JPS58183818A - Suction device of engine - Google Patents

Suction device of engine

Info

Publication number
JPS58183818A
JPS58183818A JP57066560A JP6656082A JPS58183818A JP S58183818 A JPS58183818 A JP S58183818A JP 57066560 A JP57066560 A JP 57066560A JP 6656082 A JP6656082 A JP 6656082A JP S58183818 A JPS58183818 A JP S58183818A
Authority
JP
Japan
Prior art keywords
intake
load
cylinder
suction port
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57066560A
Other languages
Japanese (ja)
Other versions
JPS5936091B2 (en
Inventor
Hirobumi Nishimura
博文 西村
Yasuyuki Morita
泰之 森田
Hiroyuki Oda
博之 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57066560A priority Critical patent/JPS5936091B2/en
Publication of JPS58183818A publication Critical patent/JPS58183818A/en
Publication of JPS5936091B2 publication Critical patent/JPS5936091B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To produce a swirling effectively, by employing an arragement wherein a suction port for a reduced load has its center offset outwardly away from a cylinder row direction so as to locate it in the direction of stream having stronger suction forces. CONSTITUTION:Four cylinders are respectively provided with a lower suction port 6 for a reduced load and an upper suction port 7 for an increased load, these ports 6 and 7 being adapted to open and close by a single suction valve 8 and communicate with a carburetor 11 via a banana type inlet manifold 12. In this manner, a suction air stream takes place outwardly away from a cylinder row direction and at the same time an arangement is employed such that a suction port 6 for a reduced load has its center offset outwardly in an inclined relationship away from a cylinder row direction relative to a center of combustion chamber 3 so as to locate the suction port 6 in the direction of stream having stronger suction forces. This arrangement can provide many advantages such as that an intense swirling may be effectively produced with a result in improved combustion characteristics and fuel consumption property. In addition, an intensity of swirlings may be made uniform among cylinders, eliminating a possibility of the torque to be fluctuated.

Description

【発明の詳細な説明】 この発明は、燃焼室内のスワールの生成を効果的に行な
って、燃焼性を向上させると共に、各気筒のスワールの
強さを略同−にして、トルク変動を生じさせないように
したエンジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention effectively generates swirl within the combustion chamber to improve combustibility, and also makes the strength of the swirl in each cylinder approximately the same to prevent torque fluctuations. The present invention relates to an intake system for an engine.

従来、エンジンの吸気装置としては、各気筒に低負荷用
吸気ボートと高負荷用吸気ボートを設け、その両吸気ボ
ートを開閉する単一の吸気弁を設けると共に、上記高負
荷用吸気ボートを高負荷時に開く開閉弁を設けたものが
提案されている(実開昭54−61118号)。
Conventionally, engine intake systems have been equipped with a low-load intake boat and a high-load intake boat for each cylinder, a single intake valve that opens and closes both intake boats, and a high-load intake boat with a high-load intake boat. A device equipped with an on-off valve that opens when a load is applied has been proposed (Utility Model Publication No. 1983-61118).

このエンジンの吸気装置は、低負荷時に、高負荷用吸気
ボートを開閉弁で閉鎖して、低負荷用吸気ボートからの
み吸気を燃焼室に吸入させて、吸気流速を早め、スワー
ルを強化して、燃料の霧化を促進し、燃焼性能、燃費性
能を向上できる一方、高負荷時に開閉弁を開いて低負荷
用吸気ボートに加えて高負荷用吸気ボートからも吸気を
吸入させて、充填効率を向上でき、出力性能を向上でき
るという利点がある。
The intake system of this engine closes the high-load intake boat with an on-off valve when the load is low, allowing intake air to be drawn into the combustion chamber only from the low-load intake boat, increasing the intake flow rate and strengthening the swirl. , which promotes fuel atomization and improves combustion performance and fuel efficiency.At the same time, when the load is high, the on-off valve is opened to draw in air from the high-load intake boat in addition to the low-load intake boat, improving charging efficiency. This has the advantage of improving output performance.

