JPS5818230A - Method of heat treatment of stretched and blown vessel - Google Patents

Method of heat treatment of stretched and blown vessel

Info

Publication number
JPS5818230A
JPS5818230A JP11638881A JP11638881A JPS5818230A JP S5818230 A JPS5818230 A JP S5818230A JP 11638881 A JP11638881 A JP 11638881A JP 11638881 A JP11638881 A JP 11638881A JP S5818230 A JPS5818230 A JP S5818230A
Authority
JP
Japan
Prior art keywords
temperature
container
compressed fluid
heat
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11638881A
Other languages
Japanese (ja)
Inventor
Seiichi Hayashi
誠一 林
Mieko Uchiyama
内山 美恵子
Mineo Shibuta
渋田 峰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP11638881A priority Critical patent/JPS5818230A/en
Publication of JPS5818230A publication Critical patent/JPS5818230A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6472Heating or cooling preforms, parisons or blown articles in several stages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0017Heat stable

Abstract

PURPOSE:To improve the heat resistance of the titled container, by performing preheating, stretching and blowing, and heat treatment of a parison under respective specified conditions. CONSTITUTION:A thermoplastic polyester consisting mainly of ethylene terephthalate is injection molded or extrusion molded into a parison, and after the parison is heated to a temperature suitable for stretching, it is introduced into a split mold that has been heated to a temperature stipulated by the expression: Tg<T1<=Tg+80 deg.C (wherein Tg represents the glass transition temperature of the polyester and; T1 represents the temperature of the mold to which it is heated), and a compressed fluid A having a temperature stipulated by the expression: Tg-60<=T2<=Tg+30 deg.C (wherein T2 represnts the temperature of the compressed fluid A) is blown into the parison to stretch and blow it. Then the compressed fluid A is replaed by a compressed fluid B having a temperature stipulated by the expression Tg+80<=T3<=Tg+170 deg.C (wherein T3 represents the temperature of the compressed fluid B), and the stretched and blown vessel is subjected to the heat treatment thereby, then the fluid B is replaced with the fluid A, and after the vessel is cooled, it is removed from the split mold.

Description

【発明の詳細な説明】 本発明は、エチレンテレフタレートを主成分とする熱可
塑性ポリエステルからの延伸ブロー容器を熱処理する方
法に関するものであり、その目的とするところは、延伸
プ四−容器を熱処理することにより、容器の耐熱性を向
上することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating a stretched blown container made of thermoplastic polyester containing ethylene terephthalate as a main component. This aims to improve the heat resistance of the container.

熱可塑性ポリエステル、とりわけポリエチレンテレフタ
レートから射出又は押出成形したパリソンを、次いで実
質的に二軸方向に配向させる蔦伸プp−成形法は近年着
るしく発達した成形法である。延伸プロー成形容器は優
れた機械的性質、ガスバリヤ−性、耐薬品性、保香性、
透明性t有するために、炭酸飲料、ソース、ドレッシン
グ等の食品用、リキッド類、乳液等の化粧品用、殺虫剤
、殺菌剤、溶剤、”薬品等の化学薬品用容器等、広範に
利用されている。
The vine stretch p-molding process, in which a parison injection or extrusion molded from a thermoplastic polyester, especially polyethylene terephthalate, is then oriented substantially biaxially is a molding process that has developed in recent years. Stretch blow molded containers have excellent mechanical properties, gas barrier properties, chemical resistance, aroma retention,
Due to its transparency, it is widely used for food such as carbonated drinks, sauces, and dressings, cosmetics such as liquids and emulsions, and containers for chemicals such as insecticides, disinfectants, solvents, and medicines. There is.

他方、清酒、ビール果汁飲料、乳飲料等は、#lば60
℃以上の高温液体を容器に充填するのであるが、例えば
、ポリエチレンテレフタレート容器の場合、充填中又は
充*後に収縮が生じたり、容器が変形したりするという
致命的な欠点な生じ、このため、用途範囲が4PIIl
!:Iされているのが現状である。
On the other hand, sake, beer fruit juice drinks, milk drinks, etc. are #lba60.
Containers are filled with high-temperature liquids at temperatures above °C, but for example, in the case of polyethylene terephthalate containers, shrinkage occurs during or after filling, and the container is deformed, which is a fatal drawback. Application range is 4PIIl
! :I is the current situation.

かかる欠点、即ち耐熱性を向上するために、これまでに
も多くの提案がなされてきた。例えば、特111185
5−264号、特開昭55−2171号、4ISS昭5
4−71号、4111昭54−48381号、特開@5
4−8455?号、特開昭54−90265号、特開昭
54−135545号公報、英国特許1474044号
等に見られる方法は、ポリエチレンテレフタレートの延
伸プ四−容器を、容器と同形状で、70〜220℃に加
熱された金型内で熱処理するものである。しかしこれら
の方法の内、金型8度を70〜140”Cと、比較的低
温領域にした場合には、熱処理容器に充填できる液体の
温度は、高々75℃であり、清酒、果汁飲料等の75〜
95℃で充填したい液体に対しては使用に耐えられなか
った。他方、金型温度を140〜220℃と、高温領域
にした場合、耐熱性は若干向上するが、熱処理後に容器
を冷却する目的で、加熱された金型が冷却されるまで容
11it−金型内に保持しなければならず、そのために
容器が冷却されるまでに2〜6分もの長い時間が要され
、容器に白濁が生じ易いことと、生産性が大巾に低下す
るとい5問題が生じた。即ち、140〜220℃の温度
領域は、ポリエチレンテレフタレートの結晶化温度領域
であるので、結晶化速度が太き(、保持時間t★くする
と、容器に球晶の発生と成長による白濁を生じてしまう
という問題が生じる。
Many proposals have been made to overcome this drawback, that is, to improve heat resistance. For example, special 111185
No. 5-264, JP-A No. 55-2171, 4ISS 1973
No. 4-71, 4111 No. 54-48381, JP-A-5
4-8455? In the method described in JP-A No. 54-90265, JP-A No. 54-135545, British Patent No. 1474044, etc., a stretched polyethylene terephthalate container is heated at 70 to 220°C in the same shape as the container. Heat treatment is performed in a mold heated to . However, among these methods, when the mold temperature is set at a relatively low temperature of 70 to 140"C, the temperature of the liquid that can be filled into the heat treatment container is at most 75"C, and the temperature of the liquid that can be filled into the heat treatment container is at most 75℃, which is not suitable for sake, fruit juice drinks, etc. 75~
It could not withstand use for liquids that were to be filled at 95°C. On the other hand, if the mold temperature is set to a high temperature range of 140 to 220°C, the heat resistance will improve slightly, but in order to cool the container after heat treatment, the heated mold will have a capacity of 11 it-mold until it is cooled. This causes problems such as a long time of 2 to 6 minutes for the container to cool down, a tendency for the container to become cloudy, and a significant decrease in productivity. occured. That is, since the temperature range of 140 to 220°C is the crystallization temperature range of polyethylene terephthalate, the crystallization rate is high (if the holding time is increased to t★, cloudiness will occur in the container due to the generation and growth of spherulites). The problem of putting it away arises.

