JPS58181802A - Manufacture of ring-shaped permanent magnet anisotropic along its radial direction - Google Patents

Manufacture of ring-shaped permanent magnet anisotropic along its radial direction

Info

Publication number
JPS58181802A
JPS58181802A JP6406382A JP6406382A JPS58181802A JP S58181802 A JPS58181802 A JP S58181802A JP 6406382 A JP6406382 A JP 6406382A JP 6406382 A JP6406382 A JP 6406382A JP S58181802 A JPS58181802 A JP S58181802A
Authority
JP
Japan
Prior art keywords
ring
magnetic
magnetic field
die
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6406382A
Other languages
Japanese (ja)
Inventor
Takeshi Koeda
小枝 壮士
Masahiro Ono
小野 雅啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6406382A priority Critical patent/JPS58181802A/en
Publication of JPS58181802A publication Critical patent/JPS58181802A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To simplify the structure of dies, while improving work efficiency, by providing a couple of field coils oppositely to each other at right and left about the dies, and performing compression-forming while repulsing magnetic fluxes by the impression of magnetic fields having the same polarity. CONSTITUTION:A couple of field coils 3, 3' are provided at both of the right and left sides of a ring-shaped cavity defined by a die 1, a core rod 6 and a lower die 5, in a manner such that they are arranged in vertical postures at positions symmetric about an axial line along the vertical center of the ring. Said ring-shaped cavity is filled with magnetic powder, and compression-forming is performed by an upper die 4. Magnetic fluxes are formed along the arrow 8 by coupled field coils 3, 3' and let horizontally permeate from both of the right and left ends into the ring of the magnetic powder, so that the rectangular cross of a line of magnetic induction to the wall of the ring can be assured. Since the interior of the upper die 4 is hollow, the magnetic fluxes from the right and left sides repulse to each other at the central part of the ring and then permeate downwards through the core rod 6. Thus, the ring-shaped compressed powdery body of good quality anisotropic along its radial direction is formed.

Description

【発明の詳細な説明】 本発明は、径方向異方性リング永久磁石の製造法に関す
るものであり、特には磁場中加圧成形による径方向異方
性リング永久磁石の製造法において一對の磁場コイルを
粉末成形用金型を挾んで左右に対向させて設置し、同極
磁場の印加により磁束を反発させながら加圧成形するこ
とを特徴とする上記製造法に関する。
Detailed Description of the Invention The present invention relates to a method for manufacturing a radially anisotropic ring permanent magnet, and particularly to a method for manufacturing a radially anisotropic ring permanent magnet by pressure forming in a magnetic field. The present invention relates to the above-mentioned manufacturing method, characterized in that magnetic field coils are placed opposite to each other on the left and right sides with a powder molding die in between, and pressure molding is performed while repelling magnetic flux by applying a homopolar magnetic field.

ステッピングモータを含めて各種モータ等において使用
されるリング永久磁石は、従来より、磁場中加圧成形法
によって製造されてきた。磁場中加圧成形法は、粉末成
形用ダイに磁性粉を充填して上堰及び下型の協同作用に
より磁性粉をランダ状に加圧成形すると同時に、磁場コ
イルによりリングを通して放射状の磁束を発生させてリ
ング壁中径方向に磁化された圧縮リングを得るものであ
り、この後焼結操作を径て所望のリング永久磁石が生成
される。
BACKGROUND ART Ring permanent magnets used in various motors including stepping motors have conventionally been manufactured by a pressure molding method in a magnetic field. In the magnetic field pressure molding method, a powder molding die is filled with magnetic powder, and the magnetic powder is pressure molded into a lander shape by the cooperative action of an upper weir and a lower mold, and at the same time, a radial magnetic flux is generated through a ring using a magnetic field coil. In this way, a compressed ring magnetized in the radial direction of the ring wall is obtained, and then a desired ring permanent magnet is produced through a sintering operation.

