上限を1.0%とした。
(3) Si: The upper limit was set at 1.0% as the amount of Si remaining in the steel used for recovering Or and deoxidizing to improve cleanliness during steel melting.

(4)Mnニオ−ステナイト相を安定化させると同時に
、鋼に適度な強度を与えるに要する量として1.0〜4
゜0%とした。
(4) The amount required to stabilize the Mn niostenite phase and provide appropriate strength to the steel is 1.0 to 4.
゜0%.

(5) Ni:耐置き割れ性を維持・向上させるに必
須な成分であり、7.5%以下では本発明め構成成分で
あるC含有量の低減およびNの豊富な添加によるオース
テナイト相の安定化をはかつても、耐置き割れ性が望ま
しい程度に向上しないばかりか深絞り性を劣化させる。
(5) Ni: An essential component to maintain and improve cracking resistance, and if it is less than 7.5%, the austenite phase will be stabilized by reducing the C content, which is a component of the present invention, and adding abundant N. However, not only does the aging cracking resistance not improve to the desired degree, but also the deep drawability deteriorates.

また9、5%以上では、上述の処置を講じなくとも耐置
き割れ性が比較的良好であっても、プレス成形性とくに
張り出し成形性が低下することさらにNi資源の浪費と
鋼板価格の上昇をきたすことから、上記の範囲とした。
In addition, if the concentration exceeds 9.5%, even if the cracking resistance is relatively good even without taking the above measures, press formability, especially stretch formability, will decrease, furthermore, Ni resources will be wasted and steel sheet prices will increase. Therefore, the above range was set.

(6) Or:耐食性を維持するために下限値を17
.0%とした。
(6) Or: Lower limit value is set to 17 to maintain corrosion resistance.
.. It was set to 0%.

一方多量に含有するほど耐食性の面(ζ からは好まし
いが、鋳造組織にδ−フェライト相を多量に生じて、鋼
板製造過程での熱間加工性を損うので上限値を19.0
%と定めた。
On the other hand, the higher the content, the better the corrosion resistance (ζ), but since a large amount of δ-ferrite phase is generated in the cast structure, impairing hot workability during the steel plate manufacturing process, the upper limit is set at 19.0.
%.

この発明の鋼は電気炉、転炉、その他通常の溶解炉およ
びさらにはこれらと真空脱ガス処理炉との組合せのいず
れで溶解・精錬して差支えないが、Nを鋼へ添加する方
法はN2ガスを溶鋼中に吹き込んで行なうのが好ましい
The steel of this invention may be melted and refined in an electric furnace, a converter furnace, other ordinary melting furnaces, or a combination of these and a vacuum degassing furnace, but the method of adding N to the steel is N2 It is preferable to blow gas into the molten steel.

その理由は窒化合金を使用しなくてすむことによる経済
性のみならず、N2ガス吹き込みにより溶鋼時点でも鋼
の脱水素処理をしておくことは、大気焼鈍−酸洗仕上の
板の水素含有量を低くしておくのに役立ち、鋼板の置き
割れ感受性を低下させるのに有効だからである。
The reason for this is not only the economic efficiency of not using a nitride alloy, but also the fact that dehydrogenation of the steel by N2 gas injection at the time of molten steel reduces the hydrogen content of the plate after atmospheric annealing and pickling. This is because it helps to keep the temperature low and is effective in reducing the susceptibility of steel plates to cracking.

つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.

実施例 第3表に示す化学組成の鋼を真空溶製し、30kgの鋼
塊とし、これを熱間圧延および冷間圧延して0.8mm
厚にしたのち、大気焼鈍−酸洗仕上の板にした。
Example Steel having the chemical composition shown in Table 3 was vacuum melted to form a 30 kg steel ingot, which was hot rolled and cold rolled to a thickness of 0.8 mm.
After making it thicker, it was made into a plate with an air annealing and pickling finish.

これらの板から採取した76.78、および82朋φの
3種類の素板を40mmφの平底円筒ポンチで絞り抜き
、室温で48時間放置して割れの有無・を調べ、割れを
生じていないものについては、それをさらに37mmφ
のポンチで絞り抜き、再度室温に48時間放置して割れ
発生の有無を調べるという具合にして、第4表に示すポ
ンチで最大3.28の絞り比まで深絞りして、置き割れ
を生じない最大絞り比を求めた。
Three types of raw plates of 76.78 mm and 82 mm diameter taken from these plates were squeezed out with a 40 mm diameter flat-bottom cylindrical punch, left at room temperature for 48 hours, and checked for cracks. Those with no cracks. For that, further increase it to 37mmφ
The material was drawn out with a punch, left at room temperature for 48 hours again, and checked for cracks, and then deep drawn with the punch shown in Table 4 to a maximum drawing ratio of 3.28 to avoid cracking. The maximum aperture ratio was determined.

なお、この絞り比が太きいはど耐置き割れ性が犬である
ことを意味する。
Note that a large drawing ratio means that the cracking resistance is excellent.

上記試験結果は第3表に併記したごとくである。The above test results are also listed in Table 3.

第3表に示した鋼のうちの1部ものものについいプレス
成形性を試1験した結果を第5表に示す。
Table 5 shows the results of a press formability test conducted on some of the steels shown in Table 3.