しかしながら、上記従来のエンジンの吸気装置は、イン
レットマニホールドと低負荷用吸気ポートとの関係でス
ワールを効果的に生成するということと、各気筒のスワ
ールの強さを同じにするということについては例等箸慮
していなくて、インレットマニホールドの型式(いわゆ
るバナナ型とトーナメント型とがある。)によって定ま
る吸気通路における吸気の流れの偏りと低負荷用ボート
の配置、方向とを関連づけていないため、下記の如く、
気筒によっては低負荷用吸気ボートへの吸気の流れが弱
くなって、スワールを強化することができず、また各気
筒間におけるスワールの強さにアンバランスが生じると
いう欠点がある。
However, the conventional engine intake system described above does not have the ability to effectively generate swirl due to the relationship between the inlet manifold and the low-load intake port, and to make the swirl strength of each cylinder the same. This is because they do not take this into account and do not correlate the bias of the intake air flow in the intake passage determined by the type of inlet manifold (there are so-called banana type and tournament type) with the placement and direction of the low-load boat. As below,
Depending on the cylinder, the flow of intake air to the low-load intake boat becomes weak, making it impossible to strengthen the swirl, and there is also an imbalance in the strength of the swirl between the cylinders.

すなわち、上記従来のエンジンの吸気装置は、トーナメ
ント型インレットマニホールドを用い、各低負荷用吸気
ポートを全てその燃焼室中心に対して7す/ダ列の同一
方向にオフセットさせ、略互いに平行な方向を指向させ
て、燃焼室に開口させている。ところが、トーナメント
型インレットマニホールドでは、外側の両気筒への吸気
道−路においては、吸気は吸気慣性により外側に強く偏
つて流れ、一方、内側の両気筒への吸気通路においては
、吸気は吸気慣性により内側に強く偏って流れる。しか
るに、上記従来のエンジンの吸気装置は前述の如く、各
低負荷用吸気ポートを燃焼室中心に対してシリンダ列の
同一方向にオフセットさせているため、一方の外側の気
筒の低負荷用ポートは燃焼室中心に対してシリンダ列方
向の外方にオフセットして吸気の強い流れに沿って、ス
ワールを強化できるが、他方の外側の気筒の低負荷用ポ
ートは燃焼室中心に対してシリンダ列方向の内方にオフ
セットして、吸気の強い流れに沿っていないため、スワ
ールを強化することができない。
That is, the intake system of the conventional engine described above uses a tournament-type inlet manifold, and all low-load intake ports are offset in the same direction in the 7/7 row with respect to the center of the combustion chamber, and are arranged in substantially parallel directions. is oriented to open into the combustion chamber. However, in a tournament-type inlet manifold, in the intake path to the two outer cylinders, the intake air flows strongly toward the outside due to intake inertia, while in the intake passage to the inner two cylinders, the intake air flows due to intake inertia. The flow is strongly biased inward. However, as mentioned above, in the intake system of the conventional engine, each low-load intake port is offset in the same direction of the cylinder row with respect to the center of the combustion chamber, so the low-load port of one outer cylinder is Swirl can be strengthened by being offset outward in the direction of the cylinder row from the center of the combustion chamber, along the strong flow of intake air, but the low-load port of the other outer cylinder is offset outward in the direction of the cylinder row from the center of the combustion chamber. It is not possible to strengthen the swirl because it is offset inward and does not follow the strong flow of intake air.

また、内側の両気筒においても、同様に、一方の低負荷
用吸気ポートは吸気の強い流れに沿ってスワールを強化
でき、他方の低負荷用吸気ポートは吸気の強い流れに沿
っていないため、スワールを強化することができない。
Similarly, in both inner cylinders, one low-load intake port can strengthen the swirl along the strong flow of intake air, and the other low-load intake port is not along the strong flow of intake air, so Swirl cannot be strengthened.

