JPS58181740A - Glass composition for light converging lens - Google Patents

Glass composition for light converging lens

Info

Publication number
JPS58181740A
JPS58181740A JP6305682A JP6305682A JPS58181740A JP S58181740 A JPS58181740 A JP S58181740A JP 6305682 A JP6305682 A JP 6305682A JP 6305682 A JP6305682 A JP 6305682A JP S58181740 A JPS58181740 A JP S58181740A
Authority
JP
Japan
Prior art keywords
refractive index
glass
glass composition
ion exchange
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6305682A
Other languages
Japanese (ja)
Inventor
Akira Akazawa
赤沢 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP6305682A priority Critical patent/JPS58181740A/en
Publication of JPS58181740A publication Critical patent/JPS58181740A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To manufacture a glass composition having reduced chromatic aberration and a large difference in refractive index by adding specified amounts of Cs and Li to an SiO2-base glass composition for a light converging lens and by subjecting the composition to ion exchange in molten KNO3. CONSTITUTION:A glass composition for a light converging lens contg. Cs as ion for providing a refractive index and Li as a metal for forming a refractive index distribution is refined. The principal components of the glass composition are 50-68% SiO2, 0-10% B2O3 (SiO2+B2O3=50-72%), 0-7% Al2O3, 0-20% ZnO, 0-15% MgO, 4'20% Cs2O, 2-12% Li2O, 0-18% K2O, 0-18% Na2O (Cs2O+ Li2O+K2O+Na2O=15-30%) and 0-7% PbO, and CaO, SrO, BaO, La2O3, TiO2, ZrO2, SnO2, As2O3 and Sb2O3 are also contained. The glass composition is subjected to ion exchange in molten KNO3.

Description

【発明の詳細な説明】 本発明は光集束性レンズ用ガラス組成物において、イオ
ン交換法によって低色収差で大きい屈折率差を得るに適
したガラス組成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass composition for a light-focusing lens that is suitable for obtaining a large refractive index difference with low chromatic aberration by an ion exchange method.

光集束性レンズがイオン交換法によって得られることは
特公昭ダ7こg/6.特公昭j/−2/39’1などに
記載されている0ガラス中にイオン交換可能な成分を含
ませておき、硝酸カリウム又は硝酸ナトリウム等を含む
溶融塩中で当該イオンのイオン交換を行なわせると、そ
の表面から深部に向って屈折率が変化する。
It is said that the light focusing lens can be obtained by the ion exchange method. A component capable of ion exchange is contained in 0 glass described in Japanese Patent Publication No. J/-2/39'1, etc., and the ions are ion-exchanged in a molten salt containing potassium nitrate or sodium nitrate, etc. The refractive index changes from the surface toward the depths.

半径rのガラス細棒を溶融塩中に浸漬すると、ガラス中
の7価の陽イオンと溶融塩中の一価の陽イオンが相互に
イオン交換を行ない、第1図に示すような円柱状のガラ
ス細棒の中心から周囲に向って濃度勾配に基づく屈折率
分布を生じ、中心からrの距離にある点の屈折率は /rL  fL。
When a thin glass rod with radius r is immersed in molten salt, the heptavalent cations in the glass and the monovalent cations in the molten salt exchange ions with each other, resulting in a cylindrical shape as shown in Figure 1. A refractive index distribution based on the concentration gradient is generated from the center of the thin glass rod to the periphery, and the refractive index at a point at a distance of r from the center is /rL fL.

争−沖(/−arc)・・・・・・・・・・ (1)号
:中心からrの点の屈折率 ル m:中心の屈折率 aニガラスと溶融塩によって決まる 定数 で表わされる。
Arc - Oki (/-arc) (1): Refractive index at a point r from the center m: Refractive index a at the center Expressed by a constant determined by glass and molten salt.

