JPS58181788A - Manufacture of crystal - Google Patents

Manufacture of crystal

Info

Publication number
JPS58181788A
JPS58181788A JP57063744A JP6374482A JPS58181788A JP S58181788 A JPS58181788 A JP S58181788A JP 57063744 A JP57063744 A JP 57063744A JP 6374482 A JP6374482 A JP 6374482A JP S58181788 A JPS58181788 A JP S58181788A
Authority
JP
Japan
Prior art keywords
crystal
heating
starting material
pressure
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57063744A
Other languages
Japanese (ja)
Other versions
JPH0135797B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57063744A priority Critical patent/JPS58181788A/en
Priority to DE8383302154T priority patent/DE3364653D1/en
Priority to EP83302154A priority patent/EP0092405B1/en
Priority to US06/485,506 priority patent/US4522680A/en
Publication of JPS58181788A publication Critical patent/JPS58181788A/en
Publication of JPH0135797B2 publication Critical patent/JPH0135797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To simply attain high temp. and pressure and to obtain a high purity crystal, by enclosing a starting material for the crystal with a prescribed wrapping material and by heating only the starting material by a prescribed means. CONSTITUTION:A starting material for a crystal is enclosed in a wrapping material with optical transparency or magnetic permeability. The enclosed starting material is melted by heating with laser light or induction heating from the outside, and the molten material is slowly cooled. Thus, only the starting material is melted by heating, high temp. and pressure are simply attained, and a high purity crystal is obtd.

Description

【発明の詳細な説明】 本発明は結晶製造方法に関し、結晶体を人工的に製造す
る場合に、超高温、高圧条件を必苅とするような物質例
えばダイヤモンド等の宝石や金属結晶を低コストで製造
する方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crystals, and relates to a method for producing crystals at low cost when producing materials that require ultra-high temperature and high pressure conditions, such as gemstones and metal crystals such as diamond. The present invention provides a method for manufacturing.

従来より単結晶の製造方法には、大きくわけて(1)火
炎溶融法、 (2)水熱合成法、 (3)  フラックス法、 (4)  チョクラルスキー法、 (5)  ゾーンメルティング法、 等々が知られている。
Traditional methods for producing single crystals can be roughly divided into (1) flame melting method, (2) hydrothermal synthesis method, (3) flux method, (4) Czochralski method, (5) zone melting method, etc. are known.

火炎溶融法とは、ガスバーナーの炎の中にサファイヤと
かルビーになるような組成の粉末を降らせガスバーナー
で加熱して作る方法であるが、この方法では、高純度の
原材料を必要とするにもかかわらず、あまり良質の結晶
は得られなかった。
The flame melting method is a method in which a powder with a composition similar to sapphire or ruby falls into the flame of a gas burner and is heated with a gas burner, but this method requires high-purity raw materials. However, very good quality crystals were not obtained.

水熱合成法では、例えば、ルビーを作る場合、およそ2
0oO気圧の圧力の下で1〜2規定のNa2CO3ある
いは0.5規定のN a OH水溶り、を80〜90係
、さらにα−アルミナ(0,18/lクロム酸ソーダ)
及びルビーの種結晶を充填し、約0.05〜0.25關
くらいの成長速度で結晶を育てる方法であるが、装置も
大がかりになり製造効率も非常に悪い。
In the hydrothermal synthesis method, for example, when making a ruby, approximately 2
Under a pressure of 0oO atmosphere, 1-2N Na2CO3 or 0.5N NaOH dissolved in water, 80-90%, and α-alumina (0.18/l sodium chromate).
This is a method in which ruby seed crystals are filled and the crystals are grown at a growth rate of about 0.05 to 0.25 degrees, but the equipment is large-scale and the production efficiency is very low.