これら加熱金型による方法に対して、例えば、l/Ij
開昭55−264号、特開昭55−2171号、特開昭
53−78267号、特開昭53−78268号公報等
に示される方法は、冷却された金製内に保持された容器
に、200℃前後の高温加熱気体を吹込み熱処理するも
のである。しカルこの方法は、高温加熱気体を吹込んだ
場合、気体の熱容器(比熱)が小さいことと、金型が室
温程度の低温であるために、容器を供給加熱気体の温度
まで加熱昇温するのに長時間(S分〜5分間)を要し、
その間に@6に白濁を生じるという問題が生じた。これ
は、熱処理されている間に、容器の外壁と、気体を光横
した内壁の閣のポリオ一層に温度勾配が生じ、且つ昇温
過程中に結晶化温度領域を通過するために、球晶が発生
して白濁化するためである。
For example, l/Ij
The methods disclosed in JP-A-55-264, JP-A-55-2171, JP-A-53-78267, JP-A-53-78268, etc. are methods in which a container held in a cooled metal container is , heat treatment is carried out by blowing high-temperature heated gas around 200°C. In this method, when high-temperature heated gas is injected, the heat container (specific heat) of the gas is small and the mold is at a low temperature of about room temperature, so the container is heated to the temperature of the supplied heated gas. It takes a long time (S minutes to 5 minutes) to
During that time, a problem arose in which cloudiness appeared in @6. This is because during the heat treatment, a temperature gradient occurs between the outer wall of the container and the layer of the inner wall where the gas is exposed, and the spherulites pass through the crystallization temperature region during the heating process. This is because it occurs and becomes cloudy.

以上で明らかな如く、従来技術の不十分な点は、次の通
り要約される。比較的低温の70〜140℃の加熱金型
法は、低温であるために高々75℃までの耐熱性しかな
い。
As is clear from the above, the inadequacies of the prior art can be summarized as follows. The relatively low temperature heating mold method of 70 to 140°C has a heat resistance of only 75°C at most due to the low temperature.

比較的高温の140〜220℃の加熱金型法は、容器を
取出す前の金型冷却に長時間を要するために白濁化が生
じる。
In the heating mold method at a relatively high temperature of 140 to 220° C., clouding occurs because it takes a long time to cool the mold before taking out the container.

他方、比較的高温の200℃前後の高温加熱気体を容器
内に吹込む方法は、気体の熱容量が小さく容器の加熱に
長時間を要するために白濁化が生じる。このように、こ
れまでに提案された方法により、透明で且つ十分に耐熱
性のすぐれた容器は得られていないのが現状である。
On the other hand, in the method of blowing relatively high-temperature heated gas of around 200° C. into the container, clouding occurs because the heat capacity of the gas is small and it takes a long time to heat the container. As described above, the current situation is that containers that are transparent and have sufficient heat resistance have not been obtained by the methods proposed so far.

本発明者らは、95℃までの高温液体を容器に充填した
後、密栓し、常温にまで温度降下させて、充填後から2
4時間放置したとき、容器の体積収紬量が、充機前の体
積に対してα5チ以下である耐熱性容器の開発を目指し
て鋭意検討した。この目標値はかなり厳しいレベルであ
り、先ず、熱加塑性ポリエステルの基本的な熱的現象の
把握から検討を開始した。ポリエステルの熱収縮率KI
iして、熱処理の温度と時間の効果は等価ではなく、比
較的低温領域、例えば、ポリエチレンテレフタレートの
場合、70〜140℃で如何に長時間、固定下に熱部し
ても、150℃以上の高温領域で短時間熱処理した場合
の熱収縮率を下回わることはできない。即ち、熱収縮率
に対しては、温度が第−一的に支的することが判った。
After filling a container with a high-temperature liquid up to 95°C, the inventors sealed the container, lowered the temperature to room temperature, and
We conducted extensive studies with the aim of developing a heat-resistant container whose volumetric capacity, when left for 4 hours, is α5 cm or less relative to the volume before filling. This target value is a fairly strict level, so we began our investigation by understanding the basic thermal phenomena of thermoplastic polyester. Heat shrinkage rate KI of polyester
The effects of heat treatment temperature and time are not equivalent; for example, in the case of polyethylene terephthalate in a relatively low-temperature region, no matter how long the heat treatment is held at 70 to 140 degrees Celsius under fixed conditions, the temperature and time effects of heat treatment will not exceed 150 degrees Celsius. The heat shrinkage rate cannot be lower than that obtained when heat treated for a short time at a high temperature region. That is, it has been found that temperature is primarily responsible for the thermal shrinkage rate.

この結果から、上記の目*1−達成するためには、エチ
レンテレフタレートを主成分とするポリエステルの場合
、(7g+80)〜(’TK+170)’C(Tざはポ
リエステルのガラス転移#IAIIIL)の高温領域で
熱処理することが必須の条件であることが判り瓢しかし
、このような高温領域は球晶の成長が盛んな温度領域で
あり、ポリエチレンテレフタレートの場合、180℃近
傍に球晶成長速度の極大がある。勿−120〜140℃
、200〜240℃の温度領域でも、速度は遅くなるが
、熱処理時間が長びくと、球晶が発生する。前記の通り
、熱収縮率の低減のためには(7g+80)〜(Tg+
170)℃の高温付与が必須条件であるが、かかる高温
領域に一定時間以上保持すると次は、一方において球晶
の発生と成長による白濁化の発生1kffi止しなけれ
ばならないとい5二律背反的な問題を解決しなければな
らないのである。本発明者らの検討の結果、エチレンテ
レフタレートを主成分とするポリエステル延伸ブロー容
器V(7g+80)〜(Tg+170)℃の高温領域に
保持したとき、球晶の発生が阻止できる時間は3分以内
であることが判った。
From this result, in order to achieve the above objective *1-, in the case of polyester whose main component is ethylene terephthalate, it is necessary to raise the temperature of (7g+80) to ('TK+170)'C (T is the glass transition #IAIIIL of polyester) However, in the case of polyethylene terephthalate, the maximum growth rate of spherulites occurs around 180°C. There is. Of course -120~140℃
, even in the temperature range of 200 to 240°C, the rate is slow, but if the heat treatment time is prolonged, spherulites are generated. As mentioned above, in order to reduce the heat shrinkage rate, (7g + 80) ~ (Tg +
Applying a high temperature of 170)°C is an essential condition, but if the temperature is kept in such a high temperature range for a certain period of time or more, then on the one hand, it is necessary to stop the occurrence of clouding due to the generation and growth of spherulites. must be solved. As a result of studies by the present inventors, when a polyester stretch-blow container V containing ethylene terephthalate as a main component is kept in a high temperature range of (7g+80) to (Tg+170)°C, the generation of spherulites can be prevented within 3 minutes. I found out something.

従って、(7g+80)〜(Tg+170 )’Cで且
つ3分間以内という条件を満足する高温付与の方法を鋭
意検討した。その結果、加熱金型による方法は望ましく
ないことが判った。何故ならば、加熱金型から容器を取
出す前に加熱金型を冷却する必要があるが、熱含量が大
きいために長時間を要し、この間に球晶が発生しやすい
からである。また、もしも加熱金型法でかかる高温付与
をS分間以内に収めようとすれば、(TI+80)〜(
Tg+170)’Cでの保持は、高々1分間にして直ち
に金型の冷却を開始しなければならないが、これでは容
器の熱処理時間が不足になる。
Therefore, a method of applying high temperature that satisfies the conditions of (7g+80) to (Tg+170)'C and within 3 minutes was intensively studied. As a result, it was found that the heating mold method was not desirable. This is because, although it is necessary to cool down the heating mold before taking out the container from the heating mold, it takes a long time due to the large heat content, and spherulites are likely to occur during this time. In addition, if we try to keep the high temperature application within S minutes using the heating mold method, (TI+80) ~ (
Holding at Tg+170)'C requires at most 1 minute and cooling of the mold must be started immediately, but this results in insufficient time for heat treatment of the container.