又、その光集束性レンズの明るさ工は第2図に示すよう
に最大入射角をθとすると IC)CK −R2・θ2・・・・・・・・・・・・ 
(−)K:定数、R:光集束性レンズの半径 で与えられ、最大入射角が大きいほど明るい光集束性レ
ンズとなる。
Also, the brightness of the light focusing lens is as shown in Figure 2, where the maximum incident angle is θ, IC) CK -R2・θ2...
(-) K: constant, R: given by the radius of the light-focusing lens, and the larger the maximum incident angle, the brighter the light-focusing lens becomes.

又、θは次に示すように主としてイオン交換によって生
じる屈折率差へ浄によって決定される。
Further, θ is determined mainly by adjusting the refractive index difference caused by ion exchange, as shown below.

θocめ丁−7・・・・・・・・・・・・(3)ガラス
中に含ませる屈折率分布形成用−価金属としては、タリ
ウム、セシウム、又はリチウムが有効であることが知ら
れている。これらの金属を含むガラスを溶融塩中でK又
はNaとイオン交換する。従来高い屈折率差(△4)を
得るためにはイオン交換1分子による屈折率寄与率の高
いTl が有効であり、Tlガラスが好んで用いられた
。例えばTlを含むガラスはイオン交換によって屈折率
差り争−ダコ、J# X 1o−3、最大入射角も約コ
o0と明るいレンズが得られている。
θoc Mete-7・・・・・・・・・・・・・・・(3) It is known that thallium, cesium, or lithium is effective as the valent metal included in the glass for forming the refractive index distribution. ing. Glass containing these metals is ion-exchanged with K or Na in a molten salt. Conventionally, in order to obtain a high refractive index difference (Δ4), Tl glass, which has a high refractive index contribution due to one ion-exchanged molecule, is effective, and Tl glass has been preferably used. For example, with glass containing Tl, a bright lens with a refractive index difference of J#x1o-3 and a maximum angle of incidence of about 0o0 can be obtained by ion exchange.

しか−色収差が大きいために光源が単色光に限られ、そ
の用途も制限されていた。
However, due to the large chromatic aberration, the light source was limited to monochromatic light, and its uses were also limited.

一方、従来のOsを含むガラスは色収差はTlに比し、
約//10と極めて小さいため、光源として白色光を使
用することができるが、その屈折率λ 差へ4−.3.!;9×10−3 、最大入射角もせい
ぜし絽0と極めて小さいために明るさとして必ずしも充
分でなく、その用途も又限られていた。この原因はイオ
ン交換による/分子当りの屈折率寄与率が低いために大
量のOsをガラス中に含有させないと大きい屈折率差を
得ることができないこと、しがし第1表中の比較例コに
示すように多量のaSをガラス中に含ませても必ずしも
含有量に見合った屈折率差をもった光集束性レンズを得
ることができないためであった。又ガラス中に多量のa
Sを含ませることはガラスの耐久性、原料費及び溶融時
の失透発生からも問題があった。
On the other hand, conventional glass containing Os has chromatic aberration compared to Tl.
Since the refractive index λ is extremely small, about 10, it is possible to use white light as a light source, but the difference in refractive index λ is 4-. 3. ! ; 9×10 −3 , and the maximum incident angle is extremely small, at most 0, so the brightness is not necessarily sufficient, and its uses are also limited. The reason for this is that a large refractive index difference cannot be obtained unless a large amount of Os is contained in the glass due to ion exchange/because the refractive index contribution rate per molecule is low. This is because even if a large amount of aS is contained in glass, it is not necessarily possible to obtain a light-focusing lens with a refractive index difference commensurate with the content, as shown in FIG. Also, there is a large amount of a in the glass.
Inclusion of S causes problems in terms of durability of the glass, raw material cost, and occurrence of devitrification during melting.

更に詳述すれば、アルカリ金属として、屈折率分布形成
用のaSのみを含む場合はイオン交換速度が極めて遅く
実用的なレンズはできなかった。
More specifically, when only aS for forming a refractive index distribution is included as the alkali metal, the ion exchange rate is extremely slow and a practical lens cannot be produced.