図面を参照すると、第1及び2図には従来実施された基
本的方法が示してあり、ダイ1と中棒6とによって形成
されるリング状空洞内にフェライト等の磁性粉7が充填
される。ia磁性粉空洞内で下側において該リング空洞
内に軒分的に挿入する下型5によって支持されている。
Referring to the drawings, FIGS. 1 and 2 show a conventionally practiced basic method in which a ring-shaped cavity formed by a die 1 and a center rod 6 is filled with magnetic powder 7 such as ferrite. . It is supported on the lower side within the ia magnetic powder cavity by a lower mold 5 which is inserted into the ring cavity in an eave-wise manner.

ダイ1上方には上型4が空洞と整列して配置されている
。磁場コイルSが第1図ではダイ1の下部にそして第2
1ではその上部に設置され、矢印で示すような磁束l1
1Bをそれぞれ発生せしめる。上型4による加圧成形中
磁束線はリング壁を貫いてほぼ半径方向放射状に通って
いる。しかし、この製造方法では、いずれの場合も、磁
場コイル5から離れるに従って磁界強度が低下するため
、リング高さ方向に磁気特性のアンバランスがどうして
も生じてしまう。
An upper mold 4 is arranged above the die 1 in alignment with the cavity. A magnetic field coil S is shown in FIG. 1 at the bottom of die 1 and at the second
1, it is installed above the magnetic flux l1 as shown by the arrow.
1B respectively. During pressure forming by the upper mold 4, the magnetic flux lines pass through the ring wall in a substantially radial direction. However, with this manufacturing method, in any case, the magnetic field strength decreases as the distance from the magnetic field coil 5 increases, so an imbalance in magnetic properties inevitably occurs in the ring height direction.

そこで、リング高さ方向の磁気特性アンバランスの問題
を解消する為に、次に採用された製造法は、第3図に示
すように、ダイ1の上下に磁場コイル3及び5′を設置
し、同極磁場を両磁場コイル3及び51に印加すること
により上からの磁束と下からり磁束を反発させながら第
5図に矢印で示したよう1に磁束線8の模様の下で加圧
成形する方法であった。しかし、この製造方法では、上
方磁場コイ)h5及び下方磁場フィル5″が上′W4及
び下型5をそれぞれ取巻いてしかもダイ1の上下に設置
されるため作業空間を着しく制約する。加えて、ダイ1
の下部に磁場コイル5′を設置するため、ダイ構造が複
雑化し、金型費のスス・−ドアツブを招来する。更に、
数個を同時に成形する場合において、上型及び下型のま
わりに磁場コイルを設置する必斐上、取f&数の制限を
受け、生産性の飛電的向上は望めない。更に重大なこと
には、上下から反発しあって磁性粉リング壁を貫いて水
平方向にそらされる磁束線はリング壁を必ずしも完全に
半径方向放射状に通らず、所望の径方向異方性が得られ
ないことがある。上下磁束の反発面が磁性粉リングの中
心にくることも設備の制約上できないことがあり、リン
グ高さ方向アンバランスが依然として生じることもあっ
た。金型交換の際磁場コイルをいちいち取外す面惧さも
あった。
Therefore, in order to solve the problem of unbalanced magnetic properties in the ring height direction, the next manufacturing method adopted was to install magnetic field coils 3 and 5' above and below the die 1, as shown in Figure 3. , by applying a homopolar magnetic field to both magnetic field coils 3 and 51, while repelling the magnetic flux from above and the magnetic flux from below, pressure is applied to 1 under the pattern of magnetic flux lines 8 as shown by the arrows in Fig. 5. It was a method of molding. However, in this manufacturing method, the upper magnetic field coil h5 and the lower magnetic field fill 5'' surround the upper W4 and the lower mold 5, respectively, and are installed above and below the die 1, which severely restricts the work space. Hey, die 1
Since the magnetic field coil 5' is installed at the bottom of the die, the die structure is complicated and the mold cost is increased. Furthermore,
When molding several pieces at the same time, it is necessary to install magnetic field coils around the upper and lower molds, which limits the number of molds to be taken, and it is not possible to expect a significant improvement in productivity. More importantly, the magnetic flux lines that repel each other from above and below and are deflected horizontally through the magnetic powder ring wall do not necessarily pass completely radially through the ring wall, resulting in the desired radial anisotropy. Sometimes I can't. Due to equipment constraints, it may not be possible for the repelling surfaces of the upper and lower magnetic fluxes to be at the center of the magnetic powder ring, and unbalance in the ring height direction may still occur. There was also the fear of having to remove the magnetic field coil each time the mold was replaced.