鋼Bと鋼Hとは、C+N含有量はともに約0.07%で
あり、Ni含有量もほぼ同程度であるが、鋼Bの方が臨
界絞り比が2.71と鋼Hより耐置き割れ性がすぐれて
いるのは、C含有量が0.04%以下と低いためと考え
られる。
Steel B and Steel H both have a C+N content of approximately 0.07% and a Ni content of approximately the same level, but Steel B has a critical drawing ratio of 2.71 and has a longer shelf life than Steel H. The excellent crackability is thought to be due to the low C content of 0.04% or less.

鋼A、BおよびFを比較すると本発明に基く範囲のN量
の添加は耐置き割れ性を阻害することなく鋼の熱間加工
性を向上させていることがわかる。
Comparing Steels A, B, and F, it can be seen that the addition of an amount of N within the range according to the present invention improves the hot workability of the steel without impeding the resistance to aging cracking.

また鋼Cと鋼にとを比較しても、本発明鋼であるCは、
約1%も多くのNi量を含有する従来鋼を凌駕する耐置
き割れ性を示している。
Also, even when comparing steel C and steel, C, which is the steel of the present invention,
It exhibits cracking resistance that exceeds that of conventional steel containing about 1% more Ni.

第5表に示すように本発明鋼はプレス成形性に関しても
従来鋼より一段とすぐれており、実用性に富むこ吉がわ
かる。
As shown in Table 5, the steel of the present invention is far superior to the conventional steel in terms of press formability, and it is clear that the steel is highly practical.

上述のようにしてこの発明によれば耐置き割れ性の向上
を、Niの浪費あるいは特別な工程を要することなく、
とくに有利に、しかも良好なプレス成形性にあわせ実現
することができる。
As described above, according to the present invention, the cracking resistance can be improved without wasting Ni or requiring any special process.
This can be achieved particularly advantageously and with good press formability.

Claims (1)

【特許請求の範囲】 1 重量百分率でO;0.04%以下、N;0.03、
〜0.08%でかつC十N; 0.04〜0.10%。 St + 1.0%以下、Mn : 1.0〜4.0%
、Niニア、5〜95%、 Or: 17.0〜19.
0%を含有し、残部が実質的にFeの組成になることを
特徴とする耐置き割れ性とプレス成形性にすぐれたオー
ステナ。 イト系ステンレス鋼。 □
[Claims] 1 O: 0.04% or less, N: 0.03, in weight percentage
~0.08% and C1N; 0.04-0.10%. St + 1.0% or less, Mn: 1.0 to 4.0%
, Ni near, 5-95%, Or: 17.0-19.
An austainer having excellent resistance to aging cracking and press formability, characterized by containing 0% Fe and the remainder being substantially Fe. Ito-based stainless steel. □
JP13774575A 1975-11-18 1975-11-18 Austenitic stainless steel with excellent cracking resistance and press formability Expired JPS5818425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13774575A JPS5818425B2 (en) 1975-11-18 1975-11-18 Austenitic stainless steel with excellent cracking resistance and press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774575A JPS5818425B2 (en) 1975-11-18 1975-11-18 Austenitic stainless steel with excellent cracking resistance and press formability

Publications (2)

Publication Number Publication Date
JPS5262113A JPS5262113A (en) 1977-05-23
JPS5818425B2 true JPS5818425B2 (en) 1983-04-13

Family

ID=15205828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774575A Expired JPS5818425B2 (en) 1975-11-18 1975-11-18 Austenitic stainless steel with excellent cracking resistance and press formability

Country Status (1)

Country Link
JP (1) JPS5818425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563657A (en) * 1979-06-23 1981-01-14 Nippon Steel Corp Non-aging high strength stainless steel

Also Published As

Publication number Publication date
JPS5262113A (en) 1977-05-23

Similar Documents

Publication Publication Date Title
KR950009223B1 (en) Austenite stainless steel
JP4150342B2 (en) Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same
CN109423577B (en) High-strength multi-phase steel tinning raw plate and manufacturing method thereof
US3960612A (en) Method for producing a low temperature high strength tough steel
JPS5849622B2 (en) Manufacturing method of cold-rolled steel sheet for ultra-deep drawing by continuous annealing
JP7421650B2 (en) High-strength ferritic stainless steel for clamps and its manufacturing method
JP2011528751A (en) Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained
CN109897946B (en) Cold-rolled enameled steel plate without pinhole defect and manufacturing method thereof
CN114231846A (en) Titanium-boron composite hot-rolled enamel steel for water heater liner and preparation method thereof
JPS5818425B2 (en) Austenitic stainless steel with excellent cracking resistance and press formability
US5137584A (en) Niobium carbide strengthened steel for porcelain enameling
JP6146401B2 (en) Ferritic stainless steel sheet
EP0130221B1 (en) Process for producing corrosion-resistant alloy steel
JP2578598B2 (en) Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
JPS5910415B2 (en) Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
JP2001003144A (en) High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
CN108441781B (en) High-strength corrosion-resistant steel bar and heat treatment method thereof
JP3608636B2 (en) Ferritic stainless steel with excellent workability
JPS633930B2 (en)
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JPS5817811B2 (en) Fukashiboriseino Sugretakouchiyouriyoreienkohanno Seizouhouhou
JPH1192877A (en) High purity chromium steel sheet excellent in formability and secondary working embrittlement-resistance after deep drawing
JPS6153411B2 (en)
JPH06256900A (en) Cold rolled steel sheet excellent in secondary working brittleness and its production