次に屈折率形成用としてaSを含み他のアルカリ酸化物
としてに20を含む場合も又第1表の比較例/、コに示
すように高い屈折率差の光集束性レンズを作ることはで
きない。屈折率形成イオンとしてaSを含み他のアルカ
リ金属としてNa2Oを含む場合は(Cs20+に20
>の場合より得られる屈折率差は僅に大きくなるが顕著
な効果は期待できない。
Next, even if aS is included for forming the refractive index and 20 is included as another alkali oxide, it is also not possible to make a light-focusing lens with a high refractive index difference as shown in Comparative Examples/ and C in Table 1. . When aS is included as a refractive index forming ion and Na2O is included as another alkali metal (20
Although the refractive index difference obtained is slightly larger than in the case of >, no significant effect can be expected.

屈折率分布形成金属としてLiを含むガラスもOsとほ
ぼ同様の特性をもつと考えられる。
Glass containing Li as a refractive index distribution forming metal is also considered to have almost the same characteristics as Os.

本発明はその屈折率分布形成成分としてaSとLlを同
時に含み前述した欠点を改良し、低色収差で高い屈折率
差をもった明るい光集束性レンズをつくるガラス組成物
を提供する。
The present invention provides a glass composition that simultaneously contains aS and Ll as refractive index distribution forming components, improves the above-mentioned drawbacks, and produces a bright light-focusing lens with low chromatic aberration and a high refractive index difference.

Cjsを屈折率分布形成成分としてこれにある範囲でL
iを含有させ、硝酸カリウムの溶融塩中でイオン交換を
行なうことKよって色収差が小さく、屈折率差の大きい
光集束性レンズを作ることができた。
With Cjs as the refractive index distribution forming component, L within a certain range
By incorporating K and performing ion exchange in a molten salt of potassium nitrate, it was possible to produce a light-focusing lens with small chromatic aberration and a large difference in refractive index.

本発明で規定するガラス組成範囲としては次の通りであ
る0 (単位mo1%) Si02 : 30〜61 、B2O3: 0−10 
e   5i02十B2O3: 30〜72 、 Al
2O3: 0〜7 、 ZnO:  0〜−〇 、Mg
O: 0〜/j。
The glass composition range defined in the present invention is as follows (unit: mo1%) Si02: 30-61, B2O3: 0-10
e5i020B2O3: 30~72, Al
2O3: 0~7, ZnO: 0~-〇, Mg
O: 0~/j.

pbo : o〜7 を主要成分とし安定化成分としてガラスの基本的特性を
損わない範囲で次の成分を含むことができる。
pbo: o to 7 is the main component, and the following components can be included as stabilizing components within a range that does not impair the basic properties of the glass.

CaO:O〜λ、 SrO: 0−2 、 BaO: 
O〜λ。
CaO: O~λ, SrO: 0-2, BaO:
O~λ.

La2O3: ON2 、TiO2: 0〜コ。La2O3: ON2, TiO2: 0~ko.

zrO2: 0〜/、SnO2:0A−l、As2O3
;O〜/ 、5b203 : 0〜/ 以下その限定理由について説明する。
zrO2: 0~/, SnO2:0A-l, As2O3
;O~/, 5b203: 0~/ The reason for this limitation will be explained below.

を生じやすくなる。X6g%を越えるとガラス形成上必
要な他成分が限定され必要な屈折率差を得ることができ
なくなる。
becomes more likely to occur. If it exceeds 6 g%, other components necessary for glass formation will be limited, making it impossible to obtain the necessary refractive index difference.

また溶融温度が11160℃以上となり、溶融中の未溶
解物、泡、脈理などの欠点を生ずる。好ましくは52〜
67%である。
Further, the melting temperature is 11,160° C. or higher, resulting in defects such as undissolved matter, bubbles, and striae during melting. Preferably 52~
It is 67%.