したがって、上記従来のエンジンの吸気装置は、全気筒
については、スワールの生成を効果的に行なうことがで
きず、燃焼性能、燃費性能を十分に向上できず、また、
各気筒間のスワールの強さにアンバランスが生じ、トル
ク変動が生じるという欠点がある。
Therefore, the conventional engine intake system described above cannot effectively generate swirl for all cylinders, and cannot sufficiently improve combustion performance and fuel efficiency.
This has the drawback that an imbalance occurs in the strength of the swirl between the cylinders, resulting in torque fluctuations.

そこで、この発明の目的は、上記欠点を除去することに
あって、インレットマニホ−ルの型式により定まる吸気
通路における吸気の流れの偏りと、低負荷ボートの配置
、方向とを関連づけることによって、全気筒についてス
ワールの生成を効果的に行ない得ると共に、各気筒にお
けるスワールの強さを略同−にし得るエンジ/の吸気装
置を新規に提供することにある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks by relating the bias of the intake air flow in the intake passage determined by the type of inlet manifold to the arrangement and direction of the low-load boat. An object of the present invention is to provide a novel intake system for an engine that can effectively generate swirl in each cylinder and can make the strength of the swirl in each cylinder substantially the same.

このため、この発明の構成・作用は、4つの気筒に、夫
々、互いに仕切壁で分割される下方の低負荷用吸気ポー
トと上方の高負荷用吸気ボートを設け、上記両吸気ポー
トを開閉する単一の吸気弁を設け、上記各吸気ボートと
気化器とをインレットマニホールドを介して連通させて
なるエンジンにおいて、上記インレットマニホールドを
バナナ型とすることによって、通路の曲がりによる流動
損失を少なくして吸気をスムーズに流すと共に、吸気通
路における吸気の流れをシリンダ列方向の外方に偏らせ
る一方、シリンダ列方向中央で分割される2組の気筒の
各低負荷ボートにおけるシダ列方向の外方にオフセット
させることにより、各低負荷用吸気ポートを吸気の強い
流れ方向に沿って配置して、スワールを効果的に生成し
て、燃焼性能、燃費性能を向上させると共に、各気筒の
燃焼室におけるスワールの強さを略同じにして、トルク
変動を生じさせないようにした点に特徴を有する。
Therefore, the structure and operation of the present invention is that each of the four cylinders is provided with a lower low-load intake port and an upper high-load intake port that are separated from each other by a partition wall, and both of the intake ports are opened and closed. In an engine in which a single intake valve is provided and each of the intake boats and the carburetor are communicated via an inlet manifold, the inlet manifold is formed into a banana shape to reduce flow loss due to bending of the passage. In addition to making the intake air flow smoothly, the flow of intake air in the intake passage is biased outward in the direction of the cylinder row, and at the same time, it is biased outward in the direction of the fern row in each low-load boat of two sets of cylinders that are divided at the center in the direction of the cylinder row. By offsetting, each low-load intake port is placed along the direction of the strong flow of intake air, effectively generating swirl, improving combustion performance and fuel efficiency, and reducing swirl in the combustion chamber of each cylinder. It is characterized in that the strength of the torque is kept approximately the same, so that torque fluctuation does not occur.