フラックス法では、例えば、フラックスとして酸化ナマ
リとフッ化ナマリを等量で入れ、その中に酸化アルミニ
ウムを入れて、約1260℃に加熱して溶融し、0.1
1〜b ナの結晶を析出させ、さらにクロム酸ソーダに浸析して
ピンク色のルビー結晶を製造する方法である。しかしな
がら、この方法では、フラックスが減少して組成が変っ
たり、粘度が変化して組成変動が激しい1、 チョクラルスキー法は、ルツボ中に原料材を溶融させて
おき、種結晶につけて引−Lげるh゛法であり、ゾーン
メルティング法は、原材料をロンド状に成形しておき、
誘導加熱法で部分的に加熱、再結晶さす、その溶融帯を
移動させながら単結晶を製造する方l去であり、Slの
単結晶製造にはに11]化されているが、まだ、超高圧
で製造する方法は開発されてない。
In the flux method, for example, equal amounts of Namal oxide and Namal fluoride are added as a flux, aluminum oxide is added therein, and the mixture is heated to about 1260°C and melted to form a 0.1
In this method, pink ruby crystals are produced by precipitating the crystals of 1 to 1b and further immersing them in sodium chromate. However, with this method, the flux decreases and the composition changes, and the viscosity changes and the composition fluctuates dramatically1. In the Czochralski method, the raw material is melted in a crucible, and the material is dipped on a seed crystal and then pulled. In the zone melting method, raw materials are formed into a rond shape,
The method of producing single crystals by partially heating and recrystallizing them using induction heating and moving the molten zone has been developed in 11] for the production of single crystals of Sl. No method has been developed to produce it at high pressure.

従って、いずれの方法も、ダイヤモンドのような高温、
高圧を必要とする結晶の製造には有用ではなかった。
Therefore, both methods are suitable for high-temperature, diamond-like
It was not useful for producing crystals requiring high pressure.

例えば、ダイヤモンドの合成には、致方気圧、20oo
℃以上の条件を必要とするが、この条件を一定時間保持
することは非常に離しい。そこで、従来一部では、鉄・
ニッケル1.ゲルマニウム・ニッケル、ニッケル・クロ
ム等の触媒を用いる方法で製造されているが、それでも
、3〜6万気圧。
For example, when synthesizing diamonds, the atmospheric pressure is 20oo
℃ or higher is required, but it is extremely difficult to maintain this condition for a certain period of time. Therefore, in some areas, iron and
Nickel 1. Although it is manufactured using a method using catalysts such as germanium/nickel or nickel/chromium, it still operates at a pressure of 30,000 to 60,000 atm.

1000℃以上の条件を必要とし、高温、高圧に耐える
製造装置は、1回102程度の原材料の充填が限界であ
り、1陥程度の結晶しか製造できていない。また、装置
も非常に大がかりなものであった。
Manufacturing equipment that requires conditions of 1000°C or higher and can withstand high temperatures and high pressures has a limit of filling about 102 raw materials at a time, and can only produce crystals with about one cavity. Moreover, the equipment was also very large-scale.

以上述べてきた従来法の欠点に鑑み、本発明は、非常に
簡単な方法で、しかも省エネルギーの高圧高温結晶製造
方法を提供することを目的とする。
In view of the above-mentioned drawbacks of the conventional methods, an object of the present invention is to provide a high-pressure, high-temperature crystal manufacturing method that is extremely simple and energy-saving.