B2O3もガラス形成実成分でガラスの溶融温度を下げ
るのに最も効果のある融剤であるが溶融中罠揮発しやす
いためにガラス組成のバラツキが大きくなること及びイ
オン交換による屈折率分布の形状を劣化させもしくはイ
オン交換速度を低下させ又イオン交換中にガラス表面忙
クラックを生じる等の欠点を生じるので70%以下とす
ることが必要であり好ましくは7%以下である。
B2O3 is also a glass-forming substance and is the most effective flux for lowering the melting temperature of glass, but it tends to volatilize during melting, which increases the variation in glass composition and reduces the shape of the refractive index distribution due to ion exchange. It is necessary to keep it at 70% or less, and preferably 7% or less, since it causes defects such as deterioration or reduction of the ion exchange rate and generation of cracks on the glass surface during ion exchange.

5i02十B2O3の好ましい範囲は52〜70%であ
るOkl 2o 3はガラスの耐久性及び失透性を改善
し、7%以下の範囲で含有させることができる。
The preferred range of 5i020B2O3 is 52 to 70%.Okl2o3 improves the durability and devitrification of the glass, and can be contained in a range of 7% or less.

ZnOはガラスの耐久性を改善し、溶融を容易にし、レ
ンズの屈折率分布形状を改良するのに有効である。ただ
し20%を越えると失透性が増大する。好ましい範囲は
5〜76%である。
ZnO is effective in improving the durability of the glass, facilitating its melting, and improving the refractive index profile shape of the lens. However, if it exceeds 20%, devitrification increases. The preferred range is 5-76%.

MgOもZnOと同様の理由で用いられるがznOに比
べ溶融温度が高くなり、失透しやすくなるために73%
以下に抑えることが必要である。
MgO is also used for the same reason as ZnO, but it has a higher melting temperature than ZnO and is more likely to devitrify, so it is 73%
It is necessary to keep it below.

好ましくは73%以下である。Preferably it is 73% or less.

R20はイオン交換速度を大きく左右する。含有量を増
大させるにつれイオン交換速度は増大する。
R20 greatly influences the ion exchange rate. The ion exchange rate increases as the content increases.

又、ガラスの失透性向を改善するにも有効である。It is also effective in improving the tendency of glass to devitrify.

しかし、/ざ%を越えると他の屈折率寄与成分が抑えら
れ、耐久性も低下するので本発明では11%以下に規定
する。好ましくはO〜/乙%である0Cs20は屈折率
分布を形成する主要成分であり、大きな屈折率差を得る
ためには多量のC15BOを含有させる必要がある。1
%未満では必要な屈折率差を得ることができない。また
−0%を越えるとcs2oを含めた全R20含有量が大
きくなり、耐久性が低下するので!−,10%の範囲内
とする必要がある。好ましい範囲は3− #%である。
However, if it exceeds 11%, other components contributing to the refractive index will be suppressed and durability will decrease, so in the present invention, it is specified to be 11% or less. 0Cs20, which is preferably O~/O%, is a main component forming the refractive index distribution, and in order to obtain a large refractive index difference, it is necessary to contain a large amount of C15BO. 1
If it is less than %, the necessary refractive index difference cannot be obtained. Also, if it exceeds -0%, the total R20 content including cs2o will increase and the durability will decrease! -, 10%. The preferred range is 3-#%.

L120はC620と併用して含有させることによりイ
オン交換によって得られるCs2Oの屈折率差をより大
きくする相乗作用的な働きをする。従って当然Cs2O
含有量が大きくなればそれに合せて、Li2O含有量を
増やすことが好ましい。
When L120 is contained in combination with C620, it acts synergistically to further increase the difference in refractive index of Cs2O obtained by ion exchange. Therefore, naturally Cs2O
As the content increases, it is preferable to increase the Li2O content accordingly.