検討の結果、(7g+80)〜(1g+170)’Cで
且つ5分間以内の高温付与の手段としては、加熱流体が
適していることが判った。加熱流体であれば、容器を取
出す前に容器を冷却する方法として、加熱流体を冷却流
体に置換する方法により迅速に行なえるからである。
As a result of the study, it was found that a heating fluid is suitable as a means for applying a high temperature of (7g+80) to (1g+170)'C and within 5 minutes. This is because if heating fluid is used, the container can be cooled quickly by replacing the heating fluid with cooling fluid before taking the container out.

本発明の方法は、第−我的な高温の付与を加熱流体で行
なうものであるが、しかし、たとえ、(テg+80 )
〜(Tg+lO)’Cで且つ3分間以内の熱付与を加熱
流体のみで行なり【も、得られる容器は、充填温j[9
5℃で体積収縮率α5ts以下の耐熱性はクリアーでき
ない ことが判った。これを解決する一つの方法は(T
sr+170)℃より高温の加熱流体を付与する方法で
あり、この方法を検討してみたが、やはり、体積収縮率
を(L5%以下にするととは不可能であった。また、容
器の力学的特性(容器の胴部な切出した試料の引張強度
と伸f)がかなり劣化した。
In the method of the present invention, the primary application of high temperature is carried out using a heating fluid.
Applying heat for up to 3 minutes at ~(Tg+lO)'C using only the heating fluid, the resulting container has a filling temperature of j[9
It was found that heat resistance with a volumetric shrinkage rate of α5ts or less at 5°C could not be achieved. One way to solve this is (T
This is a method of applying heated fluid at a temperature higher than sr + 170)°C, and although this method was considered, it was still impossible to reduce the volumetric shrinkage rate to (L5% or less. Also, due to the mechanical The properties (tensile strength and elongation f of the sample cut out from the body of the container) deteriorated considerably.

他の方法は、第−義的な熱付与は加熱流体に負妬せ、こ
れだけでは不足する熱な加熱金型で補足する方法である
Another method is to rely on a heating fluid to provide the primary heat, and to supplement this with a heating mold that is insufficient in heat.

この場合、加熱金型の11AJfが一定以上に高過ぎる
と、球晶の発生と成長による白濁化が発生するので、加
熱金型温度はTjr〜(7g+80)℃が適尚であるこ
とが判った。このように、(7g+80)〜(Tg+1
70)”Cの比較的高温の加熱流体と、Tg〜(T、+
80)℃の比較的低温の加熱金11を併用する方法によ
り、それぞれ単独の熱付与手段を用いたのでは到達し得
ない耐熱性能が得られることが判りた。この様な好結果
をもたらす最大の理由は容器の外壁と内壁間のポリマ一
層内の温度勾配にある。本発明者らの実験結果によると
、エチレンテレフタレートを主成分とするポリエステル
の場合、容器の壁膜の片面がTg−45℃以下で、他面
が(7g+50)”C以上に2分間以上加熱されると、
球晶の発生が促進されることが判った。即・ら、実際の
工程で、冷却金撤内の容器に為温流体を導入することは
好結果をもたらさないのである。熱収縮率を低下させる
ためには最高、(Tg十80)〜(T冨+170)”C
の温度が第−義的に必要であるが、同時XaZ勾配を抑
制することが必須の条件であることが判り、高11&体
に加えて、Tg〜(Tg+so)’Cの加熱金at’併
用することにより、熱不足を補足することと、温度勾配
な抑制するという相乗効果が初めて発揮され、それぞれ
単独の熱付与手段を用いた場合には発現できない効果が
発揮される。ことが判った。
In this case, if the 11AJf of the heating mold is too high above a certain level, clouding will occur due to the generation and growth of spherulites, so it was found that the appropriate heating mold temperature is Tjr~(7g+80)℃. . In this way, (7g+80) ~ (Tg+1
70)"C relatively high temperature heating fluid and Tg ~ (T, +
It has been found that by a method of jointly using heated gold 11 at a relatively low temperature of 80)°C, it is possible to obtain heat resistance performance that cannot be achieved by using each individual heat application means. The main reason for such good results is the temperature gradient within the polymer layer between the outer and inner walls of the container. According to the experimental results of the present inventors, in the case of polyester whose main component is ethylene terephthalate, one side of the container wall membrane is heated to a temperature below Tg -45℃, and the other side is heated to a temperature above (7g+50)''C for more than 2 minutes. Then,
It was found that the generation of spherulites was promoted. Therefore, in the actual process, introducing hot fluid into a container in which the cooling metal is removed does not give good results. In order to reduce the heat shrinkage rate, the highest value is (Tg 180) ~ (T + 170)"C
It was found that suppressing the simultaneous XaZ gradient was an essential condition. By doing so, a synergistic effect of supplementing the heat deficiency and suppressing the temperature gradient is exhibited for the first time, and an effect that cannot be exhibited when each individual heat application means is used is exhibited. It turned out that.

このように、95℃の充填液体で熱収縮率0.5%以下
という厳しい耐熱性の目樟値をクリアーするためには、
熱収縮率と球晶の発生の成長に対し、ai度と時間の効
果は二律背反的であるので、より短時間サイクルで延伸
ブローから射出までを行なう工夫が重要課題である。そ
のために、球晶の発生、成長速度の大きい温度をはずし
たTg〜(Tg+80)℃の加熱金型中で延伸グロー成
形も行なってしまい、引続(熱処理中も該金型温度を保
持し、最後に容器の取出しのための冷却は圧mtitt
体の置換によって行ない、冷却中も加熱金型は前記温度
を保持させ、熱容量の大きい加熱金型の延伸ブローから
冷却取出しの間、一定温度に保持することが、時間サイ
クルを短くし、耐熱性の向上と、球晶の発生、成長の抑
制に有効であることが判った。
In this way, in order to meet the strict heat resistance target value of 0.5% or less heat shrinkage with filling liquid at 95℃,
Since the effects of AI degree and time are contradictory on the heat shrinkage rate and the growth of spherulites, it is important to devise a way to carry out the process from stretch blowing to injection in a shorter cycle. For this reason, stretch glow molding was also performed in a heated mold at Tg to (Tg + 80) °C, which was removed from the temperature at which spherulite generation and growth rate was high, and the mold temperature was maintained during the subsequent (heat treatment), and the final The cooling for removal of the container is under pressure mtitt.
The heating mold maintains the above temperature even during cooling, and holding the heating mold at a constant temperature during the stretch blowing and cooling removal of the heating mold, which has a large heat capacity, shortens the time cycle and improves heat resistance. It was found to be effective in improving the spherulites and suppressing the generation and growth of spherulites.