従来技術の上記のような欠点に鑑み、本発明は、より完
全な半径方向放射状磁束の発生下で、磁場コイルと上型
、下型、ダイ等の成形部との干渉を最小限とすることに
より一層能率的な作業を行うことを可能とし且つ型構造
の動索化を可ならしめる高品質径方向異方性リング永久
磁石の製造法を提供せんとするものである。
In view of the above-mentioned drawbacks of the prior art, the present invention aims to minimize the interference between the magnetic field coil and molding parts such as the upper die, the lower die, and the die while generating a more complete radial magnetic flux. It is an object of the present invention to provide a method for manufacturing high quality radially anisotropic ring permanent magnets that allows for more efficient work and allows for the construction of mold structures.

本発明は、一対の磁場コイルをダイを挾んで左右に対向
させて設置し、同極磁場の印加により磁束を反発させな
がら加圧成形することを%黴とする。こうすることによ
って磁場コイル対は、ダイ、上型及び下型等から成る成
形部から離して設置することができるようになり、型構
造が簡単になる上、間口が広くとれるのできわめて効率
的な加圧作業を実施することができる。磁束は、加圧方
向に垂直に、即ち成形中・の磁性粉リング体の壁に直交
して発生するのできわめて磁気特性の一様な製品が製造
できる。
In the present invention, a pair of magnetic field coils are placed opposite each other on the left and right sides with a die in between, and pressure molding is performed while repelling magnetic flux by applying a homopolar magnetic field. By doing this, the magnetic field coil pair can be installed away from the molding section consisting of the die, upper mold, lower mold, etc., which simplifies the mold structure and allows for a wide frontage, making it extremely efficient. Pressure work can be carried out. Since the magnetic flux is generated perpendicular to the pressing direction, that is, perpendicular to the wall of the magnetic powder ring during molding, a product with extremely uniform magnetic properties can be manufactured.

第4図に示した具体例に基いて説明する。参照査んは第
1〜512′の場合と同じである。本発明に従えば、一
対の磁場コイル3及び5′が、ダイ1、中棒6及び下型
5によって定義されるリング状空嗣の左右両側でリング
垂直中心軸線に対して対称装置に垂直姿勢において設置
される。斯くして、出湯コイル対5及びslによって矢
印8で示されるような磁束が発生し、リング状空洞部内
に充填されそして上#14により加圧されつつある磁性
粉リングに対して左右両側から水平に浸透する。第3図
に示した従来技術の場合と違い、磁束線とリング壁との
直交性が保証される。上型4の内部は中空であるので、
左右からの磁束はリング中心部で反発しあった後中棒6
を下方に通過する。最終的に、烏品質の径方向異方性リ
ング加圧t48体が生成される。
This will be explained based on the specific example shown in FIG. The reference check is the same as in cases 1 to 512'. According to the invention, a pair of magnetic field coils 3 and 5' are arranged in a vertical position in a symmetrical device with respect to the vertical center axis of the ring on both left and right sides of the ring-shaped cavity defined by the die 1, the middle rod 6 and the lower die 5. It will be installed in In this way, a magnetic flux as shown by the arrow 8 is generated by the tapping coil pair 5 and sl, and is applied horizontally from both left and right sides to the magnetic powder ring that is filled in the ring-shaped cavity and is being pressurized by the upper #14. to penetrate. Unlike the prior art case shown in FIG. 3, orthogonality between the magnetic flux lines and the ring wall is guaranteed. Since the inside of the upper mold 4 is hollow,
The magnetic flux from the left and right sides repel each other at the center of the ring.
passes downward. Finally, a radially anisotropic ring pressurized T48 body of crow quality is produced.