Cs2041%に必要なL120は2%である。CF3
20含有量が増えるに従ってL120を増大させること
が好ましいがR20の総合有量が著るしく大きくなった
場合、ガラスの耐久性が低下するのでLi2Oは/−%
以下とする必要がある。
L120 required for Cs2041% is 2%. CF3
It is preferable to increase L120 as the R20 content increases, but if the total amount of R20 increases significantly, the durability of the glass will decrease, so Li2O should be increased by /-%.
It is necessary to do the following.

好ましくは2〜77%である。Preferably it is 2 to 77%.

Na2Oは屈折率差、屈折率分布形状に対しては特に影
響を与えないが、ガラスの溶融温度を低下させ、イオン
交換温度を下げるのに有効である。
Although Na2O does not particularly affect the refractive index difference or the refractive index distribution shape, it is effective in lowering the melting temperature of glass and lowering the ion exchange temperature.

従って耐久性を低下させない限度の71%まで含有させ
ることができるが、好ましくは0〜/よ%である。
Therefore, the content can be up to 71% without deteriorating the durability, but it is preferably 0 to 1%.

上述のようK R2C1の総合有量があまり多いとガラ
スの耐久性が低下するので本発明において、C1520
t Li2Op R20、Nano (7)合計量は/
!; 〜36%の範囲内に選ぶC要があり、さらに20
〜3t1%の範囲内とするのが望ましい。
As mentioned above, if the total amount of K R2C1 is too large, the durability of the glass will decrease, so in the present invention, C1520
t Li2Op R20, Nano (7) The total amount is /
! ; C must be selected within the range of ~36%, and an additional 20%
It is desirable that it be within the range of ~3t1%.

PbOはガラスの失透性を改善する有効な成分であり7
%を限度として含有させることができる。
PbO is an effective component that improves the devitrification of glass7.
% can be contained as a limit.

それを越えるとイオン交換速度を低下させ、屈折率分布
形状を劣化させる。
Exceeding this will reduce the ion exchange rate and deteriorate the refractive index distribution shape.

その他、ガラスの基本的な特性を変えない下記範囲に於
てガラス安定化成分を含有させることができる。
In addition, glass stabilizing components can be included within the following ranges that do not change the basic properties of the glass.

CaO: 0−j 、 SrO: ON2 、 BaO
: ONJLa203 : 0〜2 、 TiO2: 
0〜jZr02 : 0〜/ r 5n02 : 0〜
/ + As2O3: 0〜/。
CaO: 0-j, SrO: ON2, BaO
: ONJLa203: 0-2, TiO2:
0~jZr02: 0~/r5n02: 0~
/ + As2O3: 0~/.

5b2o3 : o〜/ 実施例 二酸化ケイ素−タ2gg、酸化亜鉛ざilIg、炭酸カ
リウムフタ2t1g。硝醗セシウム−9コ/g、炭酸リ
チウム26’l gをそれぞれ秤量し2071のポリ容
器の中で均質に混合し、次に21の石英ルツボを用いて
7400°Cの溶融炉の中でう7メルトを行し、脈理、
泡のない均質なガラスとなった後、100cl)7時間
の割合で1030″Cまで降温した。
5b2o3: o~/ Example 2 gg of silicon dioxide, 1 g of zinc oxide, 2 t of potassium carbonate. Weighed 9 g of cesium nitrate and 26 l g of lithium carbonate, mixed them homogeneously in a 2071 plastic container, and then melted them in a 7400°C melting furnace using a 21 quartz crucible. Perform 7 melts, striae,
After becoming a homogeneous glass without bubbles, the temperature was lowered to 1030''C at a rate of 100cl) for 7 hours.

その後タテ230mm 、ヨコ−00mm、高さ25m
mの金型の中にキャストし、徐冷炉にて常温までゆっく
り冷却した。
Then vertical 230mm, horizontal 00mm, height 25m
It was cast into a mold of 1.5 m and slowly cooled to room temperature in a slow cooling furnace.

徐冷の終ったガラスをダイヤモンドカッターを用いて切
り出し、直径約コOmmの丸棒を採取した。
The glass that had been slowly cooled was cut out using a diamond cutter to obtain a round bar with a diameter of about 0 mm.