本:@明の方法は、熱処理前の延伸ブロ一工程において
も’rg〜(Tg+80 )”Cの加勢金8!!を使用
することが、一つの特徴であるが、延伸ブロー成形時に
Tg〜(Tg+80)温度とそれらの付与時間を適当に
組み合わせると、特にパリソンの延伸ブロー成形時に加
熱金型な使用することは支障のないことが判った。
Book: One of the characteristics of Akira's method is that it uses a reinforcing metal of 'rg~(Tg+80)''C even in the stretch blowing step before heat treatment, but during stretch blow molding, Tg~ (Tg+80) It has been found that if the temperature and the application time are appropriately combined, there is no problem in using the mold as a heated mold especially during stretch blow molding of parisons.

以上に詳述した如く、エチレンテレフタレートを主成分
とする熱可塑性ポリニスデルの熱収縮率と球晶の発生、
成長に関する熱的性質の検討から、本発明に到達した。
As detailed above, the thermal shrinkage rate of thermoplastic polynisder whose main component is ethylene terephthalate, the occurrence of spherulites,
The present invention was arrived at from a study of thermal properties related to growth.

即ち、本発明の方法は、エチレンプレフタレートを主成
分とする熱可塑性ポリエステルから射出又は押出成形し
たパリソンを延伸適温に予熱した後、割金型に供給して
延伸ブロー成形した容器な、引続いて鍍金製内で熱処理
する方法において、パリソンを延伸適温に予熱した後、
Tsr<Tt≦Tg+80℃(Tgは駅ポリニスデルの
ガラス転移温度、℃、丁、は加熱金型温度、℃)で規定
する温度に加熱した割金型に供給するとともに、Tg−
60≦T2≦’rg+−go℃(Ttは圧縮流体Aの温
度、℃)で規定する温度の圧縮流体ムを吹込み延伸プロ
ー成形し、引続いて該割金型内の延伸ブロー容器内部で
、該圧縮流体ムを。
That is, the method of the present invention involves preheating a parison injection- or extrusion-molded from a thermoplastic polyester containing ethylene prephthalate as a main component to an appropriate temperature for stretching, and then supplying the parison to a split mold to create a stretch-blow-molded container. In the method of heat treatment in a plating chamber, after preheating the parison to the appropriate temperature for stretching,
Tsr<Tt≦Tg+80°C (Tg is the glass transition temperature of polynisder, °C, T is the heated mold temperature, °C), and is supplied to a split mold heated to the temperature specified by Tg-
60≦T2≦'rg+-go°C (Tt is the temperature of compressed fluid A, °C) is blown into the compressed fluid and stretch-blow molded, and then inside the stretch-blow container in the split mold. , the compressed fluid.

Tg+80≦Ts≦Tg+170℃(丁1は圧縮流体B
の温度、℃)で規定する温度に加熱した圧縮流体Bと置
換し該容器を熱処理し、次いで咳圧縮流体Bを再び前記
圧縮流体Aに置換し、鋏容器を冷却してから腋割金型か
ら堆出すことt%徽とする、延伸ブロー容器の熱処理方
法、である。
Tg+80≦Ts≦Tg+170°C (Ten 1 is compressed fluid B
The container is heat-treated by replacing it with compressed fluid B heated to a temperature specified at 100° C., then the compressed fluid B is replaced again with the compressed fluid A, the scissor container is cooled, and then molded into an armpit split mold. This is a method for heat treatment of a stretch-blown container, in which t% of the material is deposited from the container.

パリソンを割金型に供給する際の加熱金型温度T1はT
g(T重≦Tg+80℃、好ましくは、7g+30≦T
The heating mold temperature T1 when supplying the parison to the split mold is T
g (T weight≦Tg+80℃, preferably 7g+30≦T
.

≦Tg+ 70℃である。TI≦TKでは熱処理におけ
る加熱金型の補助的役割が十分でなく、95℃の液体充
填温度で体積収縮率α5ts以下に到達できない。他方
、Tt>Tf+80℃では、金型温度が鳥過ぎるために
、凰伸プp一時に底部の白濁化又はドローダウンが生じ
る。
≦Tg+70°C. When TI≦TK, the auxiliary role of the heating mold in the heat treatment is insufficient, and a volumetric shrinkage rate of α5ts or less cannot be achieved at a liquid filling temperature of 95°C. On the other hand, when Tt>Tf+80°C, the mold temperature is too high, causing clouding or drawdown at the bottom during the expansion.

パリソンを延伸プロー成形する際の圧縮流体ムの温度T
Temperature T of the compressed fluid ram during stretch blow molding of the parison
.

はTg−60≦T!≦Tf+lO℃好マシくハ、TK−
40≦T、≦Tg+10℃である。!■<jg−60℃
では、上記金型温度を使用した場合、延伸プ四−成型時
に容器の肩部や底部に白濁化が生じる。Tt>TI +
 5 o℃では、得られる容器の力学的性質(破断強伸
度及びクリープ特性)が劣化する傾向が顕著になる。
is Tg-60≦T! ≦Tf+lO℃ better Ha, TK-
40≦T, ≦Tg+10°C. ! ■<jg-60℃
In this case, when the above-mentioned mold temperature is used, clouding occurs at the shoulders and bottom of the container during stretch molding. Tt>TI+
At 5 o C, the mechanical properties (breaking strength and elongation and creep properties) of the resulting container tend to deteriorate significantly.

上記の条件で延伸プロー成形した後、引続いて加熱金型
内の容器に導入する加熱熱処理用の圧縮流体Bの温[T
sはTg+80≦T、≦Tg+170℃、好ましくは、
Tg+110≦T、≦Tg+150℃である。温度テ畠
が、熱収縮率低減のための第−義的な熱付与であり、T
s<Tg+80の場合は如何に長時間熱部しても、95
℃の液体71に 充填温度で体積収縮率α5−以下は達成されない。他方
、Tm>Tg+170℃の場合は、得られる容器の力学
的性質(破断強伸度及びクリープ特性)が劣化し、容器
の肩部、底部等の分子鎖の配向が比較的に低い部分が白
濁化したり、底部のドローダウンが生じたりする。
After stretch blow molding under the above conditions, the temperature [T
s is Tg+80≦T, ≦Tg+170°C, preferably,
Tg+110≦T, ≦Tg+150°C. Temperature T is the primary heat application for reducing the thermal shrinkage rate, and T
If s<Tg+80, no matter how long the hot part is, the temperature will reach 95
At the filling temperature of the liquid 71 at .degree. C., a volumetric shrinkage rate of less than .alpha.5 is not achieved. On the other hand, when Tm>Tg+170°C, the mechanical properties (breaking strength and elongation and creep properties) of the resulting container deteriorate, and areas where molecular chain orientation is relatively low, such as the shoulders and bottom of the container, become cloudy. or drawdown at the bottom.

加熱圧縮流体Bと、加熱金型との併用相乗効果により熱
処理した後、直ちに割金型を用いて容器を取り出すと、
熱応力のために容器の一部が収縮してしまい製品となら
ない。
After the heat treatment is performed by the synergistic effect of the combination of the heated compressed fluid B and the heating mold, when the container is immediately taken out using the split mold,
Part of the container shrinks due to thermal stress and cannot be used as a product.

熱処理後の冷却は、加熱割金型を開く前に、容器内部で
加熱圧縮置体Bを圧縮流体ムに置換して行なう。この際
の、圧縮流体ムの温度はTg−60≦T鵞≦Tg+!0
℃である。
Cooling after the heat treatment is carried out by replacing the heating and compressing body B with a compressed fluid inside the container before opening the heating split mold. At this time, the temperature of the compressed fluid is Tg-60≦T≦Tg+! 0
It is ℃.