以下、この発明を図示の実施例について詳細に説明する
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

第1図は1つの気筒Aを示し、1は鉛直方向に配置した
シリンダ、2はシリンダヘッド、3は燃焼室、4はシリ
ンダヘッド2に形成した吸気ボート、5は上記吸気ボー
ト4を、下方に位置して混合気を燃焼室3に水平方向に
供給する低負荷用吸気ポート6と上方に位置して混合気
を燃焼室3に水平面に対して傾斜した方向へ供給する高
負荷用吸気ポート7とに分割する仕切壁、8は上記低負
荷用吸気ポー田および高負荷用吸気ボート7を共に燃焼
室3への開口部で開閉する単一の吸気Qllは気化器、
12は気化器11と、低負荷用吸気ボート6および高負
荷用吸気ボート7とを連通させるインレットマニホ−ル
、13はインレットマニホールド12に軸14により回
動自在に支持され、上記高負荷用ポート7を開閉する開
閉弁であって、上記開閉弁13は低負荷時に閉鎖して、
渭合気を低負荷用吸気ボート6からのみ燃焼室3#?供
給して、混合気の流速を早め、燃焼室3内のワールを強
化して、燃料の霧化を促進して、燃性能、燃費性能を向
上させる一方、高負荷時に1いて、混合気を低負荷用吸
気ボート6および高負荷用吸気ポート7から燃焼室3に
供給して、吸入効率、充填効率を向上させ、出力性能を
向上させるようになっている。
Fig. 1 shows one cylinder A, where 1 is a cylinder arranged vertically, 2 is a cylinder head, 3 is a combustion chamber, 4 is an intake boat formed in the cylinder head 2, and 5 is the intake boat 4 arranged in a downward direction. A low-load intake port 6 is located above to supply the mixture to the combustion chamber 3 in a horizontal direction, and a high-load intake port is located above to supply the mixture to the combustion chamber 3 in a direction inclined with respect to the horizontal plane. 8 is a single intake Qll which opens and closes both the low-load intake port and high-load intake port 7 at the opening to the combustion chamber 3, and 8 is a carburetor;
12 is an inlet manifold that communicates the carburetor 11 with the low-load intake boat 6 and the high-load intake boat 7; 13 is rotatably supported on the inlet manifold 12 by a shaft 14; 7 is an on-off valve that opens and closes, and the on-off valve 13 is closed during low load,
Wei Aiki combustion chamber 3# only from intake boat 6 for low load? This increases the flow rate of the mixture, strengthens the whirl inside the combustion chamber 3, promotes fuel atomization, and improves fuel performance and fuel efficiency. It is supplied to the combustion chamber 3 from the low-load intake boat 6 and the high-load intake port 7 to improve intake efficiency and charging efficiency, and improve output performance.

なお、15は7リンダヘツド2に形成した排気ボート、
16は排気弁、17はカムシャフト、18゜18はロッ
カアームシャフト、19.19はロッカアーム、20.
20はパルプスプリングである。
In addition, 15 is an exhaust boat formed on the 7 cylinder head 2,
16 is an exhaust valve, 17 is a camshaft, 18° 18 is a rocker arm shaft, 19.19 is a rocker arm, 20.
20 is a pulp spring.

一方、第2図において、B、C,Dは上記気筒^と略同
−構造をした各気筒である。
On the other hand, in FIG. 2, B, C, and D are cylinders having substantially the same structure as the above-mentioned cylinders.

上記4つの気筒A、B、C,Dはその各シリンダ1.1
.1.1の中心線を鉛直に配置すると共に、上記各シリ
ンダ1.1.1.1を同一水平面に配置して一直線状の
/リング列を形成している。上記各気筒A、B、C,D
に混合気を供給するインレットマニホ−ル12はバナナ
型に形成している。そのため、上記インレットマニホー
ルド12および吸気ボート4により形成される吸気通路
25の曲がりはトーナメント型のマニホールドを用いた
場合に比して少なくなっていて、その吸気通路25の曲
がりによる吸気抵抗は少さくなると共に、吸気通路25
の基部25Fから分岐通路25A、25B 、25C,
25Dへ流れる混合気は、その慣性によりシリンダ列方
向の外方へ偏って流れるようになっている。つまり、第
2図中矢印VA、VB。
The above four cylinders A, B, C, and D are each cylinder 1.1
.. 1.1 is arranged vertically, and the cylinders 1.1.1.1 are arranged in the same horizontal plane to form a linear/ring row. Each of the above cylinders A, B, C, D
An inlet manifold 12 for supplying air-fuel mixture to the engine is formed into a banana shape. Therefore, the bending of the intake passage 25 formed by the inlet manifold 12 and the intake boat 4 is less than when a tournament-type manifold is used, and the intake resistance due to the bending of the intake passage 25 is reduced. Along with this, the intake passage 25
Branch passages 25A, 25B, 25C,
The air-fuel mixture flowing to 25D is biased toward the outside in the cylinder row direction due to its inertia. In other words, arrows VA and VB in FIG.