以下、図面を用いて詳細に説明する。例えば、第1図に
示すごとく、結晶原材料1を包むように外包材料2とな
る透明材料球体(例えば、石英やガラス等)に封入する
。次に、外部より集光したCO2レーザー、あるいはY
AG  レーザー3等で核となっている結晶原材料1を
加熱、溶融させるこのとき、核となっている結晶原材料
1は、加熱膨張させられるが、一方、外方材料は、直接
加熱されず、熱伝導も悪いので、結晶材料に接している
近傍を除き、はとんど昇温、膨張しない。つまり、結晶
材料1は高温、高圧状態で一定時間保持されることにな
る。その後、レーザー3のパワーを順次減少させてゆき
除冷すると、原材料1は高温高圧下で除冷されることに
なり、結晶が形成される。なお、このとき、外包材料2
はほとんど加熱されないので、溶融あるいは破壊される
ことはない。最後に、外包材料2を除去し、結晶を取り
出す。
Hereinafter, it will be explained in detail using the drawings. For example, as shown in FIG. 1, a crystal raw material 1 is enclosed in a transparent material sphere (for example, quartz, glass, etc.) that becomes an outer packaging material 2. As shown in FIG. Next, a CO2 laser focused from the outside or Y
When the crystalline raw material 1 serving as a core is heated and melted by an AG laser 3 or the like, the crystalline raw material 1 serving as a core is heated and expanded, but on the other hand, the outer material is not directly heated and is heated. It also has poor conductivity, so it rarely heats up or expands, except in the vicinity where it is in contact with crystalline materials. In other words, the crystal material 1 is maintained at high temperature and high pressure for a certain period of time. Thereafter, when the power of the laser 3 is gradually reduced and the raw material 1 is slowly cooled, the raw material 1 is gradually cooled under high temperature and high pressure, and crystals are formed. In addition, at this time, the outer packaging material 2
is heated very little, so it cannot be melted or destroyed. Finally, the outer packaging material 2 is removed and the crystals are taken out.

例えば、ダイヤモンドを製造する場合には、30万気圧
、30000にの条件を必要とするが、まず、原材料1
として球形に加圧成形したグラファイト1Qiii’を
粉末ガラスで被覆し、全体を加熱して夕(包利料2とな
る前記ガラス粉末を溶融、硬化して、内部にグラファイ
トを核とする透明ガラス球体を形成する。あるいは、あ
らかじめ溶融されたガラス中にグラファイトを挿入して
、冷却硬化させても良い。なお、このとき、グラファイ
トの直径は2crnとなるので透明ガラスよりなる外包
体の直径を20cm以上とする。この球体に、パワー1
o○○WのYAGレーザ−3を集光して、外部よリグラ
ファイト核を10分程歴加熱すると、グラファイトは、
5000℃以上に加熱、溶融される。なお、このとき、
外包材料2はガラスでできているため、熱伝導が悪く、
数分のオーダでは球体外側は熱膨張を生じない。また、
グラファイト直径2mに対し、ガラス直径を20cm以
上(約10倍)にしておけば、内部圧が50万気圧とな
っても、ガラス球表面のかかる圧力は、6ooo気圧程
度となり、ガラスのヤング率、6〜8 X 10 Af
//cM  を考慮すると破壊されることはない。次に
パワーを順次減少させてゆき3000℃程度に冷却し、
その後、急冷すると、ダイヤモンドが得られる。
For example, when manufacturing diamonds, conditions of 300,000 atmospheres and 30,000 degrees are required.
Graphite 1Qiii', which has been press-molded into a spherical shape, is covered with powdered glass, and the whole is heated. Alternatively, graphite may be inserted into pre-molten glass and allowed to cool and harden.In this case, since the diameter of graphite is 2 crn, the diameter of the outer envelope made of transparent glass should be 20 cm or more. Suppose that this sphere has a power of 1
When the YAG laser 3 of o○○W is focused and the graphite nucleus is externally heated for about 10 minutes, the graphite becomes
Heated and melted at 5000°C or higher. Furthermore, at this time,
Since the outer packaging material 2 is made of glass, it has poor heat conduction.
On the order of a few minutes, no thermal expansion occurs on the outside of the sphere. Also,
If the glass diameter is 20 cm or more (approximately 10 times) compared to the graphite diameter of 2 m, even if the internal pressure is 500,000 atm, the pressure on the glass bulb surface will be about 600 atm, and the Young's modulus of the glass, 6~8 x 10 Af
//Considering cM, it will not be destroyed. Next, reduce the power one by one and cool it to about 3000℃.
Then, upon rapid cooling, a diamond is obtained.