T、(Tg−60℃の場合は、容器の白濁化が生じる。T, (Tg - 60°C, the container becomes cloudy.

T、>Tg+50℃の場合は、容器の冷却効果が低く、
やはり白濁化が生じ易くなる。
If T,>Tg+50℃, the cooling effect of the container is low;
After all, clouding is likely to occur.

熱処理後の容器の冷却は、圧縮流体Bからムへの置換に
加えて、冷却時に、加熱金型の温度!寡もTi1t’s
≦Tg十80℃の範囲内で、例えばTg<Ts≦Tg+
50℃となるよう金W【若干冷却してもよいが、金型の
冷却には熱容1憤を大きく時間がかかるので、鷺伸プは
一1熱処理、冷却の全工程を通してTg<Ts≦’rg
+ao℃の範囲内で〒定温fK保持することが好ましい
To cool the container after heat treatment, in addition to replacing compressed fluid B with M, during cooling, the temperature of the heating mold! Ti1t's
≦Tg within the range of 180℃, for example, Tg<Ts≦Tg+
Gold W may be cooled slightly to 50°C, but cooling the mold takes much longer than the heat capacity, so Sagi Shinpu maintains Tg<Ts≦ throughout the entire process of heat treatment and cooling. 'rg
It is preferable to maintain a constant temperature fK within the range of +ao°C.

本発明においてい5Tg(℃)は、使用する熱可塑性ポ
リエステル原料のガラス転移温度である。、この温度は
属知の如く、ポリ!−の凍結状態と、ポリマー主鎖の局
所的運動の開始の境界温度であり、鷺伸プI−成形にお
いて、延伸温度、配向結晶化熱部温度、形態凍結温度と
密接な関係があることが判った。ガラス転移温度の測定
法は、DEC。
In the present invention, 5Tg (°C) is the glass transition temperature of the thermoplastic polyester raw material used. , this temperature is poly! It is the boundary temperature between the freezing state of - and the start of local motion of the polymer main chain, and it is said that it is closely related to the stretching temperature, orientation crystallization hot zone temperature, and morphology freezing temperature in Sagi stretching plastic forming. understood. The method for measuring glass transition temperature is DEC.

ル原料の採堆量15ダ、比較対照物質α−ムj、0.1
5ダ、昇温速度」口℃/分、感度レンジ2.5% ca
t / see 、チャートスピード40■/分で、室
温(20℃)から走査を開始し、チャート上、転移の終
了点をTg(’C)とする。
Collected amount of raw material 15 da, comparative substance α-muj, 0.1
5 da, heating rate ℃/min, sensitivity range 2.5% ca
Scanning is started from room temperature (20° C.) at t/see and chart speed of 40 μ/min, and the end point of transition on the chart is defined as Tg ('C).

延伸プロー成形から容器の熱処理、及び熱処理から容器
の冷却は圧縮流体ムとBの置換を行なうが、この置換操
作は、例えば一つの実施態様として挙げると、電気的及
び機械的に制御されたパルプの切替えで自動的に動作さ
せうる。
The heat treatment of the container from stretch blow molding and the cooling of the container from the heat treatment involve replacing B with a compressed fluid. It can be operated automatically by switching.

例えば、流体の導入は口部上部で延伸ロッドと容器内壁
の間隙から行ない、排気は延伸ロッドの先端に孔を設け
て、延伸レッド中を通して行なうことができる。流体の
切替時に、容器が熱応力により収縮しないよう一定以上
の圧力が印加されなければならないが、これは電気的及
び機械的に容易である。
For example, the fluid can be introduced through the gap between the stretching rod and the inner wall of the container at the upper part of the mouth, and the fluid can be exhausted by providing a hole at the tip of the stretching rod and passing through the stretching red. When switching fluids, a pressure above a certain level must be applied so that the container does not shrink due to thermal stress, but this is easy electrically and mechanically.

本発明でいう圧lliItIL体は、いかなる種類の気
体又は水蒸気又は献体でもよいが、空気が好適である。
The pressurized body referred to in the present invention may be any kind of gas, water vapor, or donated body, but air is preferable.

圧縮流体Aは空気、圧縮流体Bは窒素も好適である。It is also preferable that the compressed fluid A is air and the compressed fluid B is nitrogen.

本発明でいうエチレンテレフタレートを主成分とする熱
可塑性ポリエステルとは、酸成分の80七ル一以上、好
ましくは、90モル−以上がテレフタル酸であり、グリ
コール成分の80モル1[上、好ましくは90七ル一以
上がエチレングリコールであるポリエステルを意味する
。勿論、100−のポリエチレンテレフタレートを除外
する意味ではない。他の酸成分として、イソフタル酸、
フタル酸、ナフタレン1.4−又は2.6−ジカルボン
酸、ジフェニルエーテル4.4’−ジカルボン酸、ジ:
yエニルジカルボン鍍類、ジフェノキシエタンジエタン
ジカルボン酸類、等の如き芳香族ジカルボン酸類、アジ
ピン績、セパチン績、アゼツイン酸、デカン1,10−
ジカルボン酸の如き脂肪酸ジカルボン酸、シクロヘキサ
ンジカルボン駿等の脂環族ジカルボン酸等を例示でき、
これらの酸成分の内、20モル−未満を含有することが
できる。他のグリコール成分として、プロピレングリコ
ール、トリメチレングリコール、テトラメチレングリコ
ール、ジエチレングリコール、ポリエチレングリコール
、ポリプロピレングリコール、ポリテトラメチレングリ
コール、ヘキサメチレングリコール、ドデカメチレング
リコール、ネオペンチルグリコール等の如き脂肪族グリ
コール類、シクロヘキサンジメタツール等の脂環族グリ
コール、2,2−ビス(4′−β−ヒドロキシエトキシ
フェニル)プロパン、その他の芳香族ジオール類、等を
例示でき、これらのグリ;−ル成分の内、20モル−未
満を含有することができる。また、p−ヒドロキシエト
キシ安息香酸、p−オキシ安息香酸、S−オキシカブレ
ン酸等のオキシ酸類をエチレンテレフタレート成分以外
に20モル−未満含有することができる。
The thermoplastic polyester containing ethylene terephthalate as a main component in the present invention means that 80 moles or more of the acid component, preferably 90 moles or more, is terephthalic acid, and 80 moles of the glycol component, preferably 90 means a polyester in which one or more of the seven radicals is ethylene glycol. Of course, this does not mean that 100-polyethylene terephthalate is excluded. Other acid components include isophthalic acid,
Phthalic acid, naphthalene 1,4- or 2,6-dicarboxylic acid, diphenyl ether 4,4'-dicarboxylic acid, di:
Aromatic dicarboxylic acids such as enyl dicarboxylic acids, diphenoxyethane diethanedicarboxylic acids, etc., adipine, cepatine, azetuic acid, decane 1,10-
Examples include fatty acid dicarboxylic acids such as dicarboxylic acids, alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acids, and the like.
It can contain less than 20 moles of these acid components. Other glycol components include aliphatic glycols such as propylene glycol, trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, hexamethylene glycol, dodecamethylene glycol, neopentyl glycol, and cyclohexane. Examples include alicyclic glycols such as dimetatool, 2,2-bis(4'-β-hydroxyethoxyphenyl)propane, and other aromatic diols, and among these glycol components, 20 It can contain less than mol. In addition to the ethylene terephthalate component, less than 20 moles of oxyacids such as p-hydroxyethoxybenzoic acid, p-oxybenzoic acid, and S-oxycabrenic acid can be contained.