V c 、 V oに示すように、各分岐通路25A、
258゜25C,25D  において、シリンダ列方向
の外方の部分の流速が早く、かつ流量が多くなるように
なっている。
As shown in V c and Vo, each branch passage 25A,
At 258 degrees 25C and 25D, the flow velocity is faster and the flow rate is larger in the outer portion in the cylinder row direction.

上記各気筒A、e、c、Dの低負荷用吸気ボート6.6
,6.6はシリンダ列の中央を境として2つの組に分割
し、その一方の組の低負荷用吸気ボート6.6の中心線
XA、xBと他方の組の低負荷用吸気ボート6.6の中
心線Xc、XDとは対称にシリンダ列方向の外方へ傾斜
させている。すなわち、第2.3.4図に示すように、
各低負荷用吸気ボート6のシリンダ列方向の内方の壁v
7jJ27を、その各低負荷用吸気ボート6の中心線X
A。
Low load intake boat for each cylinder A, e, c, D above 6.6
, 6.6 are divided into two groups with the center of the cylinder row as the boundary, and the center lines XA, xB of the low-load intake boats 6.6 in one group and the center lines XA, xB of the low-load intake boats 6.6 in the other group. It is symmetrically inclined outward in the cylinder row direction with respect to the center lines Xc and XD of No. 6. That is, as shown in Figure 2.3.4,
Inner wall v of each low-load intake boat 6 in the cylinder row direction
7jJ27, the center line X of each low-load intake boat 6
A.

X B、 X (:、 X Dが各燃焼室3の中心に対
して、シリンダ列方向の外方へオフセットするように傾
斜させている。
X B, X (:, X D are inclined so as to be offset outward in the cylinder row direction with respect to the center of each combustion chamber 3.

上記構成のエンジンの吸気装置において、いま、エンジ
ンは低負荷状態にあって、各気筒A、B。
In the engine intake system configured as described above, the engine is currently in a low load state, and each cylinder A and B is in a low load state.

C,Dの高負荷用吸気ポート7は開閉弁13で閉鎖され
ているとする。
It is assumed that the high-load intake ports 7 of C and D are closed by on-off valves 13.

このとき、気化器11からインレットマニホールド12
の基部25F  を通って分岐通路25A、25825
C,25D  に流れる混合気は、インレットマニホー
ルドがバナナ型であるため、第2図中矢印V A 。
At this time, from the carburetor 11 to the inlet manifold 12
Branch passage 25A, 25825 through the base 25F of
Since the inlet manifold is banana-shaped, the air-fuel mixture flows to C and 25D as shown by the arrow VA in FIG.

V、、VC,VDに示すように、全てシリンダ列の中央
に対して、シリンダ列方向の外方の流れが強くなるよう
に偏って流れ、開閉弁13が閉じているため、各気筒A
、B、C,Dの低負荷用の吸気ボー ) 6,6,6.
6のみに流入して、流速が早められる。
As shown in V, VC, and VD, the flow is biased toward the center of the cylinder row so that the outward flow in the direction of the cylinder row is stronger, and since the on-off valve 13 is closed, each cylinder A
, B, C, D low load intake bow) 6, 6, 6.
6 only, and the flow velocity is increased.