次に紡糸炉を用いてこの丸棒を約/ mmの直径のガラ
ス細棒に紡糸後!;70”Cの硝酸カリウム溶融 仏壇
中で2g時間イオン交換したところ周期長−J、7mm
で屈折率分布良好な光集束性レンズを得ることができた
Next, use a spinning furnace to spin this round rod into a thin glass rod with a diameter of about 1/2 mm! Melting potassium nitrate at 70"C After ion exchange for 2g hours in a Buddhist altar, period length -J, 7mm
We were able to obtain a light focusing lens with a good refractive index distribution.

このレンズを切断、研磨しj、jmmに仕上げた後最大
入射角を測定したところ/J、ダ0 であった。
After cutting and polishing this lens to j, j mm, the maximum angle of incidence was measured and found to be /J, da0.

同様にしてガラスの組成を種々変えて得られた光集束性
レンズの中心屈折率、中心と周辺の屈折率差、最大入射
角をそれぞれ測定した。
Similarly, the center refractive index, the difference in refractive index between the center and the periphery, and the maximum angle of incidence of light-focusing lenses obtained with various glass compositions were measured.

また比較例としてLi、20を含まないガラスを上記と
同様に溶解・、成型、紡糸した後イオン交換゛して光集
束性レンズを製作した。
As a comparative example, a light-focusing lens was manufactured by melting, molding, and spinning glass that did not contain Li, 20 in the same manner as above, and then ion-exchanging the glass.

その結果を第1表に示す。The results are shown in Table 1.

なお、表中の実施例ム乙については1330℃で溶融し
7020℃で金型にキャストした。
In addition, Example B in the table was melted at 1330°C and cast into a mold at 7020°C.

第1表から明らかなようにcs2oとLi2Oとを一定
量範囲内でガラス中に共存させると0820を単独に含
有してL120を含まないガラスに比べはるかに屈折率
差の大きい明るいレンズを作ることができる。
As is clear from Table 1, when cs2o and Li2O coexist in a glass within a certain amount range, a bright lens containing 0820 alone and with a much larger difference in refractive index than a glass that does not contain L120 can be produced. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光集束性レンズの横断面及びその
屈折率分布を示す図、第2図は本発明に係る光集束性レ
ンズ中を光線が進行する状態を示す側断面図である。 第1表(1) イオン交換時間は1n径/、 Ononのガラス細棒を
処理した値−第1表(2) 第1II 第2図
FIG. 1 is a cross-sectional view of a light-focusing lens according to the present invention and its refractive index distribution, and FIG. 2 is a side sectional view showing a state in which a light ray travels through the light-focusing lens according to the present invention. . Table 1 (1) Ion exchange time is 1n diameter/value for processing Onon glass rod - Table 1 (2) 1II Figure 2

Claims (1)

【特許請求の範囲】  : モル%で         3 Si02 : so−+、r、。 B2O3:0〜10゜ 5i02+B2O3: !;0〜72 A1203:0〜7゜ zno : o〜−〇。 MgO: 0〜/3゜ as2o ; ll−ro 。 Li2O: 2〜/、2゜ K2O: O〜/ざ。 Na2O: 0〜/g。 0820+L120+に20+Na2O:  /!; 
−31゜pbo : o〜7 を1ミ要成分と〔97、更に安定化成分とし7てOaO
: 0〜.2 、 SrO: 0−.2 、 BaO:
 0−2 。 La2O3:0〜コ、TlO2: O−2、ZrO2:
0〜/ +5n02 :  0〜/ 、AS203 :
  O〜/ 、5b20s  :  0〜l を含むイオン交換法によって製造される光集束性レンズ
に適したガラス組成物。
[Claims]: 3 Si02: so-+, r, in mol%. B2O3: 0~10°5i02+B2O3: ! ;0~72 A1203:0~7°zno: o~-〇. MgO: 0~/3°as2o; ll-ro. Li2O: 2~/, 2°K2O: O~/za. Na2O: 0~/g. 0820+L120+ to 20+Na2O: /! ;
-31゜pbo: o ~ 7 as one essential component [97, and further as a stabilizing component 7 as OaO
: 0~. 2, SrO: 0-. 2. BaO:
0-2. La2O3: 0~ko, TlO2: O-2, ZrO2:
0~/+5n02: 0~/, AS203:
A glass composition suitable for a light-focusing lens manufactured by an ion exchange method, comprising O~/, 5b20s: 0~l.
JP6305682A 1982-04-15 1982-04-15 Glass composition for light converging lens Pending JPS58181740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6305682A JPS58181740A (en) 1982-04-15 1982-04-15 Glass composition for light converging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6305682A JPS58181740A (en) 1982-04-15 1982-04-15 Glass composition for light converging lens