前記ポリエステルには、トリメチロールプロパン、ペン
タエリスリトール、トリメリット酸、トリメシン酸の如
き多官能基成分1に5%、好ましくは391未満共1合
させてもよい。また、着色剤、熱又は酸化防止剤、紫外
線防止剤、帯電防止剤、抗菌剤、滑剤、充填剤(有機物
又は無機物)、ガスバリヤ−性の向上を目的とした添加
剤等の添加剤を必簀に応じて適量含有することができる
The polyester may contain 5%, preferably less than 391, of polyfunctional components such as trimethylolpropane, pentaerythritol, trimellitic acid, trimesic acid. Additives such as colorants, heat or antioxidants, ultraviolet inhibitors, antistatic agents, antibacterial agents, lubricants, fillers (organic or inorganic), and additives for improving gas barrier properties are also required. It can be contained in an appropriate amount depending on the situation.

本発明の熱可塑性ポリエステルは、■有粘度が(L5以
上、好ましくはα55以上、更に好ましくはα63〜t
4’t−有するものが使用される。
The thermoplastic polyester of the present invention has (1) a viscosity (L5 or more, preferably α55 or more, more preferably α63-t
4't- is used.

以上に鰺述した即く、本発明の方法によって得られる容
器は高度の耐熱性を有し、例えば、95℃の内容物を充
填してから室温まで24時間放置した後の体積収縮率は
通常α5−以下、少くとも196以下に低減でき、且つ
白濁や、容器の変形、あるいはドローダウンが生じない
。加えて、内容−光槙後の#lt巣、炭酸ガスのガスバ
リヤ−性の向上も若干認められた。
As mentioned above, the container obtained by the method of the present invention has a high degree of heat resistance. It can be reduced to α5- or less, at least 196 or less, and does not cause clouding, deformation of the container, or drawdown. In addition, a slight improvement in #lt nests after lightening and carbon dioxide gas barrier properties was also observed.

本発明法により得られる容器は、炭酸飲料、果汁飲料等
の清涼飲料、乳飲料、食酢、食油、醤油、ビール、生ビ
ール、清酒、ウィスキー、ワイン等のアルプール飲料、
等の食品類、洗剤等のトイレタリー品、化粧品、液体状
、エアゾール状、又は粒状の化学薬品や医薬品等の広い
用途に使用することができる。
The container obtained by the method of the present invention can be used for soft drinks such as carbonated drinks and fruit juice drinks, milk drinks, alpour drinks such as vinegar, cooking oil, soy sauce, beer, draft beer, sake, whiskey, and wine.
It can be used for a wide range of applications, including food products such as detergents, toiletries such as detergents, cosmetics, liquid, aerosol, or granular chemicals and pharmaceuticals.

以下に本発明の方法について実施例を示すが、勿論、こ
れにより本発明の方法が制約されるものではない。
Examples of the method of the present invention are shown below, but of course the method of the present invention is not limited by these examples.

実施例1〜7、及び比較例1〜7 固有粘度α76のポリエチレンテレフタレートのペレッ
トを減圧乾燥し【水分率α005−以下にした後、日本
製鋼社製射出成形機を用いて、シリンダ一温度tc12
50、C,280、Cs280℃、射出圧力45kl/
cm雪G、金瀝温度15℃、射出・冷却サイクルj 5
1@@及び25−・Cで上端部開口の有底パリソンを成
形した。誼パリソンは全長1801111.円筒平行部
の外径2711m、内径22■である。
Examples 1 to 7 and Comparative Examples 1 to 7 After drying polyethylene terephthalate pellets with an intrinsic viscosity of α76 under reduced pressure to a moisture content of α005- or less, using an injection molding machine manufactured by Nippon Steel Corporation, the cylinder temperature was tc12.
50, C, 280, Cs280℃, injection pressure 45kl/
cm Yuki G, metal melting temperature 15℃, injection/cooling cycle J 5
A bottomed parison with an opening at the upper end was molded using 1@@ and 25-.C. The total length of the parison is 1801111. The outer diameter of the parallel part of the cylinder is 2711 m, and the inner diameter is 22 mm.

得られたパリソンを赤外ヒーターにより温度勾配なつけ
て115〜125℃で予熱後、=−ホブラスト社製IM
B−5型を一部改JL(圧縮流体の置換な可−にするパ
ルプ系統の設置と、割金型を加熱オイル循環して加熱可
能にした。)した延伸プロー成形機で延伸プ四−成形、
熱麩埋、冷却な行なった後、容器を取出した。圧縮流体
(空気)圧50 kfl/m−ここで圧縮空気は2樵類
の温度の空気A及びBY用い、それぞれ温f’r、、及
びi畠℃に設定し、延伸プロ一時と、熱処場後の冷却時
はTI’Cの圧縮空気ムt、鷺伸プは一後の熱処履時は
11℃の圧縮空気1を導入しながら排気して常ec5G
±2ψ−1t保持した。延伸プロー、熱処理、冷却の金
工@を通して金mt−加熱し温度tx’CK設定した。
After preheating the obtained parison at 115 to 125°C with a temperature gradient using an infrared heater,
A stretch blow molding machine with a partially modified JL B-5 model (installation of a pulp system that allows for replacement of compressed fluid, and heating of the split mold by circulating heating oil) is used to make a stretch blow molding machine. molding,
After hot burying and cooling, the container was taken out. Compressed fluid (air) pressure: 50 kfl/m - Here, the compressed air is air A and BY with two temperatures, set at temperatures f'r and i, respectively, and subjected to stretching process and heat treatment. TI'C's compressed air is used for post-processing cooling, and 11°C compressed air is introduced and exhausted during post-heat treatment for Sagi Shinpu.
±2ψ-1t was maintained. The gold was heated mt through a metalwork @ of drawing, heat treatment, and cooling, and the temperature was set to tx'CK.

凰伸プ四−のため圧縮空気ムを導入開始してから、熱処
理のために圧縮空気Bと導入開始するまでの時間は5 
sec、熱処理のために圧縮空気Bを導入開始してから
、冷却のために圧縮空気Aを導入開始するまでの時間は
90■C1冷却のために圧縮空気Aを導入開始してから
割金型を開くまでの時間は30s@eに設定した。
The time from the start of introducing compressed air B for the heat treatment to the start of introducing compressed air B for heat treatment is 5 minutes.
sec, the time from the start of introduction of compressed air B for heat treatment to the start of introduction of compressed air A for cooling is 90 ■C1 The time from the start of introduction of compressed air A for cooling to the split mold The time until opening was set to 30s@e.

得られた容器は、ピールびん形状のもので、全長300
fi、胴部平行部の外径95−内容積1.51である。
The obtained container was in the shape of a peel bottle and had a total length of 300 mm.
fi, the outer diameter of the parallel portion of the body 95 - the inner volume 1.51.