この各気筒A、B、C,Dの低負荷用吸気ボー)6,6
,6.6は全て、シリンダ列方向の内方の壁面27.2
7,27.27を、その各低負荷用吸気ボー)6,6,
6.60中心線XA、XB、xC2xDが燃焼室3の中
心に対してシリンダ列方向の外方にオフセットするよう
に、傾斜させて、混合気の強い流れの方向にマツチさせ
ているため、混合気は曲がりによる抵抗が少なくて、各
燃焼室3にスムーズに水平方向に導かれて、各気筒A、
B、C,Diこ第2図中矢印SA、SB、S(:、SD
に示すような強し)水平方向のスワールが効果的に生じ
、かつ各気筒A、B、C,Dのスワールの強さは略等し
くなる。
These low-load intake bows for each cylinder A, B, C, and D) 6, 6
, 6.6 are all inner wall surfaces 27.2 in the cylinder row direction.
7, 27. 27, its respective low load intake bow) 6, 6,
6.60 The center lines XA, The air has little resistance due to bending, and is smoothly guided horizontally into each combustion chamber 3, so that it flows into each cylinder A,
B, C, Di arrows SA, SB, S (:, SD
(strength as shown in FIG. 1) A horizontal swirl is effectively generated, and the swirl strength of each cylinder A, B, C, and D is approximately equal.

、  したがって、このスワールの効果的生成により、
燃焼性能、燃費性能が極めて向上し、また、各気筒A、
B、C,D間のスワールの強さの均一化により、エンジ
ンのトルク変動が極めて少なくなり、運転性が極めて向
上する。
, Therefore, due to the effective generation of this swirl,
Combustion performance and fuel efficiency have been greatly improved, and each cylinder A,
By making the swirl strength uniform among B, C, and D, engine torque fluctuations are extremely reduced, and drivability is extremely improved.

次に、エンジンが高負荷運転をしているとする6、 6
.6および高負荷用吸気ボー)7,7,7.7から燃焼
室3.3.3.3に供給され、充填効率が向上し、出力
性能が向上する。
Next, assume that the engine is operating under high load6,6
.. 6 and high load intake bow) 7, 7, 7.7 to the combustion chamber 3.3.3.3, improving charging efficiency and output performance.

以上の説明で明らかなように、この発明のエンと上方の
高負荷用吸気ボートを設け、上記各吸気ボートと気化器
どとをバナナ型インレットマニホールドを介して連通さ
せて、吸気の流れをシリンシリンダ列方向の外方にオフ
セットするように、傾斜させて、上記各低負荷用吸気ボ
ートを吸気の強い流れに沿って配置しているので、強い
スワールを効果的に生成でき、燃焼性能、燃費性能を向
上できる上に、各気筒のスワールの強さを均一にでき、
トルク変動を生じさせないようにすることができる。
As is clear from the above explanation, the engine of the present invention is provided with an upper high-load intake boat, and each of the intake boats and the carburetor are communicated with each other via a banana-shaped inlet manifold to control the flow of intake air into the cylinder. The low-load intake boats are arranged along the strong flow of intake air by slanting them so as to be offset outward in the direction of the cylinder row, so they can effectively generate a strong swirl, improving combustion performance and fuel efficiency. In addition to improving performance, the strength of the swirl in each cylinder can be made uniform.
It is possible to prevent torque fluctuation from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の縦断面図、第2図は上記
実施例の横断面図、第3,4図は夫々要部断面図である
。 3・・・燃焼室、5・・・仕切壁、6・・・低負荷用吸
気ボート、7・・・高負荷用吸気ボート、8・・・吸気
弁、11・・・気化器、12・・・バナナ型インレット
マニホールド、13・・・開閉弁、27・・・壁面。
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view of the above-mentioned embodiment, and FIGS. 3 and 4 are cross-sectional views of essential parts, respectively. 3... Combustion chamber, 5... Partition wall, 6... Intake boat for low load, 7... Intake boat for high load, 8... Intake valve, 11... Carburizer, 12... ...Banana-shaped inlet manifold, 13...Opening/closing valve, 27...Wall surface.