磁場コイル対3及び5′を、ダイ1、上製4、下型5及
び中986から構成される成形部の左右両脇に′vwし
たことにより、磁場コイルと成形部との機械的干渉は排
除され、型構造が簡素になる上に、作業間口が広くとれ
るので作業がやりやすくなり、効率的表加圧成杉作業が
実現しうる。金型交換の際、磁場コイルを設置したまま
で作業出来る為、作業時間が短縮され、稼動率の向上に
おおいに寄与する。更に、関口が広くとれることにより
、数個の磁性粉リングの同時成形が容易化される。
Mechanical interference between the magnetic field coils and the molding part is eliminated by placing the magnetic field coil pairs 3 and 5' on both left and right sides of the molding part consisting of the die 1, upper mold 4, lower mold 5, and middle mold 986. This not only simplifies the mold structure, but also allows for a wider working space, making it easier to work and making it possible to perform surface-pressure forming cedar work efficiently. When replacing molds, work can be done with the magnetic field coil still in place, which reduces work time and greatly contributes to improving operating rates. Furthermore, since the opening is wide, it is easier to mold several magnetic powder rings at the same time.

更に、第5図に示すように、上型4の中空部に鉄材等の
強磁性体部材2を配置することにより、磁路が上下方向
に2分され、磁気抵抗が半減される。従って、磁性粉成
形部における磁界強度は約2倍に向上し、リング高さに
沿って磁界強度の一様性が増し高特性の成形体を得るこ
とが可能となる。
Further, as shown in FIG. 5, by arranging a ferromagnetic member 2 made of iron or the like in the hollow part of the upper mold 4, the magnetic path is divided into two in the vertical direction, and the magnetic resistance is halved. Therefore, the magnetic field strength in the magnetic powder molded portion is increased approximately twice, and the uniformity of the magnetic field strength increases along the ring height, making it possible to obtain a molded product with high characteristics.

更に、多数個のリングを同時成形する場合においては、
各々の金型の磁気抵抗のバフツキがある為、また各成形
部の配置場所が異なるため、各々の粉末成形部の磁界強
度が異なる結果として、磁気特性(B【)にバフツキの
ある圧粉体が生じる。
Furthermore, when molding multiple rings at the same time,
Because the magnetic resistance of each mold is uneven, and because the placement of each molding part is different, the magnetic field strength of each powder molding part is different. As a result, the magnetic properties (B occurs.

この不都合を回避するため、各上型4の中空部に抑大す
る強磁性体材料2の断面積を調整したりあるいは材宵を
変えることによって、金型の粉末成形部における磁界強
度の均一化が計られる。斯くして、特性の安定した磁性
粉リンダの多数個の同時生産が行えるようになる。
In order to avoid this inconvenience, the magnetic field strength in the powder molding part of the mold can be made uniform by adjusting the cross-sectional area of the ferromagnetic material 2 held in the hollow part of each upper mold 4 or by changing the thickness of the material. is measured. In this way, it becomes possible to simultaneously produce a large number of magnetic powder cylinders with stable characteristics.

以下、実施例を示す。Examples are shown below.

実施例1 下表に示す寸法の7工ライト径方向異方性リング永久磁
石を第5図に示したような装置を使用して製造した。磁
場コイルはダイ中心軸線から5o。
Example 1 A seven-piece light radially anisotropic ring permanent magnet having the dimensions shown in the table below was manufactured using the apparatus shown in FIG. The magnetic field coil is 5o from the die center axis.

l諷のところに対称に設置した。装置作動条件は次の通
りとした。
It was installed symmetrically on the side of the street. The operating conditions of the device were as follows.

上型加圧カニ2o口〜s o oky/cm”団揚コイ
ル二最大起磁力4(LOOOム丁/個磁界 強度:金型
寸法により異なる (番考の為、次表に配す) 得られた12個のリングの磁気特性を示す。
Upper mold pressurized crab 2 o mouth ~ SO oky/cm" Maximum magnetomotive force of 2 coils 4 (LOOO m/piece magnetic field) Strength: Varies depending on mold dimensions (distributed in the following table for consideration) Obtained The magnetic properties of 12 rings are shown below.

各リングはいずれもリング高さ方向に一様に異方化され
ており、高品質のものであった。
Each ring was uniformly anisotropic in the ring height direction and was of high quality.