これら容器の耐熱性は、95℃の熱水を満水充填してか
ら直ちに密栓し、24時間、20℃の部屋に放置した後
の体積を、充填前の体積に対する体積収縮量Sマ(%)
で評価した。充填前の体積ve(il)は、20℃の水
を容器に満水に充填して密栓し、これを、20℃の水を
満水にした円柱管に静かに沈めてオーバーフローした水
の重量WO(Ii)な秤量し、Vo=Wa/Pto(P
IOは20℃の水の密度め/am” )から求めた。9
5℃の熱水を充填し、20℃の部屋に24時間放置後の
体積V(wJ)は、同様にして、20℃の水で満水にし
た円柱管に沈めてオーバーフローした水の重量W(L)
からV=w/Pnにより求めた。体積収縮量Sマ(−)
は、8v=100 (Vo −V )/Vsカら計算シ
タ。
The heat resistance of these containers is determined by the volume shrinkage S (%) of the volume before filling after filling with 95°C hot water, immediately sealing the container, and leaving it in a room at 20°C for 24 hours.
It was evaluated by The volume ve(il) before filling is calculated by filling a container with 20°C water, sealing it tightly, and then gently submerging it into a cylindrical pipe filled with 20°C water, and then calculating the weight of the overflow water WO ( Ii) Weigh Vo=Wa/Pto(P
IO was determined from the density of water at 20°C/am”.9
The volume V (wJ) after filling hot water at 5°C and leaving it in a room at 20°C for 24 hours is the weight W ( L)
It was determined from V=w/Pn. Volumetric contraction amount Sma(-)
is calculated from 8v=100 (Vo -V)/Vs.

使用したポリエチレンテレフタレートのガラス転移温度
Tg(’C)は高滓製作所製D8C(D丁−20B)を
用%、1、ペレット量15呼、比較対照物質α−ムjt
os15■、昇温速度10℃/分、感度レンジ2.5m
eal/s@@、チャートスピード40m/分で渕定し
、転移の終了点vTtとした。(TI−4&5℃)。
The glass transition temperature Tg ('C) of the polyethylene terephthalate used was D8C (D-20B) manufactured by Takashi Seisakusho.
os15■, heating rate 10℃/min, sensitivity range 2.5m
eal/s@@, chart speed was 40 m/min, and the transition end point vTt was determined. (TI-4&5°C).

得られた容器を目視して、容器の透明性をλレンジで評
価した。
The obtained container was visually observed and the transparency of the container was evaluated using a λ range.

O印は、全く白濁がなかった場合であり、x印は容器の
一部分又は全体に白濁が生じた場合である。
An O mark indicates that there was no clouding at all, and an x mark indicates that a part or all of the container became cloudy.

延伸ブロー、熱処理、冷却を割金瀧の温度T1℃及び、
圧縮空気ム、Bの温度T8、i易℃を変えて製造した容
器の体積収縮量8マ(−)と透明性を表−1に示す。
Stretch blowing, heat treatment, and cooling are carried out at a temperature of T1℃ and
Table 1 shows the volumetric shrinkage (-) and transparency of containers manufactured by changing the compressed air temperature T8 and the temperature T8 of the compressed air.

比較例1.2、及び3は金型温度〒1が、比較例4及び
5は圧縮空気ムの温度T、が、比較例6及び7は圧縮空
気lの温度T、が本発明の方法を満足しない場合である
。実施例1〜7は、温度〒1、T@s 7sがいづれも
本発明の方法を満足する場合である。比較例1〜7の場
合+3体体積収縮量8マ1−より大きいか、又は95℃
熱水の充填により容器に白濁が生じたり、変形を起こし
たり、底部がドローダウンして商品としての使用に耐え
なかった。
In Comparative Examples 1, 2 and 3, the mold temperature was 1, in Comparative Examples 4 and 5 the temperature of the compressed air was T, and in Comparative Examples 6 and 7, the temperature of the compressed air was T. In case you are not satisfied. Examples 1 to 7 are cases where the temperature 〒1 and T@s 7s all satisfy the method of the present invention. In case of Comparative Examples 1 to 7, +3 body volume shrinkage amount is greater than 8 m1- or 95°C
Filling with hot water caused the container to become cloudy, deform, and draw down at the bottom, making it unusable as a product.

実施例1〜7の場合は、体積収縮量8マが(L5−以下
であり、且つ、完全に透明で変形やドローダウンもなく
、耐熱性容器として満足のいくものであった。
In the case of Examples 1 to 7, the volume shrinkage was 8 mm or less (L5- or less), and it was completely transparent without deformation or drawdown, and was satisfactory as a heat-resistant container.

手続補正書(自発) 昭和56年11月パ日 4IWIf庁長官島田春樹殿 t 事件の!!示 昭和56年4I杵願第114388号 2 発明の名称 延伸ブロー容器の熱処理方法 五 補正をする者 事件との関係  代表特許出願人 東京@板橋区坂下三丁目35番58号 4 補正の対象 明細書の「発明の詳細な説明」の欄 翫 補正の内容 (1)明細書第5頁第8行における「・・・・・・・・
・熱容器・・・・・・・・・」 の記載を、「・・・・
・・・・・熱容量・・・・四・」 と補正する。
Procedural Amendment (Voluntary) November 1981, PA 4 IWIF Agency Director Haruki Shimada Incident! ! 1981 4I Kine Application No. 114388 2 Name of the invention Heat treatment method for stretch blow containers 5 Relationship with the case of the person making the amendment Representative patent applicant Tokyo @ 3-35-58 Sakashita, Itabashi-ku 4 Specification subject to the amendment Column for “Detailed Description of the Invention” Contents of amendment (1) “・・・・・・・・・” in page 5, line 8 of the specification
・Thermal container......" should be changed to "...
・・・Heat capacity...4...'' is corrected.

(2)同第7頁第1行に′sjPける「熱加履・・・・
・・・・・」O記載を、「熱可塑・・・・・・・・・」
と補正する・(3)同頁嬉8行における「・・・・−・
・・・支的する・・・・・・・−」  の記載を、r・
・・・・・・・・支配する・・・・−−J  と補正す
る。
(2) On page 7, line 1, 'sjP' says "Heat heating...
・・・・・・"O description is changed to ``thermoplastic・・・・・・・・・''
(3) In the 8th line of the same page, “・・・・・・-・
...Supporting......-" should be changed to r.
・・・・・・Dominating・・・−−J Correct.

(4)同第12真嬉5行における「射出まで・・・・・
・・・りの記載を、r取出まで・・・・・・・・・jと
補正する。
(4) In line 5 of the 12th Shinki, “Until the ejection...
The description of ri is corrected to r until extraction...j.

(5)同第24買第1行における「・・・・・・・・・
空気Bと導入・・・・・・・・・」の記載を、「・・・
・・・・・・空気Bを導入・・・・・・・・・1 と補
正する。
(5) “・・・・・・・・・” on the 24th purchase line 1
"Air B and introduction..." should be changed to "...
...Introduce air B... Correct as 1.

以上の通抄でありますからよろしくお願い致します。Thank you for your understanding as the above is a summary.