Claims (1)

【特許請求の範囲】 tl)4つの気筒を備え、各気筒毎に、単一の吸気弁に
よって開閉されかつ仕切壁にて分割され下方に位置する
低負荷用吸気ボートと上方に位置する高負荷用吸気ボー
トとを設け、該各吸気ボートの上流端を、一端において
気化器と連通ずるインレットマニホールドに連通させて
なるエンジンにおいて、 上記インレットマニホ−ルをバナナ型インレその中心が
それぞれシリンダ列方向の外方でかつ燃焼室中心に対し
オフセットする方向となるようにシリンダ列方向の内方
の壁面を傾斜させたことを特徴とするエンジンの吸気装
置。
[Claims] tl) Equipped with four cylinders, each cylinder is opened and closed by a single intake valve and divided by a partition wall, with a low-load intake boat located below and a high-load intake boat located above. In an engine, the upstream end of each intake boat is connected to an inlet manifold which communicates with a carburetor at one end. An intake system for an engine, characterized in that an inner wall surface in a cylinder row direction is inclined outward and in a direction offset from the center of a combustion chamber.
JP57066560A 1982-04-21 1982-04-21 engine intake system Expired JPS5936091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066560A JPS5936091B2 (en) 1982-04-21 1982-04-21 engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066560A JPS5936091B2 (en) 1982-04-21 1982-04-21 engine intake system

Publications (2)

Publication Number Publication Date
JPS58183818A true JPS58183818A (en) 1983-10-27
JPS5936091B2 JPS5936091B2 (en) 1984-09-01

Family

ID=13319435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066560A Expired JPS5936091B2 (en) 1982-04-21 1982-04-21 engine intake system

Country Status (1)

Country Link
JP (1) JPS5936091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093119A (en) * 1983-10-28 1985-05-24 Mazda Motor Corp Suction device of engine
JPH06253384A (en) * 1993-02-25 1994-09-09 Nec Corp Ultrasonic wave transmitter-receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175380U (en) * 1984-04-30 1985-11-20 オリンパス光学工業株式会社 Label for tape cassette

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093119A (en) * 1983-10-28 1985-05-24 Mazda Motor Corp Suction device of engine
JPH0247571B2 (en) * 1983-10-28 1990-10-22 Mazda Motor
JPH06253384A (en) * 1993-02-25 1994-09-09 Nec Corp Ultrasonic wave transmitter-receiver

Also Published As

Publication number Publication date
JPS5936091B2 (en) 1984-09-01

Similar Documents

Publication Publication Date Title
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPH07119472A (en) Intake device for engine
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
JPS58187519A (en) Intake device of engine
JPH02230920A (en) Suction device for engine
JPS6134344A (en) Intake device for internal-combustion engine
JPS5990717A (en) Intake device for 4-cycle internal-combustion engine
JPS58183818A (en) Suction device of engine
JPS58135323A (en) Air inlet device for diesel engine
JPH08135455A (en) Intake control device for engine
JPS5990720A (en) Intake device for engine
JP2639720B2 (en) Intake control device for internal combustion engine
JP2002221036A (en) Intake system for engine
JPH04252822A (en) Intake device for internal combustion engine of double intake valve type
JPS6313392Y2 (en)
JPS58183819A (en) Suction device of engine
JPH0517123U (en) Engine inertial intake system
JPH0410339Y2 (en)
JP2533172Y2 (en) Intake manifold for internal combustion engine
JPH0415945Y2 (en)
JPS588230A (en) Suction device for multi-cylinder internal combustion engine
KR200154444Y1 (en) Swirl generating intake system
JPS59108821A (en) Double intake valve type 4-cycle engine
JP2756157B2 (en) 4 cycle engine
JPS60138224A (en) Structure of internal-combustion engine