他の方法として、上記実施例の場合の外包材料に、透磁
性物質例えばA Z 203磁器等を用いる場合には、
第2図に示すように、外包材料外部より高周波誘導加熱
コイル4を用いて、結晶原材料のみを加熱、溶融、除冷
、結晶析出させる。この方法においては、結晶材料が電
気導体の場合にのみ可能である。
As another method, if a magnetically permeable material such as AZ 203 porcelain is used as the outer packaging material in the above embodiment,
As shown in FIG. 2, only the crystal raw material is heated, melted, slowly cooled, and crystallized using a high-frequency induction heating coil 4 from outside the outer packaging material. This method is only possible if the crystalline material is an electrical conductor.

以上述べて来たように本発明の方法は、結晶材料のみを
加熱溶融させるので、非常に省エネルギーな結晶製造方
法であり、しかも、外包材料はほとんど加熱されること
がないので、あまり熱強度を必要とする材料を用いる必
要がなく、簡単に製造することができる。また、結晶材
料は、固体の外包材料中で溶融加熱されるため、自己膨
張により比較的簡単に高温、高圧状態が得られる。なお
このとき、核となる結晶原材料を加圧成形する際ある程
度ポーラスにしておけば、圧力調整も客易である。また
結晶原材料中に触媒等を混入して耘けば、より低温で結
晶が得られることも明らかである。
As described above, the method of the present invention heats and melts only the crystal material, so it is a very energy-saving crystal manufacturing method.Moreover, the outer packaging material is hardly heated, so it does not require much heat intensity. It is not necessary to use necessary materials and can be easily manufactured. Further, since the crystalline material is melted and heated in the solid outer packaging material, a high temperature and high pressure state can be obtained relatively easily through self-expansion. At this time, if the crystalline raw material serving as the core is made porous to some extent during pressure molding, pressure adjustment will be easier. It is also clear that crystals can be obtained at lower temperatures if a catalyst or the like is mixed into the raw material for crystallization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかるレーザーで結晶原材
料を加熱する方法を示す図、第2図は本発明の他の実施
例にかかる高周波誘導加熱で結晶原材料を加熱する方法
を示す図である。 1・・・・・・結晶原材料、2・・・・・・外包材料、
3・・・・・・レーザー、4・・・・・・高周波誘導加
熱コイル。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名特許
庁長官殿 1事件の表示 昭和67年特許願第 63744号 2発明の名称 結晶製造方法 3補正をする者 事件との間係      特  許  出  願  人
住 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表者    山  
下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 (1)明細書第6頁第6行〜第6行の[パワー1000
WJ’ir/:ヮ−10KW Jに補正シマす。 (2)同書第6頁第7行の「10分程度」を「数分程度
」に補正します。 (3)同書第C頁第8行のr5000tl:J’1r3
000℃」に補正します。
FIG. 1 is a diagram showing a method of heating a crystal raw material with a laser according to one embodiment of the present invention, and FIG. 2 is a diagram showing a method of heating a crystal raw material with high-frequency induction heating according to another embodiment of the present invention. It is. 1...Crystal raw material, 2...Outer packaging material,
3... Laser, 4... High frequency induction heating coil. Name of agent Patent attorney Toshio Nakao and 1 other person Commissioner of the Japan Patent Office 1 Display of the case 1986 Patent Application No. 63744 2 Name of the invention Crystal manufacturing method 3 Interaction with the person making the amendment Patent application Address 1006 Kadoma, Kadoma City, Osaka Prefecture Name Name
(582) Matsushita Electric Industrial Co., Ltd. Representative Yama
Toshihiko Shimo 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (1) [Power 1000] on page 6, lines 6 to 6 of the statement
WJ'ir/: ヮ-10KW Corrected to J. (2) "About 10 minutes" on page 6, line 7 of the same book has been corrected to "about several minutes." (3) r5000tl on page C, line 8 of the same book: J'1r3
000℃”.