Publications (1)

Publication Number Publication Date
JPS58181740A true JPS58181740A (en) 1983-10-24

Family

ID=13218293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305682A Pending JPS58181740A (en) 1982-04-15 1982-04-15 Glass composition for light converging lens

Country Status (1)

Country Link
JP (1) JPS58181740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576299A1 (en) * 1985-01-22 1986-07-25 Schott Glaswerke LIGHT WAVEGUIDE, ITS MANUFACTURE FROM SPECIAL ION EXCHANGE GLASSES AND ITS USE
JP2000159544A (en) * 1998-09-22 2000-06-13 Nippon Sheet Glass Co Ltd Glass composition, its production, substrate for information recording medium using the same, information recording medium and information recording apparatus
CN102659312A (en) * 2010-08-05 2012-09-12 肖特公司 Rear earth aluminoborosilicate glass composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678446A (en) * 1979-11-27 1981-06-27 Nippon Sheet Glass Co Ltd Cesium-containing optical glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678446A (en) * 1979-11-27 1981-06-27 Nippon Sheet Glass Co Ltd Cesium-containing optical glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576299A1 (en) * 1985-01-22 1986-07-25 Schott Glaswerke LIGHT WAVEGUIDE, ITS MANUFACTURE FROM SPECIAL ION EXCHANGE GLASSES AND ITS USE
JP2000159544A (en) * 1998-09-22 2000-06-13 Nippon Sheet Glass Co Ltd Glass composition, its production, substrate for information recording medium using the same, information recording medium and information recording apparatus
CN102659312A (en) * 2010-08-05 2012-09-12 肖特公司 Rear earth aluminoborosilicate glass composition

Similar Documents

Publication Publication Date Title
JP2747964B2 (en) Manufacturing method of optical glass
JP5313440B2 (en) Optical glass
JP4923366B2 (en) Optical glass for mold press molding
JP4362369B2 (en) Optical glass for molding
JPH0624789A (en) High-refractive-index opthalmic and optical glass
JP4924978B2 (en) Optical glass for mold press molding
JPH01133956A (en) Glass composition for distributed refractive index lens
JPS605037A (en) Optical glass
JPH11157868A (en) Lead-free heavy crown or especially heavy crown optical glass
JP4337134B2 (en) Optical glass for mold press molding
JPS6243936B2 (en)
JP2005015302A (en) Optical glass for mold press molding
JP3130245B2 (en) Optical glass
JP2000247676A (en) Optical glass for mold press forming
US2913345A (en) Ophthalmic glass
TW201837005A (en) Optical glass
JPS63230536A (en) Thallium-containing optical glass
JPH09278479A (en) Optical glass for mold press
KR101351450B1 (en) Optical glass for mold press molding
JP4161286B2 (en) Optical glass for mold press molding
JPS5941934B2 (en) Glass composition for light focusing lenses
JP4958060B2 (en) Optical glass for mold press molding
US3997250A (en) High strength ophthalmic lens
JPS6046945A (en) Optical glass
JPS58181740A (en) Glass composition for light converging lens