JPS58184117A - Scanner of plural beams - Google Patents

Scanner of plural beams

Info

Publication number
JPS58184117A
JPS58184117A JP57067650A JP6765082A JPS58184117A JP S58184117 A JPS58184117 A JP S58184117A JP 57067650 A JP57067650 A JP 57067650A JP 6765082 A JP6765082 A JP 6765082A JP S58184117 A JPS58184117 A JP S58184117A
Authority
JP
Japan
Prior art keywords
lens
deflection
light
light source
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57067650A
Other languages
Japanese (ja)
Other versions
JPS6411926B2 (en
Inventor
Kazuo Minoura
一雄 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57067650A priority Critical patent/JPS58184117A/en
Priority to DE19833314402 priority patent/DE3314402A1/en
Publication of JPS58184117A publication Critical patent/JPS58184117A/en
Publication of JPS6411926B2 publication Critical patent/JPS6411926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To make a high-speed scanning possible, by providing two image forming systems having positive refracting power between a light source and a deflector. CONSTITUTION:Luminous fluxes from light emitting parts 1a and 1b of a semiconductor array laser light source 1 are condensed by an image forming lens 2, and principal light beams m1 and m2 of them overlap each other at a focus F. The luminous flux condensed near the second image forming lens 3 has the direction changed by a spherical lens 3a and goes toward a deflecting reflective face 5a of a polygon mirror 5, and an image is formed in a conjugate position F' of the focus F of the image forming lens 2, and the spread of the beam on the deflecting reflective face 5a is reduced, and the polarizing reflective face of the polygon can be reduced. Consequently, the device is made small-sized, and the scanning efficiency is improved because the polygon is rotated at a high speed.

Description

【発明の詳細な説明】 本発明は半一導体レニザーアレーの如龜、アレー状光源
を光゛源部に用いた走査装置に関するもVである0  
   ゛ 従来□、半導体レーザー6党出力t!6を複数個並べ友
所謂半導体し−ザーアV−を使用して、−ゴンミラー、
ガルバ′)″ミラー等の偏向器の偏向反射向上で、各々
の光源部から射出されるビームが拡が9すぎると、#A
向反射面の面積が太きくなり、従って走査手段が大きく
なり、且つ走査スピードを上げられないという電点があ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scanning device using a semiconductor laser array and an array light source as a light source.
゛Conventional □, semiconductor laser 6-party output t! By arranging multiple 6's and using a so-called semiconductor, -Gon mirror,
If the beams emitted from each light source are expanded too much by improving the deflection reflection of a deflector such as a galvanic mirror, #A
There is an electrical point in which the area of the anti-reflective surface becomes large, and therefore the scanning means becomes large, and the scanning speed cannot be increased.

こり電点を解消する為に1%開昭56−69610号公
報に於いては、各光源からの光束tコリメートするコリ
メートレンズ管設け、このコリメートレンズの射出瞳の
位置を偏向反射面上においている。この走査装置に於い
て、光S部と漏向器の間に更なる光学部材、例えば偏向
器の回転軸等の倒れを補正する為のアナモフィック光学
部材を配するには、光源部と偏向器との間隔は、光源部
と偏向器の間の距離を長くしようとすると必然的にコリ
メーターレンズの焦点距離を長くする必要があり、そう
するとコリメーターレンズのFす/ノ゛−を暗くするか
、偏向器で・ :′: あるポリゴンミラーの外径管大きくする必要がある。前
者の場合、すなわち、コリメーターレンズOFナンバー
を暗くするとポリゴンミラーの外径は小さくできるが、
光源部から発散する光束に対してコリメート光束の比率
が低下し。
In order to eliminate the electrical point, 1% Patent Publication No. 1983-69610 provides a collimating lens tube to collimate the light flux t from each light source, and the position of the exit pupil of this collimating lens is placed on the deflection reflection surface. . In this scanning device, in order to arrange an additional optical member between the light S section and the deflector, for example, an anamorphic optical member for correcting the inclination of the rotation axis of the deflector, it is necessary to arrange the light source section and the deflector. If you try to increase the distance between the light source and the deflector, you will inevitably need to increase the focal length of the collimator lens. , with a deflector: It is necessary to increase the outer diameter of a certain polygon mirror. In the former case, the outer diameter of the polygon mirror can be made smaller by making the collimator lens OF number darker.
The ratio of the collimated light flux to the light flux diverging from the light source decreases.

エネルギー利用効率が低下してしまう0後者の場合、す
なわち、ポリゴンの外径を大きくすれば、上記のエネル
ギー利用効率は問題ないが。
In the latter case, in which the energy use efficiency decreases, if the outer diameter of the polygon is increased, there is no problem with the energy use efficiency.

ポリゴンの回転速fを速めることが困−となるにけでな
く、低コスト化が困難となる。
Not only is it difficult to increase the rotational speed f of the polygons, but it is also difficult to reduce costs.