実施例2 実i例1の9置の上型中空部に鉄材を挿入しない第4図
と同様の装置によって661m諷外極X5&諷議内径×
401Im高さのりンダを製造した。鉄材を挿入した場
合と挿入しない場合との比較データを以下に示す。
Example 2 Using the same device as shown in Fig. 4 without inserting any iron material into the hollow part of the upper mold of the 9th position of Example 1, a 661 m outer diameter x5 & inner diameter x
A cylinder with a height of 401 Im was manufactured. Comparison data between the case with and without inserting iron material is shown below.

鉄材の挿入によって磁界強度を倍以上増加することがで
き、従って高特性のリングが得られた。
By inserting the iron material, the magnetic field strength could be more than doubled, resulting in a ring with high properties.

実施例S 2&畠藁諷外径X21mm富内径X I 511m+高
さの寸法のリングを4個同時成形した。ダイの磁気抵抗
の違いにより、上型の中空部に挿入する鉄材を4.52
CI+”断面の同一のものとした場合には下表に示すよ
うに磁界強度及び生成リングlrはかなり変動した。し
かし、4つの上型に挿入される鉄材の断面を調整するこ
とによって特性バラツキの抽圧効果が得られた。結果を
下表に示す。
Example S 4 rings having dimensions of 2 & Hatakewara no Miki outer diameter x 21 mm, inner diameter x I 511 m + height were molded at the same time. Due to the difference in magnetic resistance of the die, the iron material inserted into the hollow part of the upper mold is
When the CI+" cross section was the same, the magnetic field strength and generation ring lr varied considerably as shown in the table below. However, by adjusting the cross sections of the iron materials inserted into the four upper molds, the variation in characteristics could be reduced. A extraction effect was obtained.The results are shown in the table below.