Claims (3)

【特許請求の範囲】[Claims] (1)所定の特性を有する外包材料により包囲されてな
る結晶原材料を、前記外包材料の外側より主として前記
結晶原材料を加熱、溶融、除冷することを特徴とする結
晶製造方法。
(1) A method for producing crystals, which comprises heating, melting, and slowly cooling a crystalline raw material surrounded by an outer envelope material having predetermined characteristics mainly from outside the outer envelope material.
(2)外包材料を、光学的に透明な物質とし、加熱する
方法として、レーザー光を用いることを特徴とする特許
請求の範囲第1項に記載の結晶製造方法。
(2) The crystal manufacturing method according to claim 1, characterized in that the outer envelope material is an optically transparent substance and a laser beam is used as the heating method.
(3)外包材料を透磁性材料とし、結晶原材料を一気導
体とし、加熱法として誘導加熱法を用いることを特徴と
する特許請求の範囲第1項に記載の結晶製造方法。
(3) The crystal manufacturing method according to claim 1, wherein the outer packaging material is a magnetically permeable material, the crystal raw material is a single conductor, and the heating method is an induction heating method.
JP57063744A 1982-04-15 1982-04-15 Manufacture of crystal Granted JPS58181788A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57063744A JPS58181788A (en) 1982-04-15 1982-04-15 Manufacture of crystal
DE8383302154T DE3364653D1 (en) 1982-04-15 1983-04-15 Method for producing crystals
EP83302154A EP0092405B1 (en) 1982-04-15 1983-04-15 Method for producing crystals
US06/485,506 US4522680A (en) 1982-04-15 1983-04-15 Method for producing crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063744A JPS58181788A (en) 1982-04-15 1982-04-15 Manufacture of crystal

Publications (2)

Publication Number Publication Date
JPS58181788A true JPS58181788A (en) 1983-10-24
JPH0135797B2 JPH0135797B2 (en) 1989-07-27

Family

ID=13238214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063744A Granted JPS58181788A (en) 1982-04-15 1982-04-15 Manufacture of crystal

Country Status (1)

Country Link
JP (1) JPS58181788A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511605A (en) * 1978-07-11 1980-01-26 Tamura Electric Works Ltd Regeneration system for intermediate gradation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511605A (en) * 1978-07-11 1980-01-26 Tamura Electric Works Ltd Regeneration system for intermediate gradation

Also Published As

Publication number Publication date
JPH0135797B2 (en) 1989-07-27

Similar Documents

Publication Publication Date Title
US5549746A (en) Solid state thermal conversion of polycrystalline alumina to sapphire using a seed crystal
JPH0337182A (en) Production of big magnetostrictive alloy rod
EP0092405B1 (en) Method for producing crystals
JP2004002082A (en) Quartz glass crucible and method of manufacturing the same
US20020112659A1 (en) Single crystal and method of manufacturing same
JPS58181788A (en) Manufacture of crystal
JPS5854102B2 (en) Doped silica glass
JP3264508B2 (en) Method for producing magnesia single crystal
JPH0337181A (en) Production of big magnetostrictive alloy rod composed of rare earth metal and transition metal
JPWO2005007943A1 (en) Method for producing fluoride crystals
US7294198B2 (en) Process for producing single-crystal gallium nitride
JPH05146663A (en) Superhigh pressure and temperature reaction process
JPS5938189B2 (en) Single crystal manufacturing method
JPS62167213A (en) Production of silicon polycrystalline ingot
JPS62148391A (en) Production on high-melting point substance crystal and vessel of material used in said production
JPS60226495A (en) Method of allowing lanthanum hexaboride single crystal to grow
JP3649283B2 (en) Manufacturing method of optical material for ultraviolet laser beam
JP2809363B2 (en) Method for producing lithium tetraborate single crystal
JPS61111997A (en) Production of rutile single crystal
JPH0948697A (en) Production of lithium triborate single crystal
US6126742A (en) Method of drawing single crystals
JPS59164695A (en) Preparation of single crystal
JPH0815534A (en) Crystalline fiber and its production
JPH06199600A (en) Method for growing beta-barium borate single crystal
JPH02279583A (en) Method for growing single crystal