Claims (1)

【特許請求の範囲】[Claims] エチレンテレフタレートを主成分とする熱可塑性ポリエ
ステルから射出又は押出成形したパリソンを延伸適温に
予熱した後、割金型に供給して凰伸ブp−成形した容a
V、引続いて咳金製内で熱処理する方法において、パリ
ソンを延伸適温に予熱した後、’rg(T157g+8
0℃(Tgは該ポリエステルのガラス転移温度、”C%
?、は加熱金製温度、℃)で規定する温IEK加熱した
割金型に供給するとともに、Tt−60≦T畳≦TI+
50℃(T冨は圧縮流体ムの温度、℃)で規定する温度
の圧縮流体ムを吹込み延伸ブロー成形し、引続いて咳割
金渥内の蔦伸プp−容器内部で、該圧縮流体ムt’、T
g+80≦’rs≦Tg+170℃(Titt圧縮流体
Bの温度、℃)で規定する温度に加熱した圧縮流体Bと
置換し該容器な熱処理し、次いで該圧縮流体Bを再び前
記圧縮流体ムに置換し、腋容器を冷却してから腋割金動
)ら取出すことを特徴とする、延伸ブロー容器の熱処理
方法。
A parison made by injection or extrusion molding from a thermoplastic polyester containing ethylene terephthalate as a main component is preheated to an appropriate temperature for stretching, and then supplied to a split mold to be stretched and molded.
V. In the method of subsequently heat-treating the parison in a cough metal mold, after preheating the parison to an appropriate temperature for stretching, 'rg (T157g+8
0°C (Tg is the glass transition temperature of the polyester, "C%
? , is the heating metal temperature specified in °C), and is supplied to a split mold heated by IEK, and Tt-60≦Ttatami≦TI+
A compressed fluid at a temperature specified by 50°C (T: the temperature of the compressed fluid, °C) is injected and stretch-blow-molded, and then the compression is carried out inside a vine-stretched container in a cough splitter. fluid t', T
g+80≦'rs≦Tg+170°C (temperature of Titt compressed fluid B, °C) is replaced with compressed fluid B heated to a temperature specified by Titt, the container is heat-treated, and then the compressed fluid B is replaced with the compressed fluid B again. , a method for heat treating a stretch-blown container, the method comprising cooling the armpit container and then taking it out from the armpit splitter.
JP11638881A 1981-07-27 1981-07-27 Method of heat treatment of stretched and blown vessel Pending JPS5818230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11638881A JPS5818230A (en) 1981-07-27 1981-07-27 Method of heat treatment of stretched and blown vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11638881A JPS5818230A (en) 1981-07-27 1981-07-27 Method of heat treatment of stretched and blown vessel

Publications (1)

Publication Number Publication Date
JPS5818230A true JPS5818230A (en) 1983-02-02

Family

ID=14685780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11638881A Pending JPS5818230A (en) 1981-07-27 1981-07-27 Method of heat treatment of stretched and blown vessel

Country Status (1)

Country Link
JP (1) JPS5818230A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884734A (en) * 1981-11-17 1983-05-20 Yoshino Kogyosho Co Ltd Biaxially oriented blow molding method
JPS58162321A (en) * 1982-03-03 1983-09-27 オ−エンス イリノイ インコ−ポレ−テッド Poly ( ethylene terephthalate ) article and its manufacture
JPS60141522A (en) * 1983-12-29 1985-07-26 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
FR2649035A1 (en) * 1989-06-29 1991-01-04 Sidel Sa METHOD OF MANUFACTURING BY BLOW-STRETCHING POLYETHYLENETEREPHTHALATE CONTAINERS FOR FILLING WITH A HOT LIQUID
JPH03275329A (en) * 1990-03-26 1991-12-06 Nissan Shatai Co Ltd Blow molding method
WO2001019594A1 (en) * 1999-09-14 2001-03-22 Schmalbach-Lubeca Ag Blow molding method and machine for producing pasteurizable containers
WO2001034370A1 (en) * 1999-11-09 2001-05-17 Schmalbach-Lubeca Ag Blow molding method and machine for producing pasteurizable containers
WO2002002295A1 (en) * 2000-06-30 2002-01-10 Schmalbach-Lubeca Ag Method for producing plastic containers having high crystallinity bases

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884734A (en) * 1981-11-17 1983-05-20 Yoshino Kogyosho Co Ltd Biaxially oriented blow molding method
JPH0359817B2 (en) * 1981-11-17 1991-09-11 Yoshino Kogyosho Co Ltd
JPS58162321A (en) * 1982-03-03 1983-09-27 オ−エンス イリノイ インコ−ポレ−テッド Poly ( ethylene terephthalate ) article and its manufacture
JPS60141522A (en) * 1983-12-29 1985-07-26 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
JPH0517019B2 (en) * 1983-12-29 1993-03-08 Mitsubishi Plastics Ind
FR2649035A1 (en) * 1989-06-29 1991-01-04 Sidel Sa METHOD OF MANUFACTURING BY BLOW-STRETCHING POLYETHYLENETEREPHTHALATE CONTAINERS FOR FILLING WITH A HOT LIQUID
JPH03275329A (en) * 1990-03-26 1991-12-06 Nissan Shatai Co Ltd Blow molding method
WO2001019594A1 (en) * 1999-09-14 2001-03-22 Schmalbach-Lubeca Ag Blow molding method and machine for producing pasteurizable containers
WO2001034370A1 (en) * 1999-11-09 2001-05-17 Schmalbach-Lubeca Ag Blow molding method and machine for producing pasteurizable containers
WO2002002295A1 (en) * 2000-06-30 2002-01-10 Schmalbach-Lubeca Ag Method for producing plastic containers having high crystallinity bases

Similar Documents

Publication Publication Date Title
US5281387A (en) Method of forming a container having a low crystallinity
EP0653982B1 (en) Method of forming container with high-crystallinity sidewall and low-clystallinity base
EP0653981B1 (en) Method of forming multi-layer preform and container with low crystallizing interior layer
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
JPS5818230A (en) Method of heat treatment of stretched and blown vessel
KR20170140349A (en) Multilayer materials and articles made therefrom and methods of making the same
KR100457349B1 (en) Container with reduced acetaldehyde and its molding method
KR19980080198A (en) Polyester Stretched Blow Bottle and Manufacturing Method Thereof
US6214281B1 (en) Multi-layer container and preform and process for obtaining same
GB2218395A (en) A draw-blow moulded laminar polyester vessel
EP0730633B1 (en) Process for washing refillable plastic bottles
EP1710075A1 (en) Hollow container and process for producing the same
JPS5935333B2 (en) Method for manufacturing polyester containers
Weissmann PET Use in Blow Molded Rigid Packaging
Weissmann PET use in blow molded rigid packaging
JPH0615725A (en) Heat-resistant biaxially orientated blow molded bottle and its manufacture
JPH07257537A (en) Heat and pressure resistant vessel and production method
JP3522043B2 (en) Polyester, preform and biaxially stretched bottle made of polyester, and method for producing polyester biaxially stretched bottle
JP2922973B2 (en) Multilayer preform made of saturated polyester resin and multilayer bottle obtained from this preform
JP3449635B2 (en) Heat-resistant biaxially stretch blow-molded bottle and method for producing the same
JP4107705B2 (en) Stretch blow bottle made of polyester resin composition and method for producing the same
KR20010065787A (en) Method of heat-set stretched molding polyester container
JPS5873586A (en) Filling method into plastic vessel
JPH1149848A (en) Polyester, preform and biaxially drawn bottle made of the polyester and production of biaxially drawn polyester bottle
JPS6243853B2 (en)