以上説明した通り1本発明は一対の磁場コイルをダイを
挾んで左右に対向させて設置し、同極磁場の印加により
一束を反発させながら加圧成彩を行う径方向異方性リン
グ永久磁石の製造方法であり、従来より高品鷲の製品を
改善された作業能率の下で製造することを可とした点で
きわめて*m義である。
As explained above, the present invention is a permanent radial anisotropic ring in which a pair of magnetic field coils are placed opposite to each other on the left and right with a die sandwiched between them, and a homopolar magnetic field is applied to repel the bundle while applying pressure. This is a method for manufacturing magnets, and is extremely unique in that it enables the production of high-quality products with improved work efficiency compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1.@2及び第S図は先行技術による磁場中加圧成形
装置の概略#r面図でありそして第4及び5図は本発明
に従う磁場中加圧成形装置の概略断面図である。 1:ダイ(強磁性体) 5.5′:磁場コイル 4!上型(非磁性体) 5z下3M(非磁性体) 6 :中棒(−磁性体但し@2図においては非磁性体)
7:磁性粉 8:磁束線 2:鉄材等強磁性体 、     Δ (−21 410 第2図 す・5図 手続補正書 昭和57年12月14日 特許庁長富 S  杉和夫殿 事件の表示 昭和57年 特販第 64045  号発
明の名称  後方向異方性リング永^確石の製造法補正
をする者 事件との関係           特許出願人名 称
   (SΩ6)東京電気化学工業株式会社代理人 〒103 住 所  東京都中央区日本橋3丁目13番11号油脂
工業会館電話273−6436番 住所   同  」− 補刊う 補i[の対象 願書の発叫者咄願人の欄 明細書の発明?8枠特許請求の範囲・発明の詳細な説明
の欄浦正の内容  別紙の通り 411に昭57−4406S号明細書を以下の通り補正
します。 10許請求の範囲を以下の通り改めます。 「2.4I)許精求の範囲 1)ダイ中に充填された磁性粉を上型及び下型(よって
磁場中細fEit形することにより径方向異方性リング
永久磁石を製造する方法において、一対の磁場コイルを
前記ダイな挾んで左右に対向させて設置し、同極磁場の
印加により磁束を反発させながら加圧成形することを%
像とする径方向異方性リング永久磁石の製造法。 2)上型の中空部内に強磁性体を゛挿入して磁気回路の
磁気抵抗を低減させる特許請求の範囲第1項記載の方法
。 3)ダイに複数の成形部が設けられると共に同数の上型
及び下型が設けられ、各上湿の中空部内に強ia性体な
挿入し、そして複数の成形部の硼界強度の均一化を計る
よう挿入強磁性体の斬M!!*@!rtx旦−材質を変
更する特許請求の範囲第1項記載の方法。」 2第7頁、末行「JRえる」とあるを「変えて一気抵抗
を等しくする」と訂正します。 5第10頁、下から2行「新劇」と「を」との闘に「積
1を挿入します。
1st. Figures @2 and S are schematic #r side views of a magnetic field pressure forming apparatus according to the prior art, and Figures 4 and 5 are schematic sectional views of a magnetic field pressure forming apparatus according to the present invention. 1: Die (ferromagnetic material) 5.5': Magnetic field coil 4! Upper mold (non-magnetic material) 5z Lower 3M (non-magnetic material) 6: Middle bar (-magnetic material, however @ non-magnetic material in Figure 2)
7: Magnetic powder 8: Lines of magnetic flux 2: Ferromagnetic material such as iron material, Δ (-21 410 Figures 2 and 5 Procedural Amendments December 14, 1980 Patent Office Nagatomi S. Kazuo Sugi Case Display 1982 Year Special Sales No. 64045 Name of the invention Relationship with the case of a person amending the manufacturing method of backward anisotropic ring permanent stone Patent applicant name (SΩ6) Tokyo Denki Kagaku Kogyo Co., Ltd. Agent 103 Address Tokyo 3-13-11 Nihonbashi, Chuo-ku, Oils and Fats Industry Hall, Telephone: 273-6436 Address: Supplementary Edition USupplement I [Invention in the applicant's column specification of the subject application?8 Scope of claims・Contents of Ura Masa in the column of detailed description of the invention As shown in the attached document, the specification of No. 1987-4406S is amended as follows in 411. Range 1) In a method of manufacturing a radially anisotropic ring permanent magnet by forming magnetic powder filled in a die into an upper mold and a lower mold (thus forming a magnetic field medium fine fEit shape), a pair of magnetic field coils are placed in the die. They are sandwiched and placed facing each other on the left and right, and pressure molded while repelling the magnetic flux by applying a homopolar magnetic field.
A method for manufacturing a radially anisotropic ring permanent magnet. 2) The method according to claim 1, wherein a ferromagnetic material is inserted into the hollow part of the upper mold to reduce the magnetic resistance of the magnetic circuit. 3) The die is provided with a plurality of molding parts, and the same number of upper molds and lower molds are provided, a strong ia material is inserted into the hollow part of each upper mold, and the boundary strength of the plurality of molding parts is made uniform. Insert the ferromagnetic material to measure it! ! *@! The method according to claim 1, wherein the material is changed once the rtx is processed. ” On page 7 of 2, the last line “JR Eru” is corrected to “change to equalize the resistance at once.” 5 On page 10, insert the product 1 between the two lines from the bottom between ``Shingeki'' and ``wo''.

Claims (1)

【特許請求の範囲】 1)ダイ中に充填された磁性粉を上型及び下型によって
磁場中加圧成形することにより径方向異方性リング永久
磁石を製造する方法において、一対の磁場コイルを前駅
ダイを挾んで左右に対向させて設置し、同極磁場の印加
により桓東を反発させながら加圧成形することを特徴と
する径方向異方性リング永久磁石の製造法。 2)上型の中空部内に強磁性体側挿入して磁気−路の磁
気抵抗を低減させる特許請求の範囲第1項記載の方法。 5)ダイに伽数の成形部が設けられると共に同数の上型
及び下型が設けられ、各上型の中空部内に強磁性体を挿
入し、そして!1M数の成形部の磁界強度の均一化を計
るよう挿入強磁性体の寸法及び材質を変更する特許請求
の範囲第1項記載の方法。
[Claims] 1) A method for manufacturing a radially anisotropic ring permanent magnet by press-molding magnetic powder filled in a die in a magnetic field using an upper mold and a lower mold, in which a pair of magnetic field coils are used. A method for manufacturing a radially anisotropic ring permanent magnet, which is characterized by placing Maeki dies in between and facing each other on the left and right, and press-molding while repelling the huangdong by applying a homopolar magnetic field. 2) The method according to claim 1, wherein the ferromagnetic material side is inserted into the hollow part of the upper mold to reduce the magnetic resistance of the magnetic path. 5) The die is provided with a number of molding parts, and the same number of upper and lower molds are provided, a ferromagnetic material is inserted into the hollow part of each upper mold, and! The method according to claim 1, wherein the dimensions and material of the inserted ferromagnetic body are changed so as to equalize the magnetic field strength of the 1M molded parts.
JP6406382A 1982-04-19 1982-04-19 Manufacture of ring-shaped permanent magnet anisotropic along its radial direction Pending JPS58181802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6406382A JPS58181802A (en) 1982-04-19 1982-04-19 Manufacture of ring-shaped permanent magnet anisotropic along its radial direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6406382A JPS58181802A (en) 1982-04-19 1982-04-19 Manufacture of ring-shaped permanent magnet anisotropic along its radial direction

Publications (1)

Publication Number Publication Date
JPS58181802A true JPS58181802A (en) 1983-10-24

Family

ID=13247255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6406382A Pending JPS58181802A (en) 1982-04-19 1982-04-19 Manufacture of ring-shaped permanent magnet anisotropic along its radial direction

Country Status (1)

Country Link
JP (1) JPS58181802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181859A1 (en) * 2007-06-28 2010-07-22 Hitachi Metals, Ltd. Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639423B2 (en) * 1971-12-27 1981-09-12
JPS56122115A (en) * 1980-02-29 1981-09-25 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639423B2 (en) * 1971-12-27 1981-09-12
JPS56122115A (en) * 1980-02-29 1981-09-25 Hitachi Metals Ltd Manufacture of cylindrical permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181859A1 (en) * 2007-06-28 2010-07-22 Hitachi Metals, Ltd. Radially anisotropic ring r-tm-b magnet, its production method, die for producing it, and rotor for brushless motor
US8937419B2 (en) * 2007-06-28 2015-01-20 Hitachi Metals, Ltd. Radially anisotropic ring R-TM-B magnet, its production method, die for producing it, and rotor for brushless motor

Similar Documents

Publication Publication Date Title
KR890002536B1 (en) Method of producing cylindrical permanent magnet
KR101108559B1 (en) Method for preparing radially anisotropic magnet
JP5963870B2 (en) Permanent magnet manufacturing method and permanent magnet manufacturing apparatus
CN107413916A (en) A kind of tubing Electromagnetic bulging building mortion and method
CN107617740A (en) Sintered body, its manufacture method, decompressor and resin molded ring
CN107978443A (en) Elevating type radiation oriented moulding method and mechanism
CN109369169A (en) A method of reducing dry-pressing formed strontium ferrite outer radial multi-pole magnet-ring cracking
JPS58181802A (en) Manufacture of ring-shaped permanent magnet anisotropic along its radial direction
CN213471601U (en) Magnetic circuit die with radial multistage magnetic rings of permanent magnets with different directions
CN116436185A (en) Tri-pole magnet array
CN109671546A (en) Magnet and its manufacturing method
WO2017104788A1 (en) Anisotropic sintered magnet analysis-method, and anisotropic sintered magnet manufacturing-method using same
CN207517512U (en) Elevating type radiation oriented moulding mechanism
JP3851281B2 (en) Magnetic powder filling apparatus, magnetic powder filling method, and neodymium sintered magnet manufacturing method
JP2008208388A (en) Die for molding
JP2860858B2 (en) Mold for magnetic powder molding
JP2012119698A (en) Manufacturing apparatus of radial anisotropic ring magnet
US5047205A (en) Method and assembly for producing extruded permanent magnet articles
JPH08264362A (en) Magnet molding apparatus
JPH0628215B2 (en) Manufacturing method of radial oriented magnet
CN110460211B (en) Mold for manufacturing anisotropic injection molding permanent magnet
JPS6167599A (en) Magnetic field forming method and forming device
JP2003236699A (en) Mold apparatus for segment magnet
CN106493359B (en) A kind of molding die preparing multipole sintered rare-earth permanent magnetic body green compact
JPH08250357A (en) Manufacturing device and method of thin-walled ring magnet