本発明の目的は、上述した欠点を改良し、エネルギーの
利用効率が曳く、偏向装置も小型でム連の走査が可能な
複数ビーム走査装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks, and to provide a multiple beam scanning device that has high energy utilization efficiency, has a small deflection device, and is capable of continuous scanning.

本発明に係る走査装置に於いては、供給される各々O光
束の主光線が平行となる様な複数ビーム供給光源部と、
その光軸が藺紀光源部の各光束の主光線と平行になる様
に設けられた第1結欅光学系と、該第1結儂光学系と偏
向手段との間には前記第1−、侭光学系と共軸−t6A
f@2結像光学系を配する0第1結像光学系は光源部か
らの各々の光束管収束させ、光源部の儂を形成する位置
に設けられており、一方、第2結儂尤学系は少なくとも
偏向走査面と平行な面内に於いては、前記第1@儂光学
系の偏向手段@O焦点位置と、偏向手段Q−N反射向V
近憎位置とt光学的に共役な1係に保つものでするPI
3、本明細書″rFは上記偏向走査面とは、−向反射向
の法−が偏向器のり動に従って、経時的に形成するIf
i′に意味する。
In the scanning device according to the present invention, a plurality of beam supplying light source section such that the chief rays of the respective O light fluxes supplied are parallel;
A first coupling optical system is provided so that its optical axis is parallel to the principal ray of each light beam of the light source section, and the first coupling optical system is provided between the first coupling optical system and the deflection means. , coaxial with the side optical system -t6A
The first imaging optical system, which has an f@2 imaging optical system, is provided at a position to converge each light beam tube from the light source section and form a part of the light source section. At least in a plane parallel to the deflection scanning plane, the optical system has a focal position of the deflection means of the first optical system and a reflection direction of the deflection means Q-N of the optical system.
The PI is kept at an optically conjugate position with the near-hide position.
3. In this specification, "rF" refers to the above-mentioned deflection scanning surface If which is formed over time according to the sliding movement of the deflector.
means i′.

向、上、−1第2緒書元学糸は少なくとも偏向走査面と
平行な面内に於いてはと、いう意味は、第2結像光学系
は球面光学系であって、光源から偏向手段に至る光軸を
含み偏向走査面と直交する山内(以IF、亨に偏向走査
面と直交する面とどう)に於いても、前記−向反射1f
Iio近傍位置光学的に共在な関係に保ってもへいし、
−或いは直交する方向マはパワー、の異なるアナモフィ
ックな光学系でろって1−向走査自と直交する山内に於
いては、上述した関Sを満たさなくても喪いと言う事で
ある。
This means that at least in a plane parallel to the deflection scanning plane, the second imaging optical system is a spherical optical system, and the deflection from the light source is Even in the mountain area (hereinafter referred to as IF, or ``plane perpendicular to the deflection scanning plane'') that includes the optical axis leading to the means and is perpendicular to the deflection scanning plane, the -direction reflection 1f
It is also possible to maintain the optically coexisting relationship between the positions near Iio and
- Or, it may be an anamorphic optical system in which the orthogonal directions have different powers, and in the case of a mountain that is orthogonal to the one-direction scanning direction, it is a problem even if the above-mentioned relation S is not satisfied.

本発明に係る走査、装置に於いては1.偏向、手段の偏
向反射面の倒れを補正する為に、uA向反射圓上に縁I
JIIを投影する場合は、前記第2結儂光学系はアナモ
フィックな光学系でめる必要がある。この場合、偏向走
f面と直交する面内′に於いては、第1WI4&光学系
からの光束を偏向反射面上に収束出来る様なパワーを第
2結像光学系が′iて′ば良い。このアナモフィックな
第2結謙元学”糸の構成としては1球面光学系とシリ/
トリカル光学系の組み゛合わせ、或いはトーリックレン
ズが一枚で構成出来る。
In the scanning apparatus according to the present invention, 1. In order to correct the inclination of the deflection reflecting surface of the deflection means, an edge I is placed on the uA direction reflection circle.
When projecting JII, the second coupling optical system must be an anamorphic optical system. In this case, in the plane perpendicular to the deflection scanning f-plane, the second imaging optical system should have such power that it can converge the light beam from the first WI4 & optical system onto the deflection reflection surface. . The structure of this anamorphic 2nd Keiken Gengaku thread is one spherical optical system and a series/
It can be constructed by a combination of toric optical systems or by a single toric lens.

前記偏向走査面と平行な面内に於いては、第1鮎像光学
系に□よる前記アレー状光源から゛の光束の結像位置と
、第2結儂光学系の焦点位置とt合!にさせておけば、
偏向器の偏向反射面に入射するピ゛−ムは平行光束とな
る;又、第2結像元−学系□の焦点位置が、前記@1結
儂光学系によるアレー状光源からの光束の結像位置より
光源−に存する場合は、第2結像光学系の□作用はフィ
ールドレンズとしての役割か゛増し、偏向器の偏向反射
面に入射するビームは発散光束となる。
In a plane parallel to the deflection scanning plane, the imaging position of the light beam from the array light source by the first Ayu image optical system □ coincides with the focal position of the second convergent optical system! If you let it,
The beam incident on the deflection reflection surface of the deflector becomes a parallel light beam; also, the focal position of the second imaging source optical system When the second imaging optical system is located closer to the light source than the imaging position, the □ action of the second imaging optical system increases its role as a field lens, and the beam incident on the deflection reflection surface of the deflector becomes a diverging light flux.

鎚って、偏向1#O゛偏向反射面に入射するビームの形
状ri、前者on合が線状の平行光束、後者O場合が線
状の発散光束となる。以下、図面を用い−C本発明を詳
述するが、以下に用いる実施例では偏向器の@れな補正
する為K112細儂光学系として球面レンズとシリンド
リカルレンズより構成されるものを示すが1本発明に係
る構成の必mS材としては、球面レンズのみで良いので
あってシリンドリカルレンズは省いても良い0 第1図(AXB)は本発明に係る走査装置の一実施例を
示す図で、(A)は走査装置全体の平面図を。
As a result, the shape ri of the beam incident on the deflection reflecting surface is 1#O, and the former case is a linear parallel beam, and the latter case is a linear divergent beam. The present invention will be described in detail below with reference to the drawings. In the embodiments used below, a K112 optical system consisting of a spherical lens and a cylindrical lens will be shown to correct the deflection of the deflector. As the essential S material for the configuration according to the present invention, only a spherical lens may be used, and the cylindrical lens may be omitted. FIG. 1 (AXB) is a diagram showing an embodiment of the scanning device according to the present invention. (A) is a plan view of the entire scanning device.

β)は光源部から偏向器の間の光学系の正面図を示すも
のである。第11四(6)に於いて、1は複数i!io
発光部1a、lbf:有する半導体レーザーアレー、2
は前記半導体レーザーからの光束の主光線とその元軸4
が平行に、1な9る様に設けら′1 れた球面の第1結像レンズ、3は□球面レンズ3aとそ
の母線が偏向走査面と平行で、且つ光軸4と直交する様
に設けられたシリンドリカルレンズ3bより成る第2結
像レンズ、5Fi偏向手段としてのポリゴンミラー、6
はトーリック率レンズ、7#i被走査画である0 第11四に騎いて、半導体アレーレーザー光線lの発光
部1a、lbより出射され九光束は。
β) shows a front view of the optical system between the light source section and the deflector. In Section 114(6), 1 is plural i! io
Light emitting section 1a, lbf: semiconductor laser array having, 2
is the chief ray of the luminous flux from the semiconductor laser and its original axis 4
A spherical first imaging lens 3 is provided so that the planes are parallel to each other, and 9 is 1, and 3 is a spherical lens 3a whose generatrix is parallel to the deflection scanning plane and perpendicular to the optical axis 4. A second imaging lens consisting of a cylindrical lens 3b provided, a polygon mirror as a 5Fi deflection means, 6
is a toric rate lens, 7#i is a scanned image, 0, 114, and nine luminous fluxes are emitted from the light emitting parts 1a and lb of the semiconductor array laser beam l.

第IM*し/ズ2にて集光され第2結儂レンズ3の近傍
Kflilする0ま喪1点線で示す各々の主光1i m
、、 m@は第11il像V7ズ2の焦点Fを通過する
。従って、こOFなる位置で双方の光束の主光線は重な
り合い、空間的に双方の光束か占める拡が9が最も小さ
くなる。菖2結儂レンズ、%に球面レンズ3mの近傍に
集光され九光5!l[は、球面レンズ31のフィールド
レンズトシての作用によりその光路の向きが変えられ、
ポリゴンミラ−50偏向反射画5mに向う。前記第1績
儂レンズの焦点rなる位置と偏向反射面の近傍位置F′
とは1港t#A(5)に示す偏向走査面1! と平行な市内に於いては、纂2緒像レンズ3(実質的に
は球面レンズ系3mであるが)K関して光学的に共役な
関係になっている。従って。
Each principal light 1i m shown by a dotted line is condensed by the IM* lens 2 and near the second convergence lens 3.
,, m@ passes through the focal point F of the 11th il image V7z2. Therefore, at the position OF, the principal rays of both light beams overlap, and the spatial extent occupied by both light beams is the smallest at 9. The irises of the iris lens are focused in the vicinity of the spherical lens of 3m and produce 9 lights of 5! The direction of the optical path of l[ is changed by the action of the field lens of the spherical lens 31,
Polygon mirror 50 deflection reflection image towards 5m. The focal point r of the first lens and the nearby position F' of the deflection reflection surface.
is the deflection scanning plane 1 shown in port t#A (5)! In the city parallel to K, there is an optically conjugate relationship with respect to the image lens 3 (substantially a spherical lens system 3m). Therefore.

実質的には、偏向反射面5a上には、@2結1歇し/ズ
3により−〔第1鮎儂Vンズ20鳩点Fでの源が形成さ
れており、−内反射面5a上でのビームの拡がりは小さ
くなり、ポリゴンの偏向反射而も小さく出来、装置O小
型化が計れる上にポリゴンを^速で回転出来る為走査効
率も同上する。第2結像レンズ3會構成する負Oシリン
ドリカルレンズ5は、第1回置に示す嫌な鏡面走f面と
平行な面内ではパワーを有しないので、走査ビームには
影響を与えない。
Substantially, on the deflection reflecting surface 5a, a source at the point F is formed by @2 and 3, and a source at point F is formed on the inner reflecting surface 5a. The spread of the beam becomes smaller, the deflection and reflection of the polygon can be made smaller, the apparatus can be made smaller, and the polygon can be rotated at a faster speed, so the scanning efficiency is also improved. The negative O cylindrical lens 5 constituting the second imaging lens 3 has no power in a plane parallel to the unfavorable specular scanning f plane shown in the first position, so it does not affect the scanning beam.

ポリゴンミラー5に入射するビームは発散光束であるの
で、ポリゴンミラー5と被走査面との間に配されるレン
ズ糸6#′i単し/ズであっても、平坦な被走査向を良
好な結儂スポットで走査することが出来る。この理由は
、レンズ糸6のペッツバール和を積極的に生かす為でめ
9゜この詳細な技術に関しては、待關昭54−8754
0号公報に述べられているので仁こでFi説明を省く。
Since the beam incident on the polygon mirror 5 is a diverging light flux, even if the lens thread 6#'i disposed between the polygon mirror 5 and the surface to be scanned is a single lens thread, it is possible to obtain a flat scanned direction with ease. It is possible to scan with a specific spot. The reason for this is to actively take advantage of the Petzval sum of the lens thread 6.9゜This detailed technique can be found in 1987-8754.
Since it is stated in Publication No. 0, I will omit the explanation of Fi here.

又、M像レンズ6は偏向走査面と直交する山内に於いて
は、ポリゴンの偏向反射面5aと被走査向7とを光学的
に共役な位置間係に保つために、この面内に於いてもパ
ワーを持つ必要かめる0し/ズ糸藝は直交する双方の山
内でパワーを持つ必要が69.且つそれぞれのパワーt
i異なる為にトーリックレンズの形状を取る。
In addition, the M image lens 6 is placed within this plane in order to maintain an optically conjugate positional relationship between the polygonal deflection reflection surface 5a and the scanning direction 7 in the mountain area perpendicular to the deflection scanning plane. 69. It is necessary to have power even if the two sides are perpendicular to each other. and each power t
Since it is different, it takes the shape of a toric lens.

又、偏向走査面内に於いて、シ/グルトーリックレンズ
6の歪曲収差を偏向器の回動特性に合わせてやれば、一
定の速度で被走査面を走査する。
Furthermore, in the deflection scanning plane, if the distortion of the si/glutoric lens 6 is made to match the rotational characteristics of the deflector, the scanning surface can be scanned at a constant speed.

ことが出来る。従ってS発散状態で元ビームが入射すれ
ば、偏向器と被走査+kDl!IK配されるレンズ系を
一枚のトーリックレンズで形成することにより、平坦な
被走査面を等速で走査し、且つ偏向the)1%4れを
補正することも出来る0w41図@に示す如く、偏向走
査面と垂直な山内に!にいては1発光部、からの光束は
上述した如く第1結像レンズ系2により集光された後、
負の7リンドリカルレ/ズ3bにより発散光束となって
球−レンズ3a41C入射する。前記シリンドリカル凹
レンズ3bは球面レンズ3aに入射する光束があたかも
前記第1WI轍し/ズ系2の焦点位置)゛から発せられ
たかの如<glmmしンズ糸2からの光束を屈折させる
。上述した如く実質的に球面レンズ31によって、第1
結像レンズ系の焦点位置Fとポリゴン2ラー5の偏向反
射thi5 aの近傍位置F′とは光学的に共役な関係
に保たれているので、ポリゴンミラーの偏向反射面5a
上にはS偉が形成される。
I can do it. Therefore, if the original beam enters in the S-divergent state, the deflector and the scanned +kDl! By forming the IK lens system with a single toric lens, it is possible to scan a flat scanned surface at a constant speed and also correct the deflection as shown in Figure 0w41 @. , in the mountains perpendicular to the deflection scanning plane! In this case, the light beam from the first light emitting unit is focused by the first imaging lens system 2 as described above, and then
The negative 7 lindrical lens 3b makes the light beam divergent and enters the sphere-lens 3a41C. The cylindrical concave lens 3b refracts the light beam from the lens thread 2 as if the light beam incident on the spherical lens 3a was emitted from the focal position of the first WI rutting/zoom system 2. As described above, the first
Since the focal position F of the imaging lens system and the position F' near the deflection reflection thi5a of the polygon mirror 5 are maintained in an optically conjugate relationship, the deflection reflection surface 5a of the polygon mirror
S-wei is formed above.

#p、2図(8)の)は本発明に係る走査装置の他O実
lA143を示す図で、第2図囚は偏向走査面と平行な
平面内、第2図03)は偏向走査面と直交する面内に於
ける光路を示している。冑、第2図^但)は光源部と偏
向器と0間の光学系のみを示している。第2装置に於い
て、半導体レー□ザーアレ−1の発光部1a、lbから
の各光束は第1結偉光学系2により1面Q上に結像すゐ
。第2結像光学系3D’llち、実質的には球面レンズ
系3aであるが)の一方の焦点位置は該9面上に合致さ
せてあり、従って、第2結−光学°系3を通過した光束
は平行ビームとなって偏向器の偏向反射面5aに向う。
#p, Figure 2 (8)) is a diagram showing the scanning device according to the present invention as well as the O real lA143, Figure 2 (2) is in a plane parallel to the deflection scanning plane, and Figure 2 (03) is in the deflection scanning plane. It shows the optical path in a plane perpendicular to . Figure 2) only shows the optical system between the light source, deflector, and zero. In the second device, each light beam from the light emitting portions 1a, lb of the semiconductor laser array 1 is imaged onto a surface Q by a first focusing optical system 2. One focal point of the second imaging optical system 3D'll (substantially a spherical lens system 3a) is made to coincide with the nine surfaces, so that the second imaging optical system 3 is The passed light flux becomes a parallel beam and heads toward the deflection reflection surface 5a of the deflector.

又、第11W′(イ)で示した如く、第2図(5)で示
される光学系も第1結像レンズ糸20焦点の位gFと、
偏向反射向5a(D極く近四の位置F′とは、第2結儂
レンズ系3に関して光学的に共役な位置となる様に設定
されている。
In addition, as shown in 11W' (a), the optical system shown in FIG. 2 (5) also has a focal point gF of the first imaging lens thread 20,
The deflection/reflection direction 5a (the position F' closest to D) is set to be an optically conjugate position with respect to the second convergence lens system 3.

故に上述しえ如く、偏向反射#J5a上に於ける光束の
拡がりを小さく出来、小さな偏向器で良い。
Therefore, as mentioned above, the spread of the light flux on the deflection reflection #J5a can be made small, and a small deflector can be used.

シリンドリカル凸レンズ3Cは偏向走査面と平行な園内
に於いてはパワーを有しない為、走査用のビームに対し
ては何等屈折作用管及ぼさない。然しなから、第2図(
B)K示す如く偏向走査面と直交する面内に於いては集
光作F@を有し、シリンドリカル凸レンズ3Cを通過し
て球面レンズ31に入射する光束があたかも第1結嶽光
字糸2の焦点Fから発せられたかの如く、光束t−屈折
させる。球面レンズ3ari、第1iiI像レンズ20
焦点位置Ft偏向反射面5aとをほぼ::、・1 光学的に共役な位置関係に保つので、偏向走査lと直交
する面内に於いては、偏向反射面上で光束は集束する。
Since the cylindrical convex lens 3C has no power in the area parallel to the deflection scanning plane, it does not exert any refractive effect on the scanning beam. However, Figure 2 (
B) As shown in K, there is a condensing effect F@ in the plane perpendicular to the deflection scanning plane, and the light flux passing through the cylindrical convex lens 3C and entering the spherical lens 31 is as if it were the first convergent optical fiber 2. The light beam t- is refracted as if it were emitted from a focal point F. Spherical lens 3ari, 1iiiI image lens 20
Since the focal position Ft and the deflection reflection surface 5a are maintained in an optically conjugate positional relationship of approximately ::,.1, the light beam is converged on the deflection reflection surface in a plane orthogonal to the deflection scan l.

第2図(A)(6)では示していないが、偏向器と被走
査面との間に配される走査用の結像レンズは。
Although not shown in FIG. 2(A) (6), there is a scanning imaging lens disposed between the deflector and the surface to be scanned.

偏向走査面内に於いては偏向器で偏向される平行ビーム
を被走−面上に結像させ諷屈折カを。
In the deflection scanning plane, a parallel beam deflected by a deflector is imaged on the scanned surface to produce a refraction force.

偏向走査面と直交する面内に於いては、−内反射面の近
傍位置F′と被走査面とを光学的1に共役とする屈折力
i有す為ナナミライック結像レンズである。そし−(、
@向走査面内に於けるアナモフィック結像レンズの歪曲
収差を偏向器め回動特性に始らして持たせ゛ることによ
り、被走査面上でビームスポットを等速+走査すること
が出来る。      ゛ 第3図(A)(B)は5本発明に係る老香装置をレーザ
ー・ビーム・プリンターに一用した概′略図を示すもの
で、第31囚は偏向if面と千行履山内の図、第3図の
)′M偏向走査−と直交する面内に於ける展開図である
。変調さ八た屍ビームを発する半導体アレーレーザーl
l、該アレーレーザーから発せられるi々の光ビームの
主光線とほば手行な光軸14を有すふ第1結像レンズ系
2、球面レンズ13aと正のシリンドリカルレンズ13
bより成る第2結像光学系130[成、配置は第2図(
A) (B) K示すものと同じでめるので、□ここで
は説f!Aを省く015は等速回転のポリゴンミラーで
偏向反射面15a近傍で、点線で示す各発光部からの主
光線(lla、1lb)が交わっている。偏向反射面1
5aで偏向された光束は、ポリゴンミラー15i14に
凹面を向けたメニスカスレンズ14s及び)−リックレ
ンズ17より成る走査用結像レンズにより回転する電子
写真の感光ドラム18上の所定の位置に結1象する。走
査用結像レンズ(16,17)は。
In a plane orthogonal to the deflection scanning plane, it is a nanomirror imaging lens because it has a refractive power i that makes the position F' near the -internal reflection surface and the scanning surface optically conjugate to unity. Soshi-(,
By incorporating the distortion aberration of the anamorphic imaging lens in the @-direction scanning plane into the rotational characteristics of the deflector, the beam spot can be scanned at a constant speed on the scanning plane. Figures 3(A) and 3(B) show a schematic diagram of the 5-year old incense device according to the present invention used in a laser beam printer. FIG. 3 is a developed view in a plane perpendicular to the plane ()'M deflection scan in FIG. 3; Semiconductor array laser that emits a modulated corpse beam
l, a first imaging lens system 2 having an optical axis 14 almost parallel to the principal ray of the i light beams emitted from the array laser; a spherical lens 13a and a positive cylindrical lens 13;
A second imaging optical system 130 consisting of
A) (B) Since it is the same as shown in K, □ here is theory f! 015, omitting A, is a polygon mirror that rotates at a constant speed, and the chief rays (lla, 1lb) from each light emitting unit shown by dotted lines intersect near the deflection reflection surface 15a. Polarized reflective surface 1
The light beam deflected by 5a is focused at a predetermined position on a rotating electrophotographic photosensitive drum 18 by a scanning imaging lens consisting of a meniscus lens 14s whose concave surface faces a polygon mirror 15i14 and a )-rick lens 17. do. The scanning imaging lenses (16, 17) are.

−向走査面内ではf−−の結像特性、いわゆるI−−レ
ンズとしての機能をも有しており、ポリゴンミラーで偏
向され九九ビームは感光ドラム18上を等速で移動する
。一方、偏向走査面と直交する山内では、光源llから
の光ビームrよ偏向反射面15a′上に結像されており
、偏向反射面ISaと感光ドラム1Bは走査用結(象レ
ンズ(l“6,17)に対して光学的に共役な位置にあ
るので、偏向反射ifi 15 aが同郷かの原囚によ
り填い−Cも、常に感元ドシム18上O所炬の位置に元
ビームtW1啄さぜる01−1感元ドラムのffdi2
f1には、電子写其會形成するプロセスに必安な櫨々の
部材が配されているが、これ尋Oノ゛ロセス及び配置さ
nている部材1ユ公知で66ので、ここでは省いである
In the - direction scanning plane, it also has an f-- imaging characteristic, so-called I-lens function, and the multiplication beam is deflected by a polygon mirror and moves on the photosensitive drum 18 at a constant speed. On the other hand, in the mountain that is perpendicular to the deflection scanning surface, the light beam r from the light source ll is focused on the deflection reflection surface 15a', and the deflection reflection surface ISa and the photosensitive drum 1B are used as a scanning lens (elephant lens (l" 6, 17), the deflection and reflection ifi 15 a is filled by the original prisoner from the same hometown. Takusazeru 01-1 kangen drum ffdi2
F1 is equipped with a number of members that are essential for the process of forming an electronic photo frame, but this process and arrangement of members is well known at 66 times, so they will not be discussed here. be.

向、第l−1第21V(示す如く、m12鮎寥元字糸3
に#I成するシリ/トリカルレンズ3b。
Direction, No. 1-1 No. 21V (as shown, m12 Ayutomoto character thread 3
The silicate/trical lens 3b consists of #I.

3ciユ、偏向走査面と直交する方向e)屈折力が正と
負V場合がめる。このことはアナモノイック九字部材t
ath−置と関係がめ9、凱l顛像し/ズ糸による発光
moiIB葎位置よりも光源部−に配され7tJJ!合
が負の屈折力、同じく一陶器一に配されfc場合が正の
屈折力1に持つ。
3ciU, direction perpendicular to the deflection scanning plane e) Determine whether the refractive power is positive or negative V. This means that the anamonic Kuji member t
ath- position and relationship Meg 9, the light emitted by the thread is placed closer to the light source than the position of moiIB, and 7tJJ! The case of fc has a negative refractive power, and the case of fc, which is placed in one piece, has a positive refractive power of 1.

又、不発qtic係る走査装置では、糾2鮎置レンズ系
の焦点距*t−賀化さぜゐことVこL9.光11 源と一同器との間V距離を1出−こ調整することがuJ
−ヒでめる0 以上、不発明に係る走査装置では1元源と偏向−0間に
正の屈灯刀を持つ二つの鮎−系を配するだけで、光61
sからの複数のビームの主光1ml!を偏向器の偏向反
射面の近傍で交叉させることが出来るし、各々の結像系
の焦点距離を変化構成である為に、偏向器の倒れを防止
する為に。
In addition, in the scanning device related to the unfired qtic, the focal length of the lens system is 2. Light 11 It is uJ to adjust the V distance between the source and the device by one output.
-Hidemeru0 As described above, in the scanning device according to the invention, by simply placing two Ayu-systems with positive lanterns between the one-source source and the deflection-0, the light 61
1ml of main light of multiple beams from s! can be made to intersect near the deflection reflection surface of the deflector, and since the focal length of each imaging system is configured to vary, this is to prevent the deflector from tipping over.

−陶器の偏向反射面上に線像を形成しても、各々の光束
の線像の中心位置はほぼ合致させることが出来るので、
複数ビームを使用しても被走査面上での各々のビームス
ポットは、良好なフォーカス状態で結像される。
-Even if a line image is formed on a ceramic deflection-reflecting surface, the center positions of the line images of each light beam can be almost matched, so
Even when multiple beams are used, each beam spot on the surface to be scanned is imaged in a good focus state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図囚、(B)は本発明に係る複数ビーム走査装置の
一実施例を示す図、第2図因、@は本発明に保る複数ビ
ーム走査装置の他の実施例を示す図。 妃3装置、β)は本発明に係る複数ビーム走査装置tレ
ーザービームプ゛′1:′″リンター適用した図を示す
図。 l・・・半導体レーザーアレー、la、lb・・・発y
t、部、2・・・第1結像レンズ系、3・・・第2結像
レンズ系s3m・・・球面レンズ、3b・・・シリ/ト
リカル凹レンズ、3c・・・シリンドリカル凸レンズ。 4・・・光軸、5・・・ポリゴンミラー、5a・・・−
向反射向。 出願人  キャノン株式会社 1′・砧
FIG. 1(B) shows an embodiment of the multiple beam scanning device according to the present invention, and FIG. 2(B) shows another embodiment of the multiple beam scanning device according to the present invention. Fig. 3 device, β) is a diagram showing a multiple beam scanning device according to the present invention to which a laser beam beam printer is applied.l...Semiconductor laser array, la, lb...ray
t, part, 2... first imaging lens system, 3... second imaging lens system s3m... spherical lens, 3b... cylindrical/trical concave lens, 3c... cylindrical convex lens. 4... Optical axis, 5... Polygon mirror, 5a...-
Anti-reflection. Applicant Canon Co., Ltd. 1' Kinuta

Claims (1)

【特許請求の範囲】 (1)各々独立したmaO光ビームを供給する光源部を
備え、これ等複数O光ビームで被走査面上を走査する装
置に於いて、前記光源部からの各光束の主光線とその光
−がほぼ平行となる様に配され、且つ前記光源部からの
光束を集光して光源部の像を形成、、する第1#f像光
学系と、該第1結像光学系と参上偏向手段との間に配さ
れ、偏向手段の偏向走査面と大行な通、内に於いては、
第1結像享学系の偏向手段1IIo焦点位置と偏向手段
の偏向反射面との位置をほぼ光学的に共役な関、jlk
に保つ為O鯖2結像光、学系と1を有する事を特徴とす
る複数ビーム走査装置0  1 (2)前記第2結像光学系はアナ毫フィックな光学系で
ろ9、光源部と偏向手段との間の光軸、を含み、且つ偏
向器の偏向走査向と直交する山内に於iては、偏向器の
偏向反射面上に光ビニムを集束させる事を特徴とする特
許1illXOa曲第1項記載の複数ビーム走査装置。 (8)  *紀第2結像光i系線、球面し/ズ系とシリ
ンドリカルVンλ系より成4%許請求の範囲第2−記載
の複数ビーム走査装置。 (匍 wi紀第2結像光学系は、一枚のトーリックレン
ズより成る轡許−求の範囲@2項記絨の複数ビーム走査
装置0   □
[Scope of Claims] (1) In an apparatus that includes a light source section that supplies each independent maO light beam and scans a surface to be scanned with a plurality of these O light beams, each light beam from the light source section a first #f image optical system arranged so that the principal ray and its light are substantially parallel, and condensing the light flux from the light source to form an image of the light source; Disposed between the image optical system and the image deflection means, and in communication with the deflection scanning surface of the deflection means,
The position of the focal position of the deflection means 1IIo of the first imaging system and the deflection reflection surface of the deflection means is set to a substantially optically conjugate relationship, jlk
(2) The second imaging optical system is an analog optical system, and a light source section and a light source section. Patent 1ill 2. The multiple beam scanning device according to claim 1. (8) *The multiple beam scanning device according to claim 2, in which the second imaging light beam is composed of an i-system line, a spherical beam/z system, and a cylindrical V-n λ system. (The second imaging optical system consists of a single toric lens. The required range @ Section 2 describes the multiple beam scanning device 0 □
JP57067650A 1982-04-22 1982-04-22 Scanner of plural beams Granted JPS58184117A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57067650A JPS58184117A (en) 1982-04-22 1982-04-22 Scanner of plural beams
DE19833314402 DE3314402A1 (en) 1982-04-22 1983-04-21 Device for scanning a multiplicity of beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57067650A JPS58184117A (en) 1982-04-22 1982-04-22 Scanner of plural beams

Publications (2)

Publication Number Publication Date
JPS58184117A true JPS58184117A (en) 1983-10-27
JPS6411926B2 JPS6411926B2 (en) 1989-02-27

Family

ID=13351104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57067650A Granted JPS58184117A (en) 1982-04-22 1982-04-22 Scanner of plural beams

Country Status (2)

Country Link
JP (1) JPS58184117A (en)
DE (1) DE3314402A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208021A (en) * 1987-02-25 1988-08-29 Ricoh Co Ltd Light scanning optical system using laser diode array
JPH01211718A (en) * 1988-02-19 1989-08-24 Japan Imeejingu Syst:Kk Optical scanner
US4932734A (en) * 1987-12-11 1990-06-12 Ricoh Company, Ltd. Optical scanning system using a laser diode array

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524567B2 (en) * 1991-08-03 1996-08-14 キヤノン株式会社 Multiple beam scanning optics
JP3536962B2 (en) * 1997-05-09 2004-06-14 日立プリンティングソリューションズ株式会社 Beam scanning device and image forming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011325B2 (en) * 1977-01-21 1985-03-25 キヤノン株式会社 scanning device
US4474422A (en) * 1979-11-13 1984-10-02 Canon Kabushiki Kaisha Optical scanning apparatus having an array of light sources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208021A (en) * 1987-02-25 1988-08-29 Ricoh Co Ltd Light scanning optical system using laser diode array
US4932734A (en) * 1987-12-11 1990-06-12 Ricoh Company, Ltd. Optical scanning system using a laser diode array
JPH01211718A (en) * 1988-02-19 1989-08-24 Japan Imeejingu Syst:Kk Optical scanner

Also Published As

Publication number Publication date
DE3314402A1 (en) 1983-10-27
JPS6411926B2 (en) 1989-02-27

Similar Documents

Publication Publication Date Title
JP7501864B2 (en) A transmitter having a scan mirror covered by a collimating cover element
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
EP1291690A2 (en) Optical switch with converging element
US20220342216A1 (en) Compact projector for head-mounted displays
EP0311656B1 (en) Optical scanner
JPH077151B2 (en) Scanning device
JPS58184117A (en) Scanner of plural beams
JPH0153767B2 (en)
JP3270471B2 (en) Method and apparatus for non-imaging focusing and projection of electromagnetic radiation
CN108627983B (en) Laser beam combining system and beam combining method thereof
US20210385427A1 (en) Optical Engine for 3D Detection and 3D Detection Device
JPH0153442B2 (en)
US4003639A (en) Catoptric lens arrangement
WO2020209374A1 (en) Optical system
CN113126460A (en) Laser scanning unit
JPS63114186A (en) Lighting apparatus
JP4651830B2 (en) Beam synthesis method, light source device for multi-beam scanning, multi-beam scanning device
JPH063616A (en) Polygon scanner
JPH112769A (en) Optical scanner
JPS61126528A (en) Photoscanning device
JPS5915216A (en) Optical scanner
JP2753282B2 (en) X-ray focusing method and X-ray focusing mirror
JP3568087B2 (en) Multi-beam scanning optics and coupling optics for multi-beam scanning optics
JPH02226220A (en) Optical scanner
JP2004510344A (en) Illumination optics especially